
Published as a conference paper at ICLR 2018

HEXACONV

Emiel Hoogeboom∗, Jorn W.T. Peters∗& Taco S. Cohen
University of Amsterdam
{e.hoogeboom,j.w.t.peters,t.s.cohen}@uva.nl

Max Welling
University of Amsterdam & CIFAR
m.welling@uva.nl

ABSTRACT

The effectiveness of convolutional neural networks stems in large part from their
ability to exploit the translation invariance that is inherent in many learning prob-
lems. Recently, it was shown that CNNs can exploit other sources of invariance,
such as rotation invariance, by using group convolutions instead of planar con-
volutions. However, for reasons of performance and ease of implementation, it
has been necessary to limit the group convolution to transformations that can be
applied to the filters without interpolation. Thus, for images with square pixels,
only integer translations, rotations by multiples of 90 degrees, and reflections are
admissible.
Whereas the square tiling provides a 4-fold rotational symmetry, a hexagonal tiling
of the plane has a 6-fold rotational symmetry. In this paper we show how one can
efficiently implement planar convolution and group convolution over hexagonal
lattices, by re-using existing highly optimized convolution routines. We find that,
due to the reduced anisotropy of hexagonal filters, planar HexaConv provides bet-
ter accuracy than planar convolution with square filters, given a fixed parameter
budget. Furthermore, we find that the increased degree of symmetry of the hexag-
onal grid increases the effectiveness of group convolutions, by allowing for more
parameter sharing. We show that our method significantly outperforms conven-
tional CNNs on the AID aerial scene classification dataset, even outperforming
ImageNet pretrained models.

1 INTRODUCTION

For sensory perception tasks, neural networks have mostly replaced handcrafted features. Instead
of defining features by hand using domain knowledge, it is now possible to learn them, resulting in
improved accuracy and saving a considerable amount of work. However, successful generalization
is still critically dependent on the inductive bias encoded in the network architecture, whether this
bias is understood by the network architect or not.

The canonical example of a successful network architecture is the Convolutional Neural Network
(CNN, ConvNet). Through convolutional weight sharing, these networks exploit the fact that a given
visual pattern may appear in different locations in the image with approximately equal likelihood.
Furthermore, this translation symmetry is preserved throughout the network, because a translation
of the input image leads to a translation of the feature maps at each layer: convolution is translation
equivariant.

Very often, the true label function (the mapping from image to label that we wish to learn) is invariant
to more transformations than just translations. Rotations are an obvious example, but standard
translational convolutions cannot exploit this symmetry, because they are not rotation equivariant.
As it turns out, a convolution operation can be defined for almost any group of transformation — not
just translations. By simply replacing convolutions with group convolutions (wherein filters are not

∗Equal contribution

1

Published as a conference paper at ICLR 2018

Ψ

f

1

Ψ2

FT

FT

⋆g ⋆g

Figure 1: Hexagonal G-CNN. A p6 group convolution is applied to a single-channel hexagonal im-
age f and filter ψ1, producing a single p6 output feature map f ?g ψ1 with 6 orientation channels.
This feature map is then group-convolved again with a p6 filter ψ2. The group convolution is imple-
mented as a Filter Transformation (FT) step, followed by a planar hexagonal convolution. As shown
here, the filter transform of a planar filter involves only a rotation, whereas the filter transform for a
filter on the group p6 involves a rotation and orientation channel cycling. Note that in general, the
orientation channels of p6 feature maps will not be rotated copies of each other, as happens to be the
case in this figure.

just shifted but transformed by a larger group; see Figure 1), convolutional networks can be made
equivariant to and exploit richer groups of symmetries (Cohen & Welling, 2016). Furthermore, this
technique was shown to be more effective than data augmentation.

Although the general theory of such group equivariant convolutional networks (G-CNNs) is ap-
plicable to any reasonably well-behaved group of symmetries (including at least all finite, infinite
discrete, and continuous compact groups), the group convolution is easiest to implement when all
the transformations in the group of interest are also symmetries of the grid of pixels. For this reason,
G-CNNs were initially implemented only for the discrete groups p4 and p4m which include integer
translations, rotations by multiples of 90 degrees, and, in the case of p4m, mirror reflections — the
symmetries of a square lattice.

The main hurdle that stands in the way of a practical implementation of group convolution for a
continuous group, such as the roto-translation group SE(2), is the fact that it requires interpolation
in order to rotate the filters. Although it is possible to use bilinear interpolation in a neural network
(Jaderberg et al., 2015), it is somewhat more difficult to implement, computationally expensive, and
most importantly, may lead to numerical approximation errors that can accumulate with network
depth. This has led us to consider the hexagonal grid, wherein it is possible to rotate a filter by any
multiple of 60 degrees, without interpolation. This allows use to define group convolutions for the
groups p6 and p6m, which contain integer translations, rotations with multiples of 60 degrees, and
mirroring for p6m.

To our surprise, we found that even for translational convolution, a hexagonal pixelation appears
to have significant advantages over a square pixelation. Specifically, hexagonal pixelation is more
efficient for signals that are band limited to a circular area in the Fourier plane (Petersen & Mid-
dleton, 1962), and hexagonal pixelation exhibits improved isotropic properties such as twelve-fold
symmetry and six-connectivity, compared to eight-fold symmetry and four-connectivity of square
pixels (Mersereau, 1979; Condat & Van De Ville, 2007). Furthermore, we found that using small,
approximately round hexagonal filters with 7 parameters works better than square 3× 3 filters when
the number of parameters is kept the same.

As hypothesized, group convolution is also more effective on a hexagonal lattice, due to the in-
crease in weight sharing afforded by the higher degree of rotational symmetry. Indeed, the general
pattern we find is that the larger the group of symmetries being exploited, the better the accuracy:
p6-convolution outperforms p4-convolution, which in turn outperforms ordinary translational con-
volution.

In order to use hexagonal pixelations in convolutional networks, a number of challenges must be
addressed. Firstly, images sampled on a square lattice need to be resampled on a hexagonal lattice.

2

Published as a conference paper at ICLR 2018

This is easily achieved using bilinear interpolation. Secondly, the hexagonal images must be stored
in a way that is both memory efficient and allows for a fast implementation of hexagonal convolution.
To this end, we review various indexing schemes for the hexagonal lattice, and show that for some
of them, we can leverage highly optimized square convolution routines to perform the hexagonal
convolution. Finally, we show how to efficiently implement the filter transformation step of the
group convolution on a hexagonal lattice.

We evaluate our method on the CIFAR-10 benchmark and on the Aerial Image Dataset (AID) (Xia
et al., 2017). Aerial images are one of the many image types where the label function is invari-
ant to rotations: One expects that rotating an aerial image does not change the label. In situa-
tions where the number of examples is limited, data efficient learning is important. Our exper-
iments demonstrate that group convolutions systematically improve performance. The method
outperforms the baseline model pretrained on ImageNet, as well as comparable architectures
with the same number of parameters. Source code of G-HexaConvs is available on Github:
https://github.com/ehoogeboom/hexaconv.

The remainder of this paper is organized as follows: In Section 2 we summarize the theory of
group equivariant networks. Section 3 provides an overview of different coordinate systems on the
hexagonal grid, Section 4 discusses the implementation details of the hexagonal G-convolutions, in
Section 5 we introduce the experiments and present results, Section 6 gives an overview of other
related work after which we discuss our findings and conclude.

2 GROUP EQUIVARIANT CNNS

In this section we review the theory of G-CNNs, as presented by Cohen & Welling (2016). To
begin, recall that normal convolutions are translation equivariant1. More formally, let Lt denote the
operator that translates a feature map f : Z2 → RK by t ∈ Z2, and let ψ denote a filter. Translation
equivariance is then expressed as:

[[Ltf] ? ψ](x) = [Lt[f ? ψ]](x). (1)

In words: translation followed by convolution equals convolution followed by a translation. If
instead we apply a rotation r, we obtain:

[[Lrf] ? ψ](x) = Lr[f ? [Lr−1ψ]](x). (2)

That is, the convolution of a rotated image Lrf by a filter ψ equals the rotation of a convolved image
f by a inversely rotated filter Lr−1ψ. There is no way to express [Lrf] ? ψ in terms of f ? ψ, so
convolution is not rotation equivariant.

The convolution is computed by shifting a filter over an image. By changing the translation to
a transformation from a larger group G, a G-convolution is obtained. Mathematically, the G-
Convolution for a group G and input space X (e.g. the square or hexagonal lattice) is defined
as:

[f ?g ψ](g) =
∑
h∈X

∑
k

fk(h)ψk(g−1h), (3)

where k denotes the input channel, fk and ψk are signals defined on X , and g is a transformation
in G. The standard (translational) convolution operation is a special case of the G-convolution for
X = G = Z2, the translation group. In a typical G-CNN, the input is an image, so we have X = Z2

for the first layer, while G could be a larger group such as a group of rotations and translations.
Because the feature map f ?g ψ is indexed by g ∈ G, in higher layers the feature maps and filters
are functions on G, i.e. we have X = G.

One can show that the G-convolution is equivariant to transformations u ∈ G:

[[Luf] ?g ψ](g) = [Lu[f ?g ψ]](g). (4)

Because all layers in a G-CNN are equivariant, the symmetry is propagated through the network and
can be exploited by group convolutional weight sharing in each layer.

1Technically, convolutions are exactly translation equivariant when feature maps are defined on infinite
planes with zero values outside borders. In practice, CNNs are only locally translation equivariant.

3

Published as a conference paper at ICLR 2018

u v 1 0 2 0 3 0

0 1

-1 2

-1 3

1 1

0 2

0 3

2 1

1 2

1 3

3 1

2 2

2 3

(a) Axial

x y
z

0 -1
1

1 -2
1

3 -3
0

2 -2
0

1 -1
0

3 -2
-1

2 -1
-1

0 -2
2

1 -3
2

3 -4
1

2 -3
1

0 -3
3

1 -4
3

3 -5
2

2 -4
2

(b) Cube

u v 2 0 4 0 6 0

1 1

0 2

1 3

3 1

2 2

3 3

5 1

4 2

5 3

7 1

6 2

7 3

(c) Double Width

q r 1 0 2 0 3 0

0 1

0 2

0 3

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

(d) Offset

Figure 2: Four candidate coordinate systems for a hexagonal grid. Notice that the cube coordinate
system uses three integer indexes and both the axial and cube coordinate system may have negative
indices when using a top left origin.

2.1 IMPLEMENTATION OF GROUP CONVOLUTIONS

Equation 3 gives a mathematical definition of group convolution, but not an algorithm. To obtain
a practical implementation, we use the fact that the groups of interest can be split2 into a group of
translations (Z2), and a group H of transformations that leaves the origin fixed (e.g. rotations and/or
reflections about the origin3). The G-Conv can then be implemented as a two step computation:
filter transformation (H) and planar convolution (Z2).

G-CNNs generally use two kinds of group convolutions: one in which the input is a planar image and
the output is a feature map on the group G (for the first layer), and one in which the input and output
are both feature maps on G. We can provide a unified explanation of the filter transformation step
by introducing Hin and Hout. In the first-layer G-Conv, Hin = {e} is the trivial group containing
only the identity transformation, while Hout = H is typically a group of discrete rotations (4 or 6).
For the second-layer G-Conv, we have Hin = Hout = H .

The input for the filter transformation step is a learnable filterbank Ψ of shape C × K · |Hin| ×
S × S, where C,K, S denote the number of output channels, input channels, and spatial length,
respectively. The output is a filterbank of shape C · |Hout|×K · |Hin|×S×S, obtained by applying
each h ∈ Hout to each of the C filters. In practice, this is implemented as an indexing operation
Ψ[I] using a precomputed static index array I .

The second step of the group convolution is a planar convolution of the input f with the transformed
filterbank Ψ[I]. In what follows, we will show how to compute a planar convolution on the hexag-
onal lattice (Section 3), and how to compute the indexing array I used in the filter transformation
step of G-HexaConv (Section 4).

3 HEXAGONAL COORDINATE SYSTEMS

The hexagonal grid can be indexed using several coordinate systems (see Figure 2). These systems
vary with respect to three important characteristics: memory efficiency, the possibility of reusing
square convolution kernels for hexagonal convolution, and the ease of applying rotations and flips.

As shown in Figure 3, some coordinate systems cannot be used to represent a rectangular image in
a rectangular memory region. In order to store a rectangular image using such a coordinate system,
extra memory is required for padding. Moreover, in some coordinate systems, it is not possible to
use standard planar convolution routines to perform hexagonal convolutions. Specifically, in the
Offset coordinate system, the shape of a hexagonal filter as represented in a rectangular memory
array changes depending on whether it is centered on an even or odd row (see Figure 4).

Because no coordinate system is ideal in every way, we will define four useful ones, and discuss
their merits. Figures 2, 3 and 4 should suffice to convey the big picture, so the reader may skip to
Section 4 on a first reading.

2To be precise, the group G is a semidirect product: G = Z2 oH .
3The group G generated by compositions of translations and rotations around the origin, contains rotations

around any center.

4

Published as a conference paper at ICLR 2018

(a) Axial (b) Double Width (c) Offset

Figure 3: Excess space when storing hexagonal lattices, where gray cells represent non-zero values.
For each coordinate system, on the left the hexagonal lattice is depicted, the grid on the right shows
the 2D memory array used to store the hexagonal image.

(a) Axial (b) Double width

(c) Offset (even rows) (d) Offset (odd rows)

Figure 4: Hexagonal convolution filters (left) represented in 2D memory (right) for filters of size
three (blue) and five (blue and green). Standard 2D convolution using both feature map and filter
stored according to the coordinate system is equivalent to convolution on the hexagonal lattice. Note
that for the offset coordinate system two separate planar convolution are required — one for even
and one for odd rows.

3.1 AXIAL

Perhaps the most natural coordinate system for the hexagonal lattice is based on the lattice structure
itself. The lattice contains all points in the plane that can be obtained as an integer linear combination
of two basis vectors e1 and e2, which are separated by an angle of 60 degrees. The Axial coordinate
system simply represents the pixel centered at ue1 + ve2 by coordinates (u, v) (see Figure 2a).

Both the square and hexagonal lattice are isomorphic to Z2. The planar convolution only relies on
the additive structure of Z2, and so it is possible to simply apply a convolution kernel developed for
rectangular images to a hexagonal image stored in a rectangular buffer using axial coordinates.

As shown in Figure 3a, a rectangular area in the hexagonal lattice corresponds to a parallelogram
in memory. Thus the axial system requires additional space for padding in order to store an image,
which is its main disadvantage. When representing an axial filter in memory, the corners of the array
need to be zeroed out by a mask (see Figure 4a).

3.2 CUBE

The cube coordinate system represents a 2D hexagonal grid inside of a 3D cube (see Figure 5).
Although representing grids in three dimensional structures is very memory-inefficient, the cube
system is useful because rotations and reflections can be expressed in a very simple way. Further-
more, the conversion between the axial and cube systems is straightforward: x = v, y = −(u+ v),
z = u. Hence, we only use the Cube system to apply transformations to coordinates, and use other
systems for storing images.

A counter-clockwise rotation by 60 degrees can be performed by the following formula:

r · (x, y, z) = (−z,−x,−y). (5)

5

Published as a conference paper at ICLR 2018

Similarly, a mirroring operation over the vertical axis through the origin is computed with:

m · (x, y, z) = (x, z, y). (6)

x
y z

11 1 1
0 -1

0
-1 1

0 1-21

0
-11

-1
01

-2
11
-1

10

-1 -2

x

y z

x

y z

Figure 5: The cube coordinate system as a 3D structure.

3.3 DOUBLE WIDTH

The double width system is based on two orthogonal axes. Stepping to the right by 1 unit in the
hexagonal lattice, the u-coordinate is incremented by 2 (see Figure 2c). Furthermore, odd rows are
offset by one unit in the u direction. Together, this leads to a checkerboard pattern (Figure 3b) that
doubles the image and filter size by a factor of two.

The good thing about this scheme is that a hexagonal convolution can be implemented as a rect-
angular convolution applied to checkerboard arrays, with checkerboard filter masking. This works
because the checkerboard sparsity pattern is preserved by the square convolution kernel: if the input
and filter have this pattern, the output will too. As such, HexaConv is very easy to implement using
the double width coordinate system. It is however very inefficient, so we recommend it only for use
in preliminary experiments.

3.4 OFFSET

Like the double width system, the offset coordinate system uses two orthogonal axes. However,
in the offset system, a one-unit horizontal step in the hexagonal lattice corresponds to a one-unit
increment in the u-coordinate. Hence, rectangular images can be stored efficiently and without
padding in the offset coordinate system (see Figure 3c).

The downside to offset coordinates is that hexagonal convolutions cannot be expressed as a single
2D convolution (see Figure 4c and 4d), because the shape of the filters is different for even and odd
rows. Given access to a convolution kernel that supports strides, it should be possible to implement
hexagonal convolution in the offset system using two convolution calls, one for the even and one for
the odd row. Ideally, these two calls would write to the same output buffer (using a strided write),
but unfortunately most convolution implementations do not support this feature. Hence, the result
of the two convolution calls has to be copied to a single buffer using strided indexing.

We note that a custom HexaConv kernel for the offset system would remove these difficulties. Were
such a kernel developed, the offset system would be ideal because of its memory efficiency.

4 IMPLEMENTATION

The group convolution can be factored into a filter transformation step and a hexagonal convolution
step, as was mentioned in Section 2 and visualized in Figure 1. In our implementation, we chose to
use the Axial coordinate system for feature maps and filters, so that the hexagonal convolution can be
performed by a rectangular convolution kernel. In this section, we explain the filter transformation
and masking in general, for more details see Appendix A.

The general procedure described in Section 2.1 also applies to hexagonal group convolution (p6 and
p6m). In summary, a filter transformation is applied to a learnable filter bank Ψ resulting in a filter
bank Ψ′ than can be used to compute the group convolution using (multiple) planar convolutions
(see the top of Figure 1 for a visual portrayal of this transformation). In practice this transformation

6

Published as a conference paper at ICLR 2018

Table 1: CIFAR-10 performance comparison

Model Error Params

Z2 11.50 ±0.30 338000
Z2 Axial 11.25 ±0.24 337000
p4 10.08 ±0.23 337000
p6 Axial 9.98 ±0.32 336000
p4m 8.96 ±0.46 337000
p6m Axial 8.64 ±0.34 337000

Table 2: AID performance comparison

Model Error Params

Z2 19.3 ±0.34 917000
Z2 Axial 17.8 ±0.37 916000
p4 10.7 ±0.36 915000
p6 Axial 8.7 ±0.72 916000

VGG (Transfer) 9.8 ±0.50 -

is implemented as an indexing operation Ψ[I], where I is a constant indexing array based on the
structure of the desired group. Hence, after computing Ψ[I], the convolution routines can be applied
as usual.

Although convolution with filters and feature maps laid out according to the Axial coordinate system
is equivalent to convolution on the hexagonal lattice, both the filters and the feature maps contain
padding (See Figure 3 and 4), since the planar convolution routines operate on rectangular arrays.
As a consequence, non-zero output may be written to the padding area of both the feature maps or
the filters. To address this, we explicitly perform a masking operation on feature maps and filters
after every convolution operation and parameter update, to ensure that values in the padding area
stay strictly equal to zero.

5 EXPERIMENTS

We perform experiments on the CIFAR-10 and the AID datasets. Specifically, we compare the
accuracy of our G-HexaConvs (p6- and p6m-networks) to that of existing G-networks (p4- and
p4m-networks) (Cohen & Welling, 2016) and standard networks (Z2). Moreover, the effect of
utilizing an hexagonal lattice is evaluated in experiments using the HexaConv network (hexagonal
lattice without group convolutions, or Z2 Axial). Our experiments show that the use of an hexagonal
lattice improves upon the conventional square lattice, both when using normal or p6-convolutions.

5.1 CIFAR-10

CIFAR-10 is a standard benchmark that consists of 60000 images of 32 by 32 pixels and 10 different
target classes. We compare the performance of several ResNet (He et al., 2016) based G-networks.
Specifically, every G-ResNet consists of 3 stages, with 4 blocks per stage. Each block has two 3 by
3 convolutions, and a skip connection from the input to the output. Spatial pooling is applied to the
penultimate layer, which leaves the orientation channels intact and allows the network to maintain
orientation equivariance. Moreover, the number of feature maps is scaled such that all G-networks
are made up of a similar number of parameters.

For hexagonal networks, the input images are resampled to the hexagonal lattice using bilinear
interpolation (see Figure 6). Since the classification performance of a HexaConv network does not
degrade, the quality of these interpolated images suffices.

The CIFAR-10 results are presented in Table 1, obtained by taking the average of 10 experiments
with different random weight initializations. We note that the the HexaConv CNN (Z2 Axial) out-
performs the standard CNN (Z2). Moreover, we find that p4- and p4m-ResNets are outperformed
by our p6- and p6m-ResNets, respectively. We also find a general pattern: using groups with an
increasing number of symmetries consistently improves performance.

5.2 AID

The Aerial Image Dataset (AID) (Xia et al., 2017) is a dataset consisting of 10000 satellite images
of 400 by 400 pixels and 30 target classes. The labels of aerial images are typically invariant to
rotations, i.e., one does not expect labels to change when an aerial image is rotated.

7

Published as a conference paper at ICLR 2018

(a) Original example images (b) Hexagonal sampled images

Figure 6: CIFAR-10 (top) and AID (bottom) examples sampled from Cartesian to hexagonal axial
coordinates. Zero padding enlarges the images in axial systems.

For each experiment, we split the data set into random 80% train/20% test sets. This contrasts the
50% train/test split by Xia et al. (2017). Since the test sets are smaller, experiments are performed
multiple times with randomly selected splits to obtain better estimates. All models are evaluated on
identical randomly selected splits, to ensure that the comparison is fair. As a baseline, we take the
best performing model from Xia et al. (2017), which uses VGG16 as a feature extractor and an SVM
for classification. Because the baseline was trained on 50%/50% splits, we re-evaluate the model
trained on the same 80%/20% splits.

We again test several G-networks with ResNet architectures. The first convolution layer has stride
two, and the ResNets take resized 64 by 64 images as input. The networks are widened to account
for the increase in the number of classes. Similar to the CIFAR-10 experiments, the networks still
consist of 3 stages, but have two blocks per stage. In contrast with the CIFAR-10 networks, pooling
is applied to the spatial dimensions and the orientation channels in the penultimate layer. This allows
the network to become orientation invariant.

The results for the AID experiment are presented in Table 2. The error decreases from an error of
19.3% on a Z2-ResNet, to an impressive error of 8.6% on a p6-ResNet. We found that adding mirror
symmetry did not meaningfully affect performance (p4m 10.2% and p6m 9.3% error). This suggests
that mirror symmetry is not an effective inductive bias for AID. It is worth noting that the baseline
model has been pretrained on ImageNet, and all our models were trained from random initialization.
These results demonstrate that group convolutions can improve performance drastically, especially
when symmetries in the dataset match the selected group.

6 RELATED WORK

The effect of changing the sampling lattice for image processing from square to hexagonal has been
studied over many decades. The isoperimetry of a hexagon, and uniform connectivity of the lattice,
make the hexagonal lattice a more natural method to tile the plane (Middleton & Sivaswamy, 2006).
In certain applications hexagonal lattices have shown to be superior to square lattices (Petersen &
Middleton, 1962; Hartman & Tanimoto, 1984).

Transformational equivariant representations have received significant research interest over the
years. Methods for invariant representations in hand-crafted features include pose normaliza-
tion (Lowe, 1999; Dalal & Triggs, 2005) and projections from the plane to the sphere (Kondor,
2007). Although approximate transformational invariance can be achieved through data augmenta-
tion (Van Dyk & Meng, 2001), in general much more complex neural networks are required to learn
the invariances that are known to the designer a-priori. As such, in recent years, various approaches
for obtaining equivariant or invariant CNNs — with respect to specific transformations of the data
—were introduced.

A number of recent works propose to either rotate the filters or the feature maps followed and
subsequent channel permutations to obtain equivariant (or invariant) CNNs (Cohen & Welling, 2016;
Dieleman et al., 2016; Zhou et al., 2017; Li et al., 2017). Cohen & Welling (2017) describe a

8

Published as a conference paper at ICLR 2018

general framework of equivariant networks with respect to discrete and continuous groups, based
on steerable filters, that includes group convolutions as a special case. Harmonic Networks (Worrall
et al., 2016) apply the theory of Steerable CNNs to obtain a CNN that is approximately equivariant
with respect to continuous rotations.

Deep Symmetry Networks (Gens & Domingos, 2014) are approximately equivariant CNN that lever-
age sparse high dimensional feature maps to handle high dimensional symmetry groups. Marcos
et al. (2016) obtain rotational equivariance by rotating filters followed by a pooling operation that
maintains both the angle of the maximum magnitude and the magnitude itself, resulting in a vec-
tor field feature map. Ravanbakhsh et al. (2017) study equivariance in neural networks through
symmetries in the network architecture, and propose two parameter-sharing schemes to achieve
equivariance with respect to discrete group actions.

Instead of enforcing invariance at the architecture level, Spatial Transformer Networks (Jaderberg
et al., 2015) explicitly spatially transform feature maps dependent on the feature map itself result-
ing in invariant models. Similarly, Polar Transformer Networks (Esteves et al., 2017) transform the
feature maps to a log-polar representation conditional on the feature maps such that subsequent con-
volution correspond to group (SIM(2)) convolutions. Henriques & Vedaldi (2016) obtain invariant
CNN with respect to spatial transformations by warping the input and filters by a predefined warp.
Due to the dependence on global transformations of the input, these methods are limited to global
symmetries of the data.

7 CONCLUSION

We have introduced G-HexaConv, an extension of group convolutions for hexagonal pixelations.
Hexagonal grids allow 6-fold rotations without the need for interpolation. We review different co-
ordinate systems for the hexagonal grid, and provide a description to implement hexagonal (group)
convolutions. To demonstrate the effectiveness of our method, we test on an aerial scene dataset
where the true label function is expected to be invariant to rotation transformations. The results
reveal that the reduced anisotropy of hexagonal filters compared to square filters, improves perfor-
mance. Furthermore, hexagonal group convolutions can utilize symmetry equivariance and invari-
ance, which allows them to outperform other methods considerably.

REFERENCES

Taco S Cohen and Max Welling. Group equivariant convolutional networks. Proceedings of the
International Conference on Machine Learning (ICML), 2016.

Taco S Cohen and Max Welling. Steerable cnn. International Conference on Learning Representa-
tions (ICLR), 2017.

Laurent Condat and Dimitri Van De Ville. Quasi-interpolating spline models for hexagonally-
sampled data. IEEE Transactions on Image Processing, 16(5):1195–1206, 2007.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In Com-
puter Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,
volume 1, pp. 886–893. IEEE, 2005.

Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry in convo-
lutional neural networks. arXiv preprint arXiv:1602.02660, 2016.

Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, and Kostas Daniilidis. Polar transformer
networks. arXiv preprint arXiv:1709.01889, 2017.

Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in neural information
processing systems, pp. 2537–2545, 2014.

N Peri Hartman and Steven L Tanimoto. A hexagonal pyramid data structure for image processing.
IEEE transactions on systems, man, and cybernetics, (2):247–256, 1984.

9

Published as a conference paper at ICLR 2018

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

João F Henriques and Andrea Vedaldi. Warped convolutions: Efficient invariance to spatial trans-
formations. arXiv preprint arXiv:1609.04382, 2016.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Ad-
vances in Neural Information Processing Systems, pp. 2017–2025, 2015.

Risi Kondor. A novel set of rotationally and translationally invariant features for images based on
the non-commutative bispectrum. arXiv preprint cs/0701127, 2007.

Junying Li, Zichen Yang, Haifeng Liu, and Deng Cai. Deep rotation equivariant network. arXiv
preprint arXiv:1705.08623, 2017.

David G Lowe. Object recognition from local scale-invariant features. In Computer vision, 1999.
The proceedings of the seventh IEEE international conference on, volume 2, pp. 1150–1157. Ieee,
1999.

Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivariant vector field
networks. arXiv preprint arXiv:1612.09346, 2016.

Russel M Mersereau. The processing of hexagonally sampled two-dimensional signals. Proceedings
of the IEEE, 67(6):930–949, 1979.

Lee Middleton and Jayanthi Sivaswamy. Hexagonal image processing: A practical approach.
Springer Science & Business Media, 2006.

Daniel P Petersen and David Middleton. Sampling and reconstruction of wave-number-limited
functions in n-dimensional euclidean spaces. Information and control, 5(4):279–323, 1962.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. arXiv preprint arXiv:1702.08389, 2017.

David A Van Dyk and Xiao-Li Meng. The art of data augmentation. Journal of Computational and
Graphical Statistics, 10(1):1–50, 2001.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariance. arXiv preprint arXiv:1612.04642, 2016.

Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong, Liangpei Zhang, and
Xiaoqiang Lu. Aid: A benchmark data set for performance evaluation of aerial scene classifica-
tion. IEEE Transactions on Geoscience and Remote Sensing, 2017.

Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response networks. arXiv preprint
arXiv:1701.01833, 2017.

A IMPLEMENTATION DETAILS

To understand the filter transformation step intuitively, we highly recommend studying Figure 1.
Below we give a precise definition that makes explicit the relation between the mathematical model
and computational practice.

Recall that in our mathematical model, filters and feature maps are considered functions ψ : X →
RK , whereX = Z2 orX = G. In the filter transformation step, we need to compute the transformed
filter Lrψ for each rotation r ∈ H and each filter ψ, thus increasing the number of output channels
by a factor |H|. The rotation operator Lr is defined by the equation [Lrψ](h) = ψ(r−1h). Our goal
is to implement this as a single indexing operation Ψ[I], where Ψ is an array storing our filter, and
I is a precomputed array of indices. In order to compute I , we need to relate the elements of the
group, such as r−1h to indices.

10

Published as a conference paper at ICLR 2018

To simplify the exposition, we assume there is only one input channel and one output channel;
K = C = 1. A filter ψ will be stored in an n-dimensional array Ψ, where n = 2 if X = Z2 and
n = 3 if X = G. An n-dimensional array has a set of valid indices I ⊂ Zn. Thus, we can think of
our array as a function that eats an index and returns a scalar, i.e. Ψ : I → R. If in addition we have
an invertible indexing function ι : X → I, we can consider the array Ψ as a representation of our
function ψ : X → R, by setting ψ(x) = Ψ[ι(x)]. Conversely, we can think of ψ as a representation
of Ψ, because Ψ[i] = ψ(ι−1(i)). This is depicted by the following diagram:

I R

X

Ψ

ι−1

ψ

ι (7)

With this setup in place, we can implement the transformation operator Lr by moving back and
forth between I (the space of valid indices) and X (where inversion and composition of elements
are defined). Specifically, we can define:

[LrΨ][i] = Ψ[ι(r−1ι−1(i))] (8)

That is, we convert our index i to group element h = ι−1(i). Then, we compose with r−1 to get
r−1h, which is where we want to evaluate ψ. To do so, we convert r−1h back to an index using ι,
and use it to index Ψ.

To perform this operation in one indexing step as Ψ[I], we precompute indexing array I:

I[i] = ι(r−1ι−1(i)) (9)

Finally, we need choose a representation of our group elements h that allows us to compose them
easily, and choose an indexing map ι. An element h ∈ p6 can be written as a rotation-translation
pair (r′, t′). The rotation component can be encoded as an integer 0, . . . , 5, and the translation can
be encoded in the Axial coordinate frame (Section 3.1) as a pair of integers u, v. To compute r−1h,
we use that r−1(r′, t′) = (r−1r′, r−1t′). The rotational composition reduces to addition modulo
6 (which results in the orientation channel cycling behavior pictured in Figure 1), while r−1t′ can
be computed by converting to the Cube coordinate system and using Equation 5 (which rotates the
orientation channels).

11

	Introduction
	Group Equivariant CNNs
	Implementation of Group Convolutions

	Hexagonal Coordinate Systems
	Axial
	Cube
	Double Width
	Offset

	Implementation
	Experiments
	CIFAR-10
	AID

	Related Work
	Conclusion
	Implementation Details

