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ABSTRACT

We propose a novel unsupervised representation learning framework called
neighbor-encoder in which domain knowledge can be trivially incorporated into
the learning process without modifying the general encoder-decoder architecture.
In contrast to autoencoder, which reconstructs the input data, neighbor-encoder
reconstructs the input data’s neighbors. The proposed neighbor-encoder can be
considered as a generalization of autoencoder as the input data can be treated as
the nearest neighbor of itself with zero distance. By reformulating the represen-
tation learning problem as a neighbor reconstruction problem, domain knowledge
can be easily incorporated with appropriate definition of similarity or distance be-
tween objects. As such, any existing similarity search algorithms can be easily
integrated into our framework. Applications of other algorithms (e.g., association
rule mining) in our framework is also possible since the concept of “neighbor” is
an abstraction which can be appropriately defined differently in different contexts.
We have demonstrated the effectiveness of our framework in various domains,
including images, time series, music, etc., with various neighbor definitions. Ex-
perimental results show that neighbor-encoder outperforms autoencoder in most
scenarios we considered.

1 INTRODUCTION

Unsupervised representation learning has been shown effective in tasks such as dimension reduction,
clustering, visualization, information retrieval, and semi-supervised learning (Goodfellow et al.,
2016; Yang et al., 2017). While domain-specific unsupervised representation learning methods like
word2vec (Mikolov et al., 2013a;b) and video-based representation learning (Agrawal et al., 2015;
Jayaraman & Grauman, 2015; Wang & Gupta, 2015; Pathak et al., 2017) have been widely adopted
in their respective domains, their success cannot be directly transferred to other domains as their
assumptions do not hold for other types of data. In contrast, general unsupervised representation
learning methods such as autoencoder (Bengio et al., 2007; Huang et al., 2007; Vincent et al., 2008;
2010) can be effortlessly applied to data from various domains, but the performance of general meth-
ods is usually inferior to those that utilizes domain knowledge (Mikolov et al., 2013a;b; Agrawal
et al., 2015; Jayaraman & Grauman, 2015; Wang & Gupta, 2015; Pathak et al., 2017).

In this work, we propose an unsupervised representation learning framework (i.e., neighbor-encoder)
which is general as it can be applied to various types of data and versatile since domain knowl-
edge can be trivially added by adopting various “off-the-shelf” data mining algorithms for finding
neighbors. Figure 1 previews the t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten
& Hinton, 2008) visualization produced from a human physical activity data set (see Section 4.3
for details). The embedding is generated by projecting representation learned by neighbor-encoder,
representation learned by autoencoder, and raw data respectively to 2D. By using a suitable neigh-
bor finding algorithm, the representation learned by neighbor-encoder provides a more meaningful
visualization than its rival methods.

In summary, our major contributions include:

• We propose a general and versatile framework, the neighbor-encoder, which can be used
to trivially combine a large family of similarity search techniques with unsupervised repre-
sentation learning to incorporate domain knowledge.

• We demonstrate the superior performance of the representations learned by neighbor-
encoder, compared to representations learned by autoencoder in handwritten digit data,
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image, human physical activity data, and instrumental sound data for various machine
learning tasks including classification, clustering, and visualization.

• We demonstrate that the neighbor-encoder framework can considerably outperform autoen-
coder with an appropriate neighbor definition.
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Figure 1: Visualizing the learned representation versus the raw time series on PAMAP2 (human
physical activity) data set (Reiss & Stricker, 2012a;b) using t-SNE (Maaten & Hinton, 2008) with
either Euclidean or dynamic time warping (DTW) distance (Nguyen et al., 2017). If we manually
select 27 dimensions of the time series that are clean and relevant (acceleration, gyroscope, magne-
tometer, etc.), the representation learned by both autoencoder and neighbor-encoder achieves better
class separation than raw data. However, if the data include noisy and/or irrelevant dimensions (heart
rate, temperature, etc.), neighbor-encoder outperforms autoencoder noticeably.

2 RELATED WORK

Unsupervised representation learning is usually achieved by optimizing either domain specific
objectives or general unsupervised objectives. For example, in the domain of computer vision and
music processing, unsupervised representation learning can be formulated as a supervised learning
problem with surrogate labels generated by exploiting the temporal coherence in videos and music
(Agrawal et al., 2015; Jayaraman & Grauman, 2015; Wang & Gupta, 2015; Pathak et al., 2017;
Huang et al., 2017); in the case of natural language processing, word embedding can be obtained by
optimizing an objective function that “pushes” words occurring in a similar context (i.e., surrounded
by similar words) closer in the embedding space (Mikolov et al., 2013a;b). Alternatively, general
unsupervised objectives are also useful for unsupervised representation learning. For example, both
autoencoder (Bengio et al., 2007; Huang et al., 2007; Vincent et al., 2008; 2010) and dictionary
learning (Mairal et al., 2009) are based on minimizing the self-reconstruction error, while optimizing
the k-means objective is shown effective in Coates & Ng (2012) and Yang et al. (2017). Other
objectives, such as self-organizing map criteria (Kohonen, 1982; Bojanowski & Joulin, 2017) and
adversarial training (Goodfellow et al., 2014; Donahue et al., 2016; Radford et al., 2015) are also
demonstrated as effective objectives for unsupervised representation learning.

Autoencoder is a decade-old unsupervised learning framework for dimension reduction, represen-
tation learning, and deep hierarchical model pre-training; many variants have been proposed since
its initial introduction (Bengio et al., 2007; Goodfellow et al., 2016). For example, the denois-
ing autoencoder reconstructs the input data from its corrupted version; such modification improves
the robustness of the learned representation (Vincent et al., 2010). Variational autoencoder (VAE)
regularizes the learning process by imposing a standard normal prior over the latent variable (i.e.,
representation), and such constraints help the autoencoder learn a valid generative model (Kingma
& Welling, 2013; Rezende et al., 2014). Makhzani et al. (2015) and Larsen et al. (2015) further im-
proved generative model learning by combining VAE with adversarial training. Sparsity constraints
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on the learned representation are another form of regularization for autoencoder to learn a more
discriminating representation for classification, both the k-sparse autoencoder (Makhzani & Frey,
2013; 2015) and k-competitive autoencoder (Chen & Zaki, 2017) incorporate such ideas.

3 NEIGHBOR-ENCODER FRAMEWORK

In this section, the proposed neighbor-encoder framework is introduced and compared with au-
toencoder. Figure 2 shows different encoder-decoder configurations for both neighbor-encoder and
autoencoder. In the following sections, we will discuss the motivation and design of each encoder-
decoder configuration in detail.
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Figure 2: Various encoder-decoder configurations for training autoencoder and neighbor-encoder:
a) autoencoder, b) neighbor-encoder, and c) k-neighbor-encoder with k decoders.

3.1 AUTOENCODER

The overall architecture of autoencoder consists of two components: an encoder and a decoder.
Given input data x, the encoder E(·) is a function that encodes x into a latent representation z
(usually in a lower dimensional space), and the decoder D(·) is a function that decodes z in order
to reconstruct x. Figure 2a shows the feed-forward path of an autoencoder where z = E(x) and
x̂ = D(z). We train the autoencoder by minimizing the difference between the input data x and the
reconstructed data x̂. Formally, given a set of training data X , the parameters in E(·) and D(·) are
learned by minimizing the objective function

∑
x∈X loss(x, x̂) where x̂ = D(E(x)). The particular

loss function we used in this work is cross entropy, but other loss function like mean square error
or mean absolute error can also be applied. Once the autoencoder is learned, any given data can
be projected to the latent representation space with E(·). Both the encoder and the decoder can
adopt any existing neural network architecture such as multilayer perceptron (Bengio et al., 2007),
convolutional net (Huang et al., 2007), or long short-term memory (Hochreiter & Schmidhuber,
1997; Srivastava et al., 2015).

3.2 NEIGHBOR-ENCODER

Similar to the autoencoder, neighbor-encoder also consists of an encoder and a decoder. Both the
encoder and the decoder in neighbor-encoder work similarly as their counterpart in autoencoder; the
major difference is in the objective function. Given input data x and the neighborhood functionN(·)
(which returns the neighbor y of x), the encoder E(·) is a function that encodes x into a latent repre-
sentation z and the decoderD(·) is a function that reconstructs x’s neighbor y by decoding z. Figure
2b shows the feed-forward path of a neighbor-encoder where z = E(x) and ŷ = D(z). Formally,
given a set of training data X and a neighborhood function N(·), the neighbor-encoder is learned
by minimizing the objective function

∑
x∈X loss(y, ŷ), where y = N(x) and ŷ = D(E(x)). Note

that here “neighbor” can be defined in a variety of ways. We will introduce examples of different
neighbor definitions later in Section 3.4.

We argue that neighbor-encoder can better retain the similarity between data samples in the latent
representation space comparing to autoencoder. Figure 3 builds an intuition for this claim. As
shown in Figure 3a, we assume the data set of interest consists of samples from two classes (i.e.,
blue class and red class, and each class forms a cluster) in 2D space. Since the autoencoder is
trained by mapping each data point to itself, the learned representation for this data set would most
likely be a rotated and/or re-scaled version of Figure 3a. In contrast, the neighbor-encoder (trained
with nearest neighbor relation shown in Figure 3b) would learn a representation with much less
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intra-class variation: as Figure 3c shows, when several similar data points share the same nearest
neighbor, the objective function will force the network to generate exactly the same output for these
similar data points, thus forcing their latent representation (which is the input of the decoder) to be
very similar.

(a) (b) (c)

Figure 3: Intuition behind neighbor-encoder comparing to autoencoder. a) A simple 2D data set
with two classes, b) the nearest neighbor graph constructed for the data set (arrowheads of the edges
are removed for clarity), and c) an example of how neighbor-encoder would generate representation
with smaller intra-class variation for highlighted data points. The neighbor-encoder learns similar
representation for closely located data points by forcing these data points to reconstruct the same
data point as these data points are most likely sharing the same nearest neighbor (shown by the
arrows).

Since we are using neighbor finding algorithms to guide the representation learning process, one
may argue that we could instead construct a graph using the neighbor finding algorithm, then apply
various graph-based representation learning methods like the ones proposed in Perozzi et al. (2014),
Tang et al. (2015), Grover & Leskovec (2016), Dong et al. (2017) or Ribeiro et al. (2017). Graph-
based methods are indeed valid alternatives to neighbor-encoder; however, they have the following
two limitations: 1) If one wishes to encode a newly obtained data, the out-of-sample problem would
bring about additional complexity as these methods are not designed to handle such scenario. 2) It
will be impossible to learn a generative model, as graph-based methods learn the representation by
modeling the relationship between examples in a data set rather than modeling the example itself. As
a result, the proposed neighbor-encoder is preferred over the graph-based methods when the above
limitations are crucial.

3.3 k-NEIGHBOR-ENCODER

Similar to the idea of generalizing 1-nearest neighbor classifier to k-nearest neighbor classifier,
neighbor-encoder can also be extended to k-neighbor-encoder by reconstructing k neighbors of the
input data (see Figure 2c). We train k decoders which simultaneously reconstruct all k neighbors of
the input. Given an input data x and the neighborhood function N(·) (which returns the k neighbors
[yi|∀i ∈ Z : 0 < i ≤ k] of x), the encoder E(·) is a function that encodes x into a latent represen-
tation z. Then, we have a set of k decoders [Di(·)|∀i ∈ Z : 0 < i ≤ k], in which each individual
function Di(·) decodes z in order to reconstruct x’s ith neighbor yi.

The learning process of k-neighbor encoder is slightly more complicated than the neighbor-
encoder (i.e., 1-neighbor-encoder). Given a set of training data X and a neighborhood function
N(·), the k-neighbor-encoder can be learned by minimizing

∑
x∈X

∑
yi∈N(x) loss(yi, ŷi) where

ŷi = Di(E(x)) and 0 < i ≤ k. Note that since there are k decoders, we need to assign each yi
to one of the decoders. If there are “naturally” k types of neighbors, we can train one decoder for
each type of neighbor. Otherwise, one possible decoder assignment strategy is choosing the decoder
that provides the lowest reconstruction loss for each yi ∈ N(x). This decoder assignment strategy
would work if each training example has less than k “modes” of neighbors.

3.4 NEIGHBORHOOD FUNCTION

To use any of the introduced neighbor-encoder configurations, we need to properly define the term
neighbor. In this section, we discuss several possible neighborhood functions for the neighbor-
encoder framework. Note that the functions listed in this section is just a small subset of all the
available functions, to demonstrate the versatility of our approach.
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• Simple Neighbor is defined as the several few objects that are closest to a given object in
Euclidean distance or other distances, assuming the distance between every two objects is
computable. For example, given a set of objects [x1, x2, x3, ..., xn] where each object is a
real-value vector, the neighboring relationship among the objects under Euclidean distance
can be approximately identified by construing a k-d tree.

• Feature Space Neighbor is very similar to simple neighbor, except that instead of com-
puting the distance between objects in the space where the reconstruction is performed
(e.g., the raw-data space), we compute the distance in an alternative representation or
feature space. To give a more concrete example, suppose we have a set of objects
[x1, x2, x3, ..., xn] where each object is an audio clip in mel-frequency spectrum space.
Instead of finding neighbors directly in the mel-frequency spectrum space, we transform
the data into the Mel-frequency Cepstral Coefficient (MFCC) space as neighbors discov-
ered in MFCC space is semantically more meaningful and searching in MFCC space is
more efficient.

• Spatial or Temporal Neighbor defines the neighbor based on the spatial or temporal close-
ness of objects. Specifically, given a set of objects [x1, x2, x3, ..., xn] where the subscript
denotes the temporal (or spatial) arrival order, xi and xj are neighbors when |i − j| < d
where d is a predefined size of the neighborhood. The skip-gram model in word2vec
(Mikolov et al., 2013a;b) is an example of spatial neighbor-encoder, as the skip-gram model
can be regarded as reconstructing the spatial neighbors (in a form of one-hot vector) of a
given word.

• Time Series Subspace Neighbor is defined for multidimensional time series data as the
similarity between two objects is measured by only a subset of all dimensions. By ignoring
some dimensions, a time series could find neighbors with higher quality since it is very
likely that some of the dimensions contain irreverent or noisy information (i.e., room tem-
perature in human physical activity data) (Yeh et al., 2017). Given a multidimensional time
series, we can use mSTAMP (Yeh et al., 2017) to evaluate the neighboring relationship
between all the subsequences within the time series.

• Side Information Neighbor defines the neighbor with side information which could be
more semantic meaningful comparing to aforementioned functions. For example, images
shown in the same eCommerce webpage (e.g., Amazon1) would most likely belong to the
same merchandise, but they can reflect different angles, colors, etc., of the merchandise.
If we select a random image from a webpage and assign it as the nearest neighbor for all
the other images in the same page, we could train a representation that is invariant to view
angles, lighting conditions, and product variations (e.g., different color of the same smart
phone), etc. One may consider that using such side information implies a supervised learn-
ing system instead of an unsupervised learning system. However, note that the information
provided to the system is still very limited: we only have the information regarding similar
pairs while the information regarding dissimilar pairs (i.e., negative examples) are miss-
ing2, and such limitation would hinder the performance of existing method like Siamese
network (Koch et al., 2015).

4 EXPERIMENTAL EVALUATION

In this section, we show the effectiveness and versatility of neighbor-encoder compared to autoen-
coder by performing experiments on handwritten digits, images, human physical activities, and
instrumental sounds data with different neighborhood functions. As the neighbor-encoder frame-
work is a generalization of autoencoder, all the variants of autoencoder (e.g., denoising autoencoder
(Vincent et al., 2010), variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014),
k-sparse autoencoder (Makhzani & Frey, 2013; 2015), or adversarial autoencoder (Makhzani et al.,
2015)) can be directly ported to the neighbor-encoder framework. As a result, here we did not ex-
haustively test all variants of autoencoder/neighbor-encoder, but only selected three most popular

1https://www.amazon.com/
2 We can construct a 1-nearest-neighbor graph by treating each image as a node and connecting each image

with its nearest neighbor. One may sample pairs of disconnected nodes as negative examples, but such sampling
method may produce false negatives, as disconnected nodes may or may not be semantically dissimilar.
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variants of them (i.e., vanilla, denoising and variational). We leave the exhaustive comparison of the
other variants for future work.

4.1 HANDWRITTEN DIGITS

The MNIST database is commonly used in the initial study of newly proposed methods due to its
simplicity (LeCun et al., 1998). It contains 70, 000 images of handwritten digits (one digit per im-
age); 10, 000 of these images are test data and the other 60, 000 are training data. The original
task for the data set is multi-class classification. Since the proposed method is not a classifier but
a representation learner (i.e., an encoder), we have evaluated our method using the following pro-
cedural: 1) we train the encoder with all the training data, 2) we encode both training data and test
data into the learned representation space, 3) we train a simple classifier (i.e., linear support vec-
tor machine/SVM) with various amounts of labeled training data in the representation space, then
apply the classifier to the representation of test data and report the classification error (i.e., semi-
supervised classification problem), and 4) we also apply a clustering method (i.e., k-means) to the
representation of test data and report the adjusted Rand index. As a proof of concept, we didn’t
put much effort in optimizing the structure of the encoder/encoder. We simply used a 4-layer 2D
convolutional net as the encoder and a 4-layer transposed 2D convolutional net as the decoder. The
detailed setting of the network architecture is summarized in Figure 4. We have tried several other
convolutional net architectures as well; we draw the same conclusion from the experimental results
with these alternative architectures.

Input

Latent  Representation

Output

Encoder

64-Conv-5-1 → ReLU → BN

64-Conv-5-2 → ReLU → BN

128-Conv-5-2 → ReLU → BN

128-Conv-7-1

Decoder

64-TConv-5-1 → ReLU → BN

64-TConv-5-2 → ReLU → BN

128-TConv-5-2 → ReLU → BN

128-TConv-7-1

1-Conv-1-1 → Sigmoid

Figure 4: Network architecture for the decoder and decoder. 64-Conv-5-1 denotes 2D convolutional
layer with 64 5 × 5 kernels and stride of 1. ReLU denotes rectified linear unit. BN denotes batch
normalization. TConv denotes transposed 2D convolutional layer.

Here we use the neighbor-encoder configuration (shown in Figure 2b) with the simple neighbor
definition for our neighbor-encoder. We compare the performance of three variants (i.e., vanilla,
denoising, and variational) of neighbor-encoder and the same three variants of autoencoder. Figure
5 shows the classification error rate as we change the number of labeled training data for linear
SVM. All neighbor-encoder variants outperforms their corresponding autoencoder variants except
the variational neighbor-encoder when the number of labeled training data is larger. Overall, denois-
ing neighbor-encoder produce the most discriminating representations.

Besides the semi-supervised learning experiment, we also performed a clustering experiment with
k-means which is purely unsupervised. Table 1 summarized the experiment result. The overall
conclusion is similar to that of the semi-supervised learning experiment where all neighbor-encoder
variants outperforms their corresponding autoencoder variants. Unlike the semi-supervised experi-
ment, variational neighbor-encoder produces the most clusterable representations in this particular
experiment, but all three variants of neighbor-encoder are comparable with each other.

Table 1: The clustering adjust Rand index with k-means.

Vanilla Denoising Variational
Autoencocder 0.3005 0.3710 0.4492
Neighbor-encoder 0.4926 0.5039 0.5179
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Figure 5: The classification error rate with linear SVM versus various training data size using dif-
ferent variants (i.e., vanilla, denoising, variational) of autoencoder and neighbor-encoder. Neighbor-
encoder constantly outperforms autoencoder.

In the previous two experiments, we define the neighbor of an object as its 1st nearest neighbor under
Euclidean distance. With such definition, the visual difference between an object with its neighbor
using such definition is usually small given that we have sufficient data. To allow for more visual
discrepancy between the objects and their neighbors, we could change that neighbor definition to the
ith nearest neighbor under Euclidean distance (i > 1). We have repeated the clustering experiment
under different setting of i to examine the effect of increasing discrepancy between the objects
and their neighbors. We chose to perform the clustering experiment instead of the semi-supervised
learning experiment because 1) clustering is unsupervised and 2) it is easier to present the clustering
result in a single figure as semi-supervised learning requires us varying both the number of training
data and i.

Figure 6 summarizes the result, and Appendix A shows a randomly selected set of object-neighbor
pair under different setting of i. The performance peaks around i = 24 and decreases as we increase
i; therefore, choosing the 24th nearest neighbor as the reconstruction target for neighbor-encoder
would create enough discrepancy between the object-neighbor pair for better representation learn-
ing. When neighbor-encoder is used in this fashion, it can be regarded as a non-parametric way of
generating noisy objects (similar as the principle of denoising autoencoder), and the settings of i
controls the amount of noise added to the object. Note that neighbor-encoder is not equivalent to
denoising autoencoder as several objects can share the same ith nearest neighbor (recall Figure 3c),
but denoising autoencoder would most likely generate different noisy inputs for different objects.
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Figure 6: The clustering adjust Rand index versus the proximity of the neighbor using various
neighbor-encoder variations (i.e., vanilla, denoising, variational). The proximity of a neighbor is de-
fined as its ranking when query with the input. All three neighbor-encoder variations roughly reach
their peak performance when the 24 neighbor is used as the decoder target, and the performance
declined afterward.

To explain the performance difference between autoencoder and neighbor-encoder, we randomly
selected 5 test examples from each class (see Figure 7a) and fed them through both the autoencoder
and the neighbor-encoder trained in the previous experiments. The outputs are shown in Figure 15
where the top row and bottom row are autoencoder (AE) and neighbor-encoder (NE) respectively.
As expected, the output of autoencoder is almost identical to the input image. In contrast, although
the output of neighbor-encoder is still very similar to the input image, the intra-class variation is
reduced comparing the output of autoencoder. This is because neighbor-encoder tends to recon-
struct the same neighbor image from similar input data points (recall Figure 3c). As a result, the
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latent representation learned by neighbor-encoder is able to achieve better classification/clustering
performance.

(a) Input (b) Vanilla AE (c) Denoising AE (d) Variational AE

(e) Vanilla NE (f) Denoising NE (g) Variational NE

Figure 7: Outputs of the decoders for different autoencoder (AE) and neighbor-encoder (NE) varia-
tions.

4.2 IMAGES

The CIFAR10 data set is collected for tiny image classification (Krizhevsky & Hinton, 2009). It
contains 60, 000 32 × 32 tiny colored images from 10 different classes3; 10, 000 of these images
are test data and the other 50, 000 are training data. We perform the experiment following the
procedural outlined in Section 4.1 using the network architecture shown in Figure 8. We adopt
a 4-layer 2D convolutional net as the encoder and a 4-layer transposed 2D convolutional net as
the decoder similar to the last section, and we perform experiments with two different neighbor
definitions: feature space neighbor and side information neighbor.

Input

Latent  Representation

Output

Encoder

64-Conv-5-1 → ReLU → BN

64-Conv-5-2 → ReLU → BN

256-Conv-5-2 → ReLU → BN

256-Conv-8-1

Decoder

64-TConv-5-1 → ReLU → BN

64-TConv-5-2 → ReLU → BN

256-TConv-5-2 → ReLU → BN

256-TConv-8-1

1-Conv-1-1 → Sigmoid

Figure 8: Network architecture for the decoder and decoder. 64-Conv-5-1 denotes 2D convolutional
layer with 64 5 × 5 kernels and stride of 1. ReLU denotes rectified linear unit. BN denotes batch
normalization. TConv denotes transposed 2D convolutional layer.

Our first set of experiments are based on the feature space neighbor definition. The computer vision
feature we used in this set of experiments is the standard bag-of-visual-words (BoVW) which fol-
lows the dense SIFT → vector quantization4 pipeline. We use BoVW to define the neighbor of each

3airplane, automobile, bird, cat, deer, dog, frog horse, ship, and truck
4The codebook size is set to 1, 024
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image, and raw pixel values to train autoencoder and neighbor-encoder. When the neighbor relation-
ship is defined as such, 22% of the object-neighbor pairs are from the same class5. Figure 9 shows
the result of the semi-supervised learning (classification) experiment comparing neighbor-encoder
with autoencoder. Even though the provided object-neighbor pairs are noisy, neighbor-encoders
still provides notably more discriminating representation comparing to their autoencoder counter-
parts when relatively few labeled training data are available; when labeled training data is abundant,
neighbor-encoders are comparable to autoencoders. Overall, variational neighbor-encoder outper-
forms the other methods, especially when the amount of labeled training data is small.
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Figure 9: The classification accuracy with linear SVM versus various training data size using dif-
ferent variations (i.e., vanilla, denoising, variational) of autoencoder and neighbor-encoder (with
feature space neighbor definition).

Next, Table 2 shows the result of k-means clustering experiment which aims to benchmark the per-
formance of the learned representation in unsupervised learning tasks. The conclusion is similar
to that of the semi-supervised experiment where the neighbor-encoders’ adjust Rand index exceeds
their autoencoder counterparts’, but this time, the vanilla neighbor-encoder provides the most clus-
terable representation instead of variational neighbor-encoder. This result demonstrates that though
the 1-nearest-neighbor information is relatively weak and noisy (only 22% of the object-neighbor
pairs are from the same class), neighbor-encoder can still benefit from it.

Table 2: The clustering adjust Rand index with k-means. The neighbor-encoder representation is
learned using feature space neighbor definition.

Vanilla Denoising Variational
Autoencocder 0.0535 0.0539 0.0424
Neighbor-encoder 0.0609 0.0560 0.0535

Our second set of experiments are based on the side information neighbor definition. In order to
test the performance of this neighbor definition, we synthetically created the side information for
the CIFAR 10 data set by transforming the labels/classes of the original CIFAR 10 data to object-
neighbor pairs. That is, for each object, we randomly assign another object from the same class as
its neighbor. Note, with such transformation, we no longer have the dissimilarity information (i.e.,
which pairs of objects belong to different classes), nor do we know the number of classes in the
data set. In other words, we cannot trivially apply normal supervised learning method on these side
information neighbor pairs. Aside from examining another neighbor function, this set of experiments
also examine the neighbor-encoder in a what-if scenario in which the 1-nearest neighbor information
contains 100% accurate object-neighbor pairs inline with the evaluation task. To be fair with the
autoencoder (as neighbor-encoder indirectly uses the label in this case), we modify the autoencoder
to also use the neighbor information by adopting the contrastive loss (which is typically used in
Siamese network as shown by Koch et al. (2015)) in addition to the self-reconstruction loss.

Figure 10 shows the result of the semi-supervised learning experiment (i.e. the classification exper-
iment) with neighbor-encoder and autoencoder. First of all, a more accurate neighbor information
improves the performance of neighbor-encoder, and the additional contrastive loss also boosts the
performance of autoencoder (see Figure 2). By comparing the performance between the neighbor-
encoder variants and the autoencoder variants, we reach a similar conclusion as the previous semi-

5If the neighbor of each object is randomly assigned, only 10% of the object-neighbor pairs belong to the
same class.
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supervised experiments: the three variants of neighbor-encoder notably outperform their autoen-
coder counterparts when small number of labeled training data is available, while the performance
of neighbor-encoder is comparable to autoencoder when more labeled training data is made avail-
able to the linear SVM. Variation neighbor-encoder once again produces the most discriminating
representation.
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Figure 10: The classification accuracy with linear SVM versus various training data size using
different variations (i.e., vanilla, denoising, variational) of either autoencoder or neighbor-encoder
(with side information neighbor definition). The side information is added to the autoencoder by
adding the contrastive loss to the objective function.

Table 3 summarizes the result of the clustering experiment. The performance of neighbor-encoder
noticeably outperforms both the enhanced (with contrastive loss) autoencoder and the stock au-
toencoder (see Table 2) regardless of the variations (i.e., vanilla, denoising, variational), and the
contrastive loss seems to hinder the clusterability of the representation produced by autoencoder.
This time, denoising neighbor-encoder produces the representation with best clusterability, followed
by vanilla neighbor-encoder which is the best neighbor-encoder for clustering using feature space
neighbor definition. The fact that neighbor-encoder is able to achieve better performance with near-
est neighbor reconstruction loss function comparing to contrastive loss function hints the possibility
of adopting neighbor reconstruction loss function to one-shot/few-shot learning problem where the
training data for each class is scarce.

Table 3: The clustering adjust Rand index with k-means. The neighbor-encoder representation is
learned using side information neighbor definition. The side information is added to the autoencoder
by adding the contrastive loss to the objective function.

Vanilla Denoising Variational
Autoencocder (Siamese) 0.0444 0.0402 0.0399
Neighbor-encoder 0.0934 0.1089 0.0710

4.3 HUMAN PHYSICAL ACTIVITIES

In Section 3, we have also introduced the k-neighbor-encoder in addition to the neighbor-encoder.
Here we test the k-neighbor-encoder on the PAMAP2 data set (Reiss & Stricker, 2012a;b) using
the time series subspace neighbor definition (Yeh et al., 2017). We choose the subspace neighbor
definition because 1) it addresses one of the commonly seen multidimensional time series problem
scenarios (i.e., the existence of irrelevant/noisy dimensions), 2) it is able to extract meaningful re-
peating patterns (Yeh et al., 2017), and 3) it naı̈vely gives multiple “types” neighbors to each object.

The PAMAP2 data set was collected by mounting 3 inertial measurement units and a heart rate
monitor on 9 subjects while they were performing 18 different physical activities (e.g., walking,
running, playing soccer) during 9 recording sessions ranging from 0.5 hours to 1.9 hours (i.e., 1
session per subject). The subjects performed one activity for few minutes, took a short break, then
continued performing another activity. In order to transfer the data set into a format that we can use
for evaluation (i.e., a training/test split), for each subject (or recording session), we cut the data into
segments according to their corresponding physical activities; then, within each activity segment,
we generate training data from the first half and test data from the second half with a sliding window
of length of 100 and step size of 1. We make sure that there is no overlap between training data
and test data. After the reorganization, we end up with 9 data sets (i.e., 1 pair of training/test set

10
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per subject). We ran experiments on each data set independently and report averaged performance
results.

The experiment procedural is very similar to the one presented in Section 4.1. We perform the ex-
periments under two different scenarios: “clean” and “noisy”. In the “clean” scenario, we manually
deleted some dimensions of the data that are irrelevant (or harmful) to the classification/clustering
tasks, while in the “noisy” scenario, all dimensions of the data are retained. The encoder-decoder
network architecture we used is summarized in Figure 11. Here we use a 5-layer 1D convolutional
net as the encoder and a 5-layer transposed 1D convolutional net as the decoder. Similar as in Sec-
tion 4.1, we did not put much effort in optimizing the structure of this network architecture. We
have tried modifying the convolutional net architectures in various ways, such as adding batch nor-
malization, changing the number of layers, or varying the number of filters for each layer, etc., and
the conclusion drawn from the experimental results remains virtually unchanged. During test time,
we apply global averaging pooling to the output of the encoder to obtain the latent representation.

Latent  Representation

Input Output

Decoder

64-TConv-9-1 → ReLU

64-TConv-5-1 → ReLU

128-TConv-5-1 → ReLU

256-TConv-3-1 → ReLU

𝑛𝑑𝑖𝑚 -TConv-1-1 → ReLUEncoder

64-Conv-9-1 → ReLU → Max-3-1

64-Conv-5-1 → ReLU → Max-3-1

128-Conv-5-1 → ReLU → Max-3-1

256-Conv-3-1

Figure 11: Network architecture for the encoder and the decoder. 64-Conv-9-1 denotes 1D convolu-
tional layer with 64 sized 9 kernels and sized 1 stride. ReLU denotes rectified linear unit. Max-3-1
denotes max pooling layer with sized 3 pooling window and sized 1 stride. TConv denotes trans-
posed 1D convolutional layer. ndim is the number of dimension for the input multidimensional time
series.

In Figure 12, we compare the semi-supervised classification capability of vanilla, denoising, vari-
ational autoencoder/k-neighbor-encoder under both the“clean” scenario and the “noisy” scenario.
Both vanilla and denoising k-neighbor-encoder outperforms their corresponding autoencoder in
all scenarios. The performance difference is more notable when the number of training data is
small. On the contrary, variational autoencoder outperforms the corresponding k-neighbor-encoder;
however, the performance of both variational autoencoder and k-neighbor-encoder are considerably
worse comparing to their vanilla and denoising counterparts. Overall, both vanilla and denoising
k-neighbor-encoder works relatively well for this problem.

Table 4 shows the clustering experiment with k-means. For vanilla encoder-decoder system, k-
neighbor-encoder surpasses autoencoder in both scenarios, especially in the noisy scenario. When
the denoising mechanism is added to the encoder-decoder system, it greatly boosts the performance
of autoencoders, but the performance of k-neighbor-encoder is still overall superb comparing to
autoencoder. Similar to the semi-supervised learning experiment, the variational encoder-decoder
system performs poorly for this data set. In general, both vanilla and denoising k-neighbor-encoder
outperforms the their autoencoder counterparts for the clustering problem on PAMAP2 data set.

Table 4: The clustering adjust Rand index with k-means. Both vanilla and denoising k-neighbor-
encoder outperforms their autoencoder counterparts while all the variational variants performs
poorly.

Vanilla Denoising Variational

Clean Autoencocder 0.3815 0.4159 0.1597
Neighbor-encoder 0.4203 0.4272 0.1192

Noisy Autoencocder 0.0890 0.1763 0.0825
Neighbor-encoder 0.1844 0.1817 0.1111
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(a) Clean scenario
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(b) Noisy scenario

Figure 12: The classification accuracy with linear SVM versus various labeled training data size
using different variants (i.e., vanilla, denoising, variational) of either autoencoder and k-neighbor-
encoder. Both vanilla neighbor-encoder and denoising neighbor-encoder outperform their corre-
sponding autoencoder while both variational neighbor-encoder and variational autoencoder perform
poorly when number of labeled training data is small.

Figure 1 further demonstrates the advantage of neighbor-encoder over autoencoder. Here we use
t-SNE to project various representations of the data of subject 1 into 2D space. The representations
include the raw data itself, the latent representation learned by denoising autoencoder, and the latent
representation learned by denoising k-neighbor-encoder. Despite the clustering experiment suggest
us autoencoder is comparable with k-neighbor-encoder, we can see that the latent representation
learned by k-neighbor-encoder provides a much more meaningful visualization of different classes
than the rival methods (includes autoencoder) in the face of noisy/irrelevant dimensions.

4.4 INSTRUMENTAL SOUNDS

To further demonstrate the versatility of the neighbor-encoder framework, we conducted experi-
ments on a data set for predominant instrumental sound recognition in polyphonic music, using a
benchmark data set collected by Fuhrmann (2012). The training data consists of 6, 951 3-second
long music clips, with each clip labeled with one of the following primary instruments: cello, clar-
inet, flute, acoustic guitar, electric guitar, Hammond organ, piano, saxophone, trumpet, violin, or
singing voice. We performed semi-supervised classification and clustering experiments by applying
10-fold cross validation on the training data. Similar to Section 4.1, we use accuracy and adjusted
Rand index as the performance metric for semi-supervised classification and clustering respectively.

The neighborhood function we adopted for this data set is the feature space neighbor definition.
Assume that we have the MFCC of an audio clip (which has 20 coefficients and 130 time frames);
we can then evaluate its mean µ and standard deviation σ across time, and use the resulting 40-
dimensional vector (which is produced by concatenating µ and σ) to represent the audio clip. We
define the nearest neighbors of this audio clip as the clips closest to it in this 40-dimensional space.
With such neighbor definition, 49% of the object-neighbor pairs belong to the same class (average
across 10 folds)6. Note that this 40-dimensional feature vector is only used in the neighborhood
function; after the nearest neighbors of an audio clip is found, we use the mel-frequency spectrum
of the audio clip and its neighbors as the input/output features of the encoder-decoder network.

6If the neighbor of each object is randomly assigned, only 9% of the object-neighbor pairs belong to the
same class.
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We use librosa to extract both MFCC and mel-frequency spectrum of the audio clips (McFee et al.,
2015). The only non-default setting we use here is the windows size for short-time Fourier transform.
The default value is 2, 048, and we use 1, 024. Under our feature extraction settings, the MFCC has
20 coefficients and 130 time frames and mel-frequency spectrum has 128 mel-frequency bins and
130 time frames.

We use a 5-layer 2D convolutional net as the encoder and a 5-layer transposed 2D convolutional
net as the decoder. The encoder-decoder network architecture is summarized in Figure 13. In each
iteration of stochastic gradient descent, we randomly selected a mini-batch of music clips, and within
each clip, we randomly selected a segment of 16 consecutive frames. In other words, the network is
trained on segments within the music clips instead of the music clip as a whole. The same sampling
process is also applied to their corresponding neighbor, but instead of selecting randomly, we select
the segment that most similar to the input segment. The full clip is used at the test phase, and
we apply global averaging pooling to the output of the encoder to obtain the latent representation.
We have tried several other network architecture and training schemes (e.g., varying the length of
segment), and the conclusions drawn from the experimental result are essentially the same.

Latent  Representation

Input Output

Encoder

64-Conv-(5, 7)-(1, 2) → ReLU

128-Conv-(5, 7)-(2, 2) → ReLU

128-Conv-(3, 5)-(1, 2) → ReLU

128-Conv-(3, 5)-(2, 2) → ReLU

256-Conv-(4, 8)-(1, 1)

Decoder

128-TConv-(5, 7)-(2, 2) → ReLU

128-TConv-(3, 5)-(1, 2) → ReLU

128-TConv-(3, 5)-(2, 2) → ReLU

256-TConv-(4, 8)-(1, 1) → ReLU

64-TConv-(5, 7)-(1, 2) → ReLU

1-Conv-(1, 1)-(1, 1) → Sigmoid

Figure 13: Network architecture for the decoder and decoder. 64-Conv-(5, 7)-(1, 2) denotes a 2D
convolutional layer with 64 5 × 7 kernels and stride of (1, 2). ReLU denotes rectified linear unit.
TConv denotes transposed 2D convolutional layer. The first dimension within the parenthesis is
time, and the second dimension is frequency.

The results of the semi-supervised learning experiment with various autoencoder and neighbor-
encoder are shown in Figure 14. Overall, vanilla neighbor-encoder almost always achieves the high-
est classification accuracy. Unlike previous experiment result, the gap between neighbor-encoder
and autoencoder does not reduce as the number of training data increase.
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Figure 14: The classification accuracy with linear SVM versus various training data size using
different variations (i.e., vanilla, denoising, variational) of autoencoder and neighbor-encoder.

Table 4 summarizes the k-means clustering experiment result. The method that achieves the highest
adjust Rand index is variational autoencoder, followed by vanilla neighbor-encoder. Similar to the
semi-supervised learning result (i.e., first point in Figure 14), the best neighbor-encoder (i.e., vanilla
neighbor-encoder) is comparable to the best autoencoder (i.e., variational autoencoder) when the
entire pipeline uses no labels.
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Table 5: The clustering adjust Rand index with k-means.

Vanilla Denoising Variational
Autoencocder 0.0537 0.0519 0.0688
Neighbor-encoder 0.0640 0.0581 0.0621

5 CONCLUSION

In this work, we have proposed an unsupervised learning framework called neighbor-encoder that is
both general, in that it can easily be applied to data in various domains, and versatile as it can in-
corporate domain knowledge by utilizing different neighborhood functions. We have showcased the
effectiveness of neighbor-encoder compared to autoencoder in various domains, including images,
time series, music, etc. In future work, we plan to either 1) explore the possibility of apply neighbor-
encoder to problems like one-shot learning or 2) demonstrate the usefulness of the neighbor-encoder
in more practical and applied tasks, including information retrieval.
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A NEIGHBOR PAIRS FOR HANDWRITTEN DIGITS

(a) 20 neighbor (b) 24 neighbor (c) 28 neighbor (d) 212 neighbor

Figure 15: Neighbor pairs under different proximity setting.
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