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ABSTRACT

Despite the long history of research on recommender systems, current approaches
still face a number of challenges in practice, e.g. the difficulties in handling new
items, the high diversity of user interests, and the noisiness and sparsity of ob-
servations. Many of such difficulties stem from the lack of expressive power to
capture the complex relations between items and users. This paper presents a
new method to tackle this problem, called Collaborative Deep Embedding. In
this method, a pair of dual networks, one for encoding items and the other for
users, are jointly trained in a collaborative fashion. Particularly, both networks
produce embeddings at multiple aligned levels, which, when combined together,
can accurately predict the matching between items and users. Compared to existing
methods, the proposed one not only provides greater expressive power to capture
complex matching relations, but also generalizes better to unseen items or users.
On multiple real-world datasets, this method outperforms the state of the art.

1 INTRODUCTION

What do consumers really want? – this is a question to which everyone wishes to have an answer.
Over the past decade, the unprecedented growth of web services and online commercial platforms
such as Amazon, Netflix, and Spotify, gives rise to a vast amount of business data, which contain
valuable information about the customers. However, “data don’t speak for themselves”. To accurately
predict what the customers want, one needs not only the data, but also an effective means to extract
useful messages therefrom.

There has been extensive study on recommender systems. Existing methods roughly fall into two
categories, namely content-based filtering (Pazzani & Billsus, 2007) and collaborative filtering (Mnih
& Salakhutdinov, 2008; Hu et al., 2008; Yu et al., 2009). The former focuses on extracting relevant
features from the content, while the latter attempts to exploit the common interest among groups of
users. In recent efforts, hybrid methods (Agarwal & Chen, 2009; Van den Oord et al., 2013) that
combine both aspects have also been developed.

Whereas remarkable progress has been made on this topic, the state of the art remains far from
satisfactory. The key challenges lie in several aspects. First, there is a large semantic gap between the
true cause of a matching and what we observe from the data. For example, what usually attracts a book
consumer is the implied emotion that one has to feel between the lines instead of the occurrences
of certain words. It is difficult for classical techniques to extract such deep meanings from the
observations. Second, the cold-start issue, namely making predictions for unseen items or users,
has not been well addressed. Many collaborative filtering methods rely on the factorization of the
matching matrix. Such methods implicitly assume that all the users and items are known in advance,
and thus are difficult to be applied in real-world applications, especially online services.
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The success of deep learning brings new inspiration to this task. In a number of areas, including
image classification (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012), and natural
language understanding (Socher et al., 2011), deep learning techniques have substantially pushed
forward the state of the art. The power of deep networks in capturing complex variations and bridging
semantic gaps has been repeatedly shown in previous study. However, deep models were primarily
used for classification or regression, e.g. translating images to sentences. How deep networks can be
used to model cross-domain relations remains an open question.

In this work, we aim to explore deep neural networks for learning the matching relations across two
domains, with our focus placed on the matching between items and users. Specifically, we propose
a new framework called Collaborative Deep Embedding, which comprises a pair of dual networks,
one for encoding items and the other for users. Each network contains multiple embedding layers
that are aligned with their dual counterparts of the other network. Predictions can then be made by
coupling these embeddings. Note that unlike a conventional network, the dual networks are trained
on two streams of data. In this paper, we devise an algorithm that can jointly train both networks
using dual mini-batches. Compared to previous methods, this method not only narrows the semantic
gap through a deep modeling architecture, but also provides a natural way to generalize – new items
and new users can be encoded by the trained networks, just like those present in the training stage.

On a number of real world tasks, the proposed method yields significant improvement over the current
state-of-the-art. It is worth stressing that whereas our focus is on the matching between items and
users, Collaborative Deep Embedding is a generic methodology, which can be readily extended to
model other kinds of cross-domain relations.

2 RELATED WORK

Existing methods for recommendation roughly fall into two categories: content-based methods (Paz-
zani & Billsus, 2007) and collaborative filtering (CF) (Mnih & Salakhutdinov, 2008; Hu et al., 2008;
Yu et al., 2009). Specifically, content-based methods rely primarily on feature representation of
the content, in which recommendations are often made based on feature similarity (Slaney et al.,
2008). Following this, there are also attempts to incorporate additional information, such as meta-data
of users, to further improve the performance (McFee et al., 2012). Instead, collaborative filtering
exploits the interaction between users and items. A common approach to CF is to derive latent factors
of both users and items through matrix factorization, and measure the degree of matching by their
inner products. Previous study (Ricci et al., 2011) showed that CF methods tend to have higher rec-
ommendation accuracy than content-based methods, as they directly target the recommendation task.
However, practical use of CF is often limited by the cold start problem. It is difficult to recommend
items without a sufficient amount of use history. Issues like this motivated hybrid methods (Agarwal
& Chen, 2009; Van den Oord et al., 2013) that combine both aspects of information, which have
showed encouraging improvement. Our exploration is also along this line.

Despite the progress on both family of methods, the practical performance of state-of-the-art still
leaves a lot to be desired. This, to a large extent, is due to the lack of capability of capturing complex
variations in interaction patterns. Recently, deep learning (Bengio, 2009) emerges as an important
technique in machine learning. In a number of successful stories (Krizhevsky et al., 2012; Hinton
et al., 2012; Socher et al., 2011), deep models have demonstrated remarkable representation power in
capturing complex patterns. This power has been exploited by some recent work for recommendation.
Van den Oord et al. (2013) applies deep learning for music recommendation. It uses the latent
item vector learned by CF as ground truth to train a deep network for extracting content features,
obtaining considerable performance gain. However the latent vectors for known users and items are
not improved. Wang & Wang (2014) proposed an extension to this method, which concatenates both
the CF features and the deep features, resulting in slight improvement.

Wang & Blei (2011) showed that CF and topic modeling, when combined, can benefit each other.
Inspired by this, Wang et al. (2015) proposed Collaborative Deep Learning (CDL), which incorporates
CF and deep feature learning with a combined objective function. This work represents the latest
advances in recommendation methods. Yet, its performance is still limited by several issues, e.g. the
difficulties in balancing diversified objectives and the lack of effective methods for user encoding. An
important aspect that distinguishes our work from CDL and other previous methods is that it encodes
both items and users through a pair of deep networks that are jointly trained, which substantially
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enhance the representation power on both sides. Moreover, the objective function of our learning
framework directly targets the recommendation accuracy, which also leads to better performance.

3 COLLABORATIVE DEEP EMBEDDING

At the heart of a recommender system is matching model, namely, a model that can predict whether a
given item matches the interest of a given user. Generally, this can be formalized as below. Suppose
there are m users and n items, respectively indexed by i and j. Items are usually associated with
inherent features, e.g. the descriptions or contents. Here, we use xj to denote the observed features of
the j-th item. However, inherent information for users is generally very limited and often irrelevant.
Hence, in most cases, users are primarily characterized by their history, i.e. the items they have
purchased or rated. Specifically, the user history can be partly captured by a matching matrix
R ∈ {0, 1}m×n, where R(i, j) = 1 indicates that the i-th user purchased the j-th item and gave a
positive rating. Note that R is often an incomplete reflection of the user interest – it is not uncommon
that a user does not purchase or rate an item that he/she likes.

3.1 DUAL EMBEDDING

To motivate our approach, we begin with a brief revisit of collaborative filtering (CF), which is widely
adopted in practical recommender systems. The basic idea of CF is to derive vector representations
for both users and items by factorizing the matching matrix R. A representative formulation in this
family is the Weighted Matrix Factorization (WMF) (Hu et al., 2008), which adopts an objective
function as below: ∑

i

∑
j

cij(Rij − uT
i vj)

2 + λu
∑
i

‖ui‖22 + λv
∑
j

‖vj‖22. (1)

Here, ui and vj denote the vector representations of the i-th user and the j-th item, cij the confidence
coefficient of an observed entry, and λu, λv the regularization coefficients. Underlying such methods
lies a common assumption, namely, all users and items must be known a priori. As a result, they will
face fundamental difficulties when handling new items and new users.

Encoding Networks. In this work, we aim to move beyond this limitation by exploring an alterna-
tive approach. Instead of pursuing the embeddings of a given set of items and users, our approach
jointly learns a pair of encoding networks, respectively for items and users. Compared to CF, the key
advantage of this approach is that it is generalizable by nature. When new items or new users come,
their vector embeddings can be readily derived using the learned encoders.

Generally, the items can be encoded based on their own inherent features, using, for example, an
auto-encoder. The key question here, however, is how to encode users, which, as mentioned, have no
inherent features. Again, we revisit conventional CF methods such as WMF and find that in these
methods, the user representations can be expressed as:

ui = argmin
u

∑
j

cij‖Rij − uT
i vj‖2 + λu

∑
i

‖ui‖2 =
(
VCiV

T + λuI
)−1

Vri. (2)

Here, V = [v1, . . . ,vn] is a matrix comprised of all item embeddings, each column for one; ri
is the i-th row of R treated as a column vector, which represents the history of the i-th user; and
Ci = diag(ci1, . . . , cin) captures the confidence weights.

The analysis above reveals that ui is a linear transform of ri as ui = Wuri, where the transform
matrix Wu depends on the item embeddings V. This motivates our idea of user encoding, that is, to
use a deep neural network instead the linear transform above, as

ui = g(ri;Wu), (3)

where g denotes a nonlinear transform based on a deep network with parameters Wu. As we will
show in our experiments, by drawing on the expressive power of deep neural networks, the proposed
way of user encoding can substantially improve the prediction accuracy.

3



Under review as a conference paper at ICLR 2017

(a) Basic Design

+

(b) Multi-level Design

+

(c) Multi-level Branching Design

Figure 1: This figure shows three different designs of the dual networks. Here, � indicates dot product and ⊕
indicates summation. (a) The basic design adopts the MLP structure for each network. (b) The multi-level design
integrates the dot products of embeddings at different levels to produce the prediction. (c) In the branching
design, the embeddings (except those of the top level) used in the dot products are produced by transform
branches. In this way, the main abstraction paths won’t be directly twisted.

Overall Formulation. By coupling an item-network denoted by f(xj ;Wv) and a user-network g
as introduced above, we can predict the matching of any given pair of user and item based on the
inner product of their embeddings, as 〈f(x;Wv), g(r;Wu)〉. The inputs to these networks include
x, the inherent feature of the given item, and r, the history of the given user on a set of reference
items. With both encoding networks, we formulate the learning objective as follows:

min
Wu,Wv

∑
i

∑
j

cij‖Rij − 〈f(xj ;Wv), g(ri;Wu)〉‖2. (4)

Here, X = [x1, . . . ,xn] denotes the input features of all reference items. This formulation differs
from previous ones in two key aspects: (1) Both users and items are encoded using deep neural
networks. The learning objective above encourages the cooperation of both networks such that the
coupling of both sides yield the highest accuracy. Hence, the user-network parameters Wu depends
on the item embeddings V, and likewise for the item-network. (2) The learning task is to estimate
the parameters of the encoding networks. Once the encoding networks are learned, they encode users
and items in a uniform way, no matter whether they are seen during training. In other words, new
users and new items are no longer second-class citizens – they are encoded in exactly the same way
as those in the training set.

Comparison with CDL. The Collaborative Deep Learning (CDL) recently proposed by Wang
et al. (2015) was another attempt to tackle the cold-start issue. This method leverages the item
features by aligning the item encoder with the embeddings resulted from matrix factorization. In
particular, the objective function is given as follows:∑
ij

cij(Rij−uT
i vj)

2+λv
∑
j

‖vj−fe(x̃j ,θ)‖2+λn
∑
j

‖x̃j−fr(x̃j ,θ)‖2+λu
∑
i

‖ui‖2+r(θ).

(5)
Here, a Stacked Denoising Autoencoder (SDAE) (Vincent et al., 2010) with parameter θ is used to
encode the items, based on {x̃j}, noisy versions of their features. Compared to our formulation,
CDL has several limitations: (1) The objective is to balance the SDAE reconstruction error and
the matching accuracy, which does not necessarily lead to improved recommendation. Tuning this
balance also turns out to be tricky. (2) Only items are encoded, while the representations of the users
are still obtained by matrix factorization. As a result, its expressive power in capturing user interest
remains limited. (3) There are inconsistencies between known items and new ones – the embedding
of known items is resulted from a tradeoff between the matching accuracy and the fidelity to SDAE
features, while the embedding of new items are purely based on SDAE encoding.
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3.2 NETWORK ARCHITECTURE DESIGNS

Our model consists of two networks, namely the item-network f and the user-network g. We went
through a progressive procedure in designing their architectures, obtaining three different designs,
from basic design, multi-level design, to multi-level branching design. Each new design was motivated
by the observation of certain limitations in the previous version.

The basic design, as shown in Figure 1 (a) adopts the multilayer perceptron as the basic architecture,
using tanh as the nonlinear activation function between layers1. The top layer of the item-network
produces a vector f(xj ;Wv) for each item; while that of the user-network produces a dual vector
g(ri;Wu) for each user. During training, the loss layer takes their inner products and compares them
with the ground-truth R(i, j).

Each layer in these networks generates a vector representation. We observe that representations
from different layers are complementary. Representations from lower layers tend to be closer to the
inputs and preserve more information; while those from higher layers focus on deeper semantics.
The representations from these levels have their respective values, as different users tend to focus
on different aspects of an item. Following this intuition, we reach a multi-level design, as shown
in Figure 1 (b). In this design, dot products between dual embeddings at corresponding levels are
aggregated to produce the final prediction.

There is an issue of the multi-level design – the output of each intermediate layer actually plays
two roles. On one hand, it is the input to the next layer for further abstraction; on the other hand, it
also serves as a facet to be matched with the other side. These two roles require different properties
of the representations. Particularly, for the former role, the representation needs to preserve more
information for higher-level abstraction; while for the latter, those parts related to the current level
of matching need to be emphasized. To address this issue, we design a multi-level branching
architecture, as shown in Figure 1 (c). In this design, a matching branch is introduced to transform the
representation at each level to a form that is more suitable for matching. This can also be considered
as learning an alternative metric to measure the matchness between the embeddings. As we will show
in our experiments, this design can considerably improve the prediction accuracy.

4 TRAINING WITH DUAL MINI-BATCHES

A distinctive aspect of our training algorithm is the use of dual mini-batches. Specifically, in each
iteration, Bv items and Bu users are selected. In addition to the item features and user histories, the
corresponding part of the matching matrix R will also be loaded and fed to the network. Here, the
two batch sizes Bv and Bu can be different, and they should be chosen according to the sparsity of
the matching matrix R, such that each dual mini-batch can cover both positive and zero ratings.

During the backward pass, the loss layer that compares the predictions with the ground-truth match-
ings will produce two sets of gradients, respectively for items and users. These gradients are then
back-propagated along respective networks. Note that when the multi-level designs (both with and
without branching) are used, each intermediate layer will receive gradients from two sources – those
from the upper layers and those from the dual network (via the dot-product layer). Hence, the training
of one network would impact that of the other.

The entire training procedure consists of two stages: pre-training and optimization. In the pre-training
stage, we initialize the item-network with unsupervised training (Vincent et al., 2010) and the user-
network randomly. The unsupervised training of the item-network allows it to capture the feature
statistics. Then both networks will be jointly refined in a layer-by-layer fashion. Particularly, we first
tune the one-level networks, taking the dot products of their outputs as the predictions. Subsequently,
we stack the second layers on top and refine them in a similar way. Empirically, we found that this
layer-wise refinement scheme provides better initialization. In the optimization stage, we adopt the
SGD algorithm with momentum and use the dual mini-batch scheme presented above. In this stage,
the training is conducted in epochs. Each epoch, through multiple iterations, traverses the whole
matching matrix R without repetition. The order of choosing mini-batches is arbitrary and will be
shuffled at the beginning of each epoch. Additional tricks such as dropout and batch normalization
are employed to further improve the performance.

1The choice of tanh as the activation function is based on empirical comparison.
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5 EXPERIMENTS

We tested our method on three real-world datasets with different kinds of items and matching relations:

1. CiteULike, constructed by Wang & Blei (2011), provides a list of researchers and the papers
that they interested. Each paper comes with a text document that comprises both the title and
the abstract. In total, it contains 5, 551 researchers (as users) and 16, 980 papers (as items) with
0.22% density. The task is to predict the papers that a researcher would like.

2. MovieLens+Posters is constructed based on the MovieLens 20M Dataset (Harper & Konstan,
2016), which provides about 20M user ratings on movies. For each movie, we collect a movie
poster from TMDb and extract a visual feature therefrom using a convolutional neural net-
work (Szegedy et al., 2016) as the item feature. Removing all those movies without posters and
the users with fewer than 10 ratings, we obtain a dataset that contains 76, 531 users and 14, 101
items with 0.24% density. In this dataset, all 5 ratings are considered as positive matchings.

3. Ciao is organized by Tang et al. (2012) from a product review site, where each product comes
with a series of reviews. The reviews for each product are concatenated to serve as the item
content. We removed those items with less than 5 rated users and the users with less than 10
ratings. This results in a dataset with 4, 663 users and 12, 083 items with 0.25% density. All
ratings with 40 or above (the rating ranges from 0 to 50) are regarded as positive matchings.

5.1 EVALUATION

The performance of a recommender system can be assessed from different perspective. In this paper,
we follow Wang & Blei (2011) and perform the evaluation from the retrieval perspective. Specifically,
a fraction of rating entries are omitted in the training phase, and the algorithms being tested will
be used to predict those entries. As pointed out by Wang & Blei (2011), as the ratings are implicit
feedback (Hu et al., 2008) – some positive matchings are not reflected in the ratings, recall is more
suitable than precision in measuring the performance. In particular, we use Recall@M averaged over
all users as the performance metric. Here, for a certain user, Recall@M is defined as follows:

recall@M =
the number of items a user likes in top M recommendations

the total number of items the user likes
.

In our experiments, the value of M varies from 50 to 200.

Following Wang & Blei (2011), we consider two tasks, in-matrix prediction and out-matrix prediction.
Specifically, we divide all users into two disjoint parts, known and unknown, by the ratio of 9 to 1.
The in-matrix prediction task only considers known items. For this task, all rating entries are split
into three disjoint sets: training, validation and testing, by the ratio 3 : 1 : 1. It is ensured that all
items in the validation and testing sets have appeared in the training stage (just that part of their
ratings were omitted). The out-matrix prediction task is to make predictions for the items that are
completely unseen in the training phase. This task is to test the performance of generalization and the
capability of handling the cold-start issue.

5.2 COMPARISON WITH OTHER METHODS

We compared our method, which we refer to as DualNet with two representative methods in previous
work: (1) Weighted Matrix Factorization (WMF) (Hu et al., 2008), a representative method for for
collaborative filtering (CF), and (2) Collaborative deep learning (CDL) (Wang et al., 2015), a hybrid
method that combines deep encoding of the items and CF, which represents the latest advances in
recommendation techniques.

On each dataset, we chose the design parameters for each method via grid search. The parameter
combinations that attain best performance on the validation set are used. For our DualNet method,
we adopt a three-level branching configuration, where the embedding dimensions of each network,
from bottom to top, are set to 200, 200, 50. For WMF, the latent dimension is set to 300 on CDL
and 450 on other datasets. For CDL, the best performance is attained when the structure of SDAE is
configured to be (2000, 1000, 300), with drop out ratio 0.1. Other design parameters of CDL are set
as a = 1.0, b = 0.01, lu = 1, lv = 10, ln = 1000, lw = 0.0005.
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Table 1: Comparison of performance on three datasets. The performances are measure with the
metric Recall@M . We report the results where M are set to 50, 100, and 200.

CiteULike1 CiteULike2
50 100 200 50 100 200

WMF 22.14% 32.58% 43.65% 40.45% 50.28% 59.95%
CDL 25.02% 36.57% 48.32% 39.49% 52.02% 64.41%
DualNet 30.41% 41.71% 52.24% 41.26% 53.80% 65.21%

MovieLens Ciao
50 100 200 50 100 200

WMF 37.14% 48.81% 60.25% 14.46% 19.66% 26.22%
CDL 38.11% 49.73% 61.00% 17.90% 24.55% 32.53%
DualNet 44.95% 59.15% 72.56% 17.94% 24.58% 32.52%

Table 2: Comparison for out-matrix predictions on CiteULike

Recall@50 Recall@100 Recall@200
CDL 32.18% 43.90% 56.36%
DualNet 47.51% 56.59% 66.36%

Note that on CiteULike, there are two ways to split the data. One is the scheme in (Wang et al.,
2015), and the other is the scheme in (Wang & Blei, 2011), which is the one presented in the previous
section. Note that in the former scheme, a fixed number of ratings from each user are selected for
training. This may result in some testing items being missed in the training set. To provide a complete
comparison with prior work, we use both schemes in our experiments, which are respectively denoted
as CiteULike1 and CiteULike2.

Table 1 compares the performance of WML, CDL, and DualNet on all three datasets (four data splitting
settings). From the results, we observed: (1) Our proposed DualNet method outperforms both WML
and CDL on all datasets. On certain data sets, the performance gains are substantial. For example,
on MovieLens, we obtained average recalls at 44.95%, 59.15%, and 72.56% respectively when
M = 50, 100, 200. Comparing what CDL achieves (38.11%, 49, 73%, and 61.00%), the relative
gains are around 18%. On other data sets, the gains are also considerable. (2) The performance
gains vary significantly across different datasets, as they are closely related to the relevance of the
item features. Particularly, when the item features are pertinent to the user interest, we may see
remarkable improvement when those features are incorporated; otherwise, the performance gains
would be relatively smaller.

5.3 DETAILED STUDY

We conducted additional experiments on CiteULike to further study the proposed algorithm. In
this study, we investigate the performance of out-matrix prediction, the impact of various modeling
choices, e.g. multi-level branching, as well as the influence of training tactics.

Out-matrix prediction. As mentioned, the out-matrix prediction task is to examine an algorithm’s
capability of handling new items, i.e. those unseen in the training stage. For this task, we compared
CDL and DualNet on the CiteULike dataset. WML is not included here as it is not able to handle new
items. Table 2 shows the results. It can be clearly seen that DualNet outperforms CDL by a notable
margin. For example, Recall@50 increases from 32.18% to 47.51% – the relative gain is 47.6%, a
very remarkable improvement. The strong generalization performance as demonstrated here is, to a
large extent, ascribed to our basic formulation, where the encoding networks uniformly encode both
known and new items.

Multi-level branching. We compared three different designs presented in Section 3: basic design,
multi-level design, and multi-level branching design. From the results shown in Table 3, we can ob-
serve limited improvement of the multi-level design over the basic one. More significant performance
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Table 3: Comparison of different network architecture designs on CiteULike

Recall@10 Recall@50 Recall@100
basic 15.86% 38.86% 51.03%
multi-level 16.89% 39.92% 51.26%
multi-level branching 17.43% 40.31% 51.78%

gains are observed when the branching design is introduced. This shows that the branches contribute
a lot to the overall performance.

Noise injection. Sometimes we noticed overfitting during training i.e. the validation performance
gets worse while the training loss is decreasing. To tackle this issue, we inject noises to the inputs,
i.e. setting a fraction of input entries to zeros. Generally, we observed that noise injection has
little effect for Recall@M on in-matrix predictions when M < 30. However, it can considerably
increase the recall for largeM value or out-matrix predictions. Particularly, on CiteULike, it increases
in-matrix Recall@300 from 67.3% to 71.2%, and out-matrix Recall@50 from 38.6% to 47.5%.

Unsuccessful Tactics. Finally, we show some tactics that we have tried and found to be not working.
(1) Replacing the weighted Euclidean loss with logistic loss would lead to substantial degradation
of the performance (sometimes by up to 20%). Also, when using logistic loss, we observed severe
overfitting. Rendle et al. (2009) proposed Bayesian Personalized Recommendation (BPR) which
directly targets on ranking. We tested this on CiteULike with parameters tuned to obtain the optimal
performance. Our experimental results showed that its performance is similar to WMF. Particularly,
the Recall@50, 100, 200 for BPR are respectively 39.11%, 49.16%, 59.96%, while those for WMF
are 40.45%, 50.25%, 59.95%.

(2) Motivated by the observation that positive ratings are sparse, we tried a scheme that ignores a
fraction of dual mini-batches that correspond to all zero ratings, with an aim to speed up the training.
Whereas this can reduces the time needed to run an epoch, it takes significantly more epochs to reach
the same level of performance. As a result, the overall runtime is even longer.

6 CONCLUSIONS AND FUTURE WORK

This paper presented a new method for predicting the interactions between users and items, called
Collaborative Deep Embedding. This method uses dual networks to encode users and items respec-
tively. The user-network and item-network are trained jointly, in a collaborative manner, based on two
streams of data. We obtained considerable performance gains over the state-of-the-art consistently on
three large datasets. The proposed method also demonstrated superior generalization performance
(on out-matrix predictions). This improvement, from our perspective, is ascribed to three important
reasons: (1) the expressive power of deep models for capturing the rich variations in user interests, (2)
the collaborative training process that encourages closely coupled embeddings, and (3) an objective
function that directly targets the prediction accuracy.

We consider this work as a significant step that brings the power of deep models to relational modeling.
However, the space of deep relational modeling remains wide open – lots of questions remain yet to
be answered. In future, we plan to investigate more sophisticated network architectures, and extend
the proposed methodology to applications that involve more than two domains.
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