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Abstract
Test-time scaling offers a promising path to im-
prove LLM reasoning by utilizing more compute
at inference time; however, the true promise of
this paradigm lies in extrapolation (i.e., improve-
ment in performance as LLMs keep “thinking”
for longer, beyond their training token budget ).
Surprisingly, we find that most existing reasoning
models do not extrapolate well. We show that
one way to enable extrapolation is by training the
LLM to perform in-context exploration: training
the LLM to effectively spend its test time budget
by chaining operations (generation, verification,
refinement, etc.), or testing multiple hypotheses
before it commits to an answer. To enable in-
context exploration, we identify three key ingredi-
ents as part of our recipe e3: (1) chaining skills
that the base LLM has asymmetric competence
in, e.g., chaining verification (easy) with gener-
ation (hard), as a way to implement in-context
search; (2) leveraging “negative” gradients from
incorrect traces to amplify exploration during RL,
resulting in longer search traces that chains ad-
ditional asymmetries; and (3) coupling task diffi-
culty with training token budget during training
via a specifically-designed curriculum to struc-
ture in-context exploration. Our recipe e3 pro-
duces the best known 1.7B model according to
AIME’25 and HMMT’25 scores, and extrapolates
to 2× the training token budget. Our e3-1.7B
model not only attains high pass@1 scores, but
also improves pass@k over the base model.

1. Introduction
Test-time scaling boosts large language model (LLM) perfor-
mance by extending inference, spending more compute on
“thinking” before producing an answer. Its promise lies in
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enabling models to continue improving performance by scal-
ing test-time compute upon deployment. E.g., if the model
can learn to implement “algorithmic procedures” like plan-
ning, self-reflection, or backtracking generally across the
board, it can discover more accurate responses as more test
compute is used. With this motivation, current recipes post-
train LLMs via reinforcement learning (RL) (DeepSeek-
AI et al., 2025; Yu et al., 2025) and supervised fine-tuning
(SFT) (Team, 2025; Muennighoff et al., 2025) at long output
lengths. However, it is unclear whether the models post-
trained with current recipes can truly realize the promise
of extrapolation: if we scale the test compute beyond the
training budget, could the LLM solve more problems?

Of course, the performance of a model at very long response
lengths may be restricted by other factors like model archi-
tecture or model size (Li et al., 2024). However, one can
at least expect that an LLM should benefit from test-time
scaling within the pretraining context lengths, that tend to
be around 2-4× larger than the budgets used for training
reasoning models1. Mechanistically, this could be realized
if the LLM were implementing algorithmic procedures (e.g.,
generate-verify-revise, best-of-N , search, etc.) within the
model’s chain of thought (Kumar et al., 2024; Setlur et al.,
2025a; Gandhi et al., 2024; Yao et al., 2023). However, sim-
ilar to other empirical studies of reasoning models, we note
that many open models perform poorly when extrapolating
to 2-3× the training budget (Qu et al., 2025; Hochlehnert
et al., 2025) (Fig. 9). Thus, relying on current RL/SFT
recipes to yield extrapolation appears to be mostly futile.

In this paper, we show that the key to enabling extrapolation
is learning to explore in-context: if a model learns to use
compute by searching through multiple reasoning paths or
implementing procedures, it can “guide” the search towards
the correct answer, and improve its performance as more
test compute becomes available. Even under the original
training compute budget, we expect learning to explore in-
context to improve generalization performance to unseen,
out-of-distribution problems (Ghosh et al., 2021; Duan et al.,
2016). To demonstrate this, we build a recipe e3, which
trains models that leverage test compute for in-context ex-

1LLMs often undergo long-context training at the end of pre-
trained to 128k tokens, but during post-training the length is often
reduced to 32k tokens, e.g., Qwen3 models (Yang et al., 2025).
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Figure 1: In-context exploration enables extrapolation of test-time compute (e3): (a) By (i) chaining asymmetric capabilities of the
base model, e.g., self-verifying responses after generating them; (ii) lengthening responses by chaining more asymmetries until the correct
answer is discovered by utilizing the “negative” part of the RL policy gradient; and (iii) carefully coupling data & budget curricula for RL
training to structure exploration on different datasets and training compute budgets. (b) Qwen3-1.7B fine-tuned with e3 outperforms <2B
models on AIME’ and HMMT’ 25 and even some larger 7B/32B models (see full results in Tab. 1 and Fig. 7).

ploration and can perform well at both normal training and
extrapolation budgets. At its core, e3 is based on the fol-
lowing three ingredients and principles (see Fig. 1):

1) Asymmetries are critical for learning to explore. LLMs
can learn to explore only when each segment in the output
trace is useful in “guiding” subsequent ones, e.g., if ver-
ifying initial segments can lead to more refined answers
that are more likely to succeed. In the absence of exter-
nal tools, we show that this sort of behavior can emerge
from asymmetries, i.e., differences in the model’s compe-
tence at different skills appearing in an output trace. In the
context of self-verification, this corresponds to a verification-
generation (VG) gap, where models are more capable of
verifying their answers than generating correct ones. While
prior work (Setlur et al., 2025b; Swamy et al., 2025; Song
et al., 2024; Kim et al., 2025; Gandhi et al., 2025) observed
such asymmetries, we formalize their role and show they
are essential for enabling RL to increase response length by
learning to explore in-context and, as a result, attain extrap-
olation. Without them, test-time scaling is strikingly hard.
We formalize this notion in a didactic model we call “pk”-
model in App. B: a model of long chain-of-thought LLM
training which operates on a base LLM that exhibits per-
fect self-verification but imperfect generation capabilities.
We will show that this asymmetry is critical for enabling
extrapolation in this model (discussed next).

2) Negative gradient in RL amplifies in-context explo-
ration. If asymmetries are a prerequisite for learning to
explore, what enables them to evolve and facilitate learn-
ing useful exploration strategies during post-training? We
show that negative gradients (Tajwar et al., 2024) (i.e., gra-
dients on incorrect traces) in RL training is a key enabler of
in-context exploration when the base model presents asym-
metries. Negative gradients drive exploration by moving
the probability mass from shorter failed traces onto longer
traces that “chain” new asymmetries (e.g., LLM verifying
a calculation one more time). In contrast, SFT only maxi-
mizes likelihood on correct traces in the training data and
reinforces the model to end the solution within the length of

these traces. In our pk model, SFT only aims to reduce the
failure probability p at a fixed k, whereas negative gradients
also amplify k and increase response length.

3) Structured exploration with coupled curriculum. Fi-
nally, while negative gradients amplify asymmetries and
produce longer responses, running RL training at very long
budgets suffers from poor training convergence, typically
seen in long-horizon RL (Agarwal et al., 2021). Although
one could resolve this by training with a smaller budget, we
show that training on hard problems at short context lengths
often disincentivizes exploration altogether, since the model
is forced to commit to an answer prematurely. As a result,
we see poor extrapolation of compute and generalization to
unseen problems. To resolve this, we design a coupled cur-
riculum over pairs of (data mixture, training budget) that
effectively structures the exploration driven by the nega-
tive gradient. Our key insight is that at any stage of the
curriculum, we should choose the smallest “RL optimiza-
tion friendly” budget such that the model initialized for RL
training can: (i) complete most of its responses within the
budget; and (ii) can continue to improve performance as it
chains more asymmetries beyond the chosen budget.

The above principles and insights constitute our recipe e3,
that we use to post-train the Qwen3-1.7B model with a
training budget of up to 16k output tokens using prob-
lems from the DeepScaleR (Luo et al., 2025b) dataset. We
achieve the best performance at <2B scale on AIME’25
and HMMT’25 (to our knowledge), and our model consis-
tently improves as we extrapolate the test-time compute to
32k (2× the training budget) upon deployment. Our models
also attain consistent improvements under the pass@32
metric on both of these benchmarks, showing that e3 does
more than simply sharpening the base model.

2. Asymmetries in the Base Model: A
Prerequisite for In-Context Exploration

How can extrapolating beyond the training budget improve
performance? To answer this, we begin by revisiting why
longer traces perform better in general. The conventional
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wisdom is that longer traces can represent solutions that
make multiple attempts, interleaving verification and gener-
ation (Setlur et al., 2025b; Nie et al., 2024; Krishnamurthy
et al., 2024), to arrive at the final answer. We can think
of this as the LLM learning to interleave basic “skills”,
e.g., verification, summarization, or retrieval, to perform
in-context exploration. But why, or when, should a post-
training recipe favor learning such solution traces over other
uses of test-time compute that arrive at an answer more di-
rectly? This section demonstrates that when the base model
exhibits asymmetric incompetence at different skills, RL
post-training prefers to learn solutions that chains asymmet-
ric skills in ways that improve final performance. A formal
description is given by the following definition:

Definition 2.1 (Chaining asymmetric capabilities p, q in
model π.). Let p, q : S 7→ S be functions over token
sequences S (e.g., p can be generation, q can be veri-
fication), and detect(f, τ) detects number of calls to
function f in a token trace τ . For a reward r, we say that
policy π chains asymmetries p, q if it benefits from calls
to the composition q(p(·)), compared to only p(·):

Eτ∼π [r(τ) | detect(q(p(·)), τ) > 0]

> Eτ∼π [r(τ) | detect(p, τ) > 0] ,

even though there is an optimal policy π⋆
r that never calls

q, i.e., Eτ∼π⋆
r
[detect(q, τ)] = 0.

We focus on a key special case when the model is more
accurate at verifying its own answers than it is at gen-
erating correct ones; that is, when the model exhibits a
verification-generation gap (VG Gap), on a particular prob-
lem domain (Song et al., 2024; Setlur et al., 2025b; Swamy
et al., 2025). In this section, we show that RL training
on problem domains with VG gap (i) encourages chaining
asymmetries, (ii) enables in-context exploration that (iii) dis-
covers new solutions, often extrapolating to larger budgets
and more difficult problem domains.

Setup. We validate the role of asymmetries in learning
to explore by investigating two didactic tasks, on which
Llama3.2-3B admits different VG gaps. First, the Count-
down game (Yao et al., 2023; Gandhi et al., 2024) (CDOWN)
requires converting a set of numbers into an equation that
evaluates to the desired target. The base LLM is more ef-
fective at verifying whether a proposed equation evaluates
to the target than searching over all possible equations to
solve the task, and traces with more chained asymmetries
are more performant, as we measure pass@k in Fig. 2(ii),
where performance on traces with more chains is higher.
Second, we study n-digit multiplication (MULT) in natu-
ral language, without any external tools, where the base
model exhibits limited verification (see App. F for asym-
metry gap on MULT). Additionally, we fine-tune Llama3.2-
3B on correct n-digit multiplication traces from Qwen-32B-

r1-distilled. These traces contain multiple verification steps
verifying intermediate steps, like smaller digit multiplica-
tions, that are part of a longer trace (see App. F for an
example). Fine-tuning on these traces is a direct way to
encourage more verification attempts (MULT-V). Compar-
ison of MULT vs. MULT-V enables direct evaluation of the
benefits of asymmetries in base LLM, all else being held
equal. In these results, we detect verification segments by
separating by the “\n\n” token (see App. L for examples).

Finding 1: Verification-generation asymmetry in the base
model improves the performance of RL trained solutions.
Fig. 2(i)(a,b) shows a stark difference in performance and
length of output traces as the training budget Btr varies on
CDOWN and MULT. On CDOWN, performance consistently
increases as Btr increases from 512 → 2048, accompa-
nied by a very clear increase in response length. On MULT,
where the base model has limited propensity to verify, per-
formance increases when Btr increases from 1024 to 2048,
but it plateaus thereon. Unlike CDOWN, test-time length is
far from saturating budget limits and also oscillates widely
across RL training epochs. Contrast this with Fig. 2(i)(d),
where RL training on MULT-V, which leverages verifica-
tion, exhibits longer lengths and stronger extrapolation per-
formance. Overall, this implies that leveraging asymme-
tries improves performance and length-utilization in RL
postraining. Curiously, we also observe that models with
greater VG gap exhibit less KL divergence from the base
model, perhaps implying better generalization – see App. F
for those results and discussion.

Finding 2: Chaining asymmetries enable extrapolation
via in-context exploration. Interleaving verification and
generation steps chains together asymmetric skills of the
base model; we refer to this special case of skill-chaining as
chaining asymmetries. To measure the benefits of chained
asymmetries on CDOWN, we plot the pass@k accuracy of
the base LLM in Figure 2(ii), and observe that performance
increases as more chained asymmetries arise. In fact, the
best strategy is not simply to scale k, but rather to scale both
k and the number of chained asymmetries (more details
in Appendix F). In Fig. 2(i)(c), we plot the extrapolation
performance of the models trained at two values of Btr. On
CDOWN the model trained with Btr 0.5-1k makes steady
progress on problems in test budgets that are 8-16× Btr

itself. On MULT, we find that Btr has absolutely no effect
on extrapolation performance with the base LLM that does
not have VG asymmetry, but it has a substantial effect when
the asymmetry is present. More importantly, while the
base model without VG asymmetry fails to extrapolate and
solve unsolved problems, with its accuracy improving by
merely ≤ 2% despite 16× test-time compute scaling, the
base model with VG asymmetry can still extrapolate well.

Why do asymmetries enable in-context exploration?. We
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Figure 2: (i) RL training with and without asymmetries in the base model. When asymmetries such as the VG gap are present (e.g.,
CDOWN), RL amplifies response length by chaining more asymmetries to explore in-context, where the probability of success improves
with higher length on both Btr and extrapolation regimes. On the other hand, when VG gap is absent in πb (e.g., MULT), increases in
length and extrapolation performance are subdued. When we explicitly train on a base model fine-tuned to verify MULT (a setting we refer
to as MULT-V), we again observe upward length and extrapolation trends, consistent with CDOWN. (ii) Measuring asymmetry (Def. 2.1) &
pass@k on CDOWN. Pass@k improves more for all k as the number of chained asymmetries increases in a trace πb (Llama3.2-3B).

explain this via our didactic pk-model (details in App. B).
Here we view the LLM as sequentially guessing responses
a1, a2, . . . , each with failure probability p, and up to at
most terminal k responses. We assume that the LLM admits
perfect verification, meaning that it can decide when to stop
or continue perfectly. Now, in a simplified setting where
attempts are independent, failure probability (= pk) decays
exponentially as k increases, as on CDOWN. Therefore, we
can improve performance by increasing k and p together.
However, if verification is difficult, increasing k provides
little benefit, since the model cannot adjudicate whether
one guess is any better than another. Then, the only way to
improve performance is by lowering p.

Takeaways: Asymmetries are a critical pre-
requisite for learning to explore.

• Asymmetries like the VG gap enable the model to con-
tinually explore, verify, and refine answers.

• RL training amplifies chaining of asymmetric skills and
produces solutions that learn to explore in-context, thus
benefiting from additional test-time compute beyond
the training budget.

3. Negative Gradients Incentivize Exploration
that Chains Asymmetries

Having observed that the presence of asymmetry in the base
model is a prerequisite for in-context exploration, the next
question is: What enables models to exploit and chain these
asymmetries during RL? In this section, we show that a
crucial ingredient here is the negative gradient, the gradient
term multiplied by a negative advantage in Eq. 2. Negative
gradient drives in-context exploration via two mechanisms:
(i) incentivizing sampling of unseen token sequences; (ii)
chaining asymmetries like VG gap (Sec. 2) that rapidly
drives up response length and the number of verification
attempts. Note that while mechanism (i) corresponds to the
classical notion of exploration, mechanism (ii) is special

in that it corresponds to a form of “structured” exploration
over strategies already in the model. When put in RL termi-
nology, this corresponds to “meta exploration” (Liu et al.,
2020; Gupta et al., 2018).
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stream of tokens on DMATH (right).

Analysis setup.
We analyze the
evolution of
response length,
performance,
and the number
of chained
asymmetries by
comparing two
training algo-
rithms: (i) standard outcome-reward RL using GRPO (Shao
et al., 2024) with token-level normalization (Yu et al., 2025);
(ii) GRPOMask, which zeros out the negative gradient and
whilst retaining the positive gradient, thereby resembling
an approach close to online STaR (Zelikman et al., 2022)
or RFT (Yuan et al., 2023). We conduct our experiments
on CDOWN and DMATH reasoning (questions sourced from
DeepScaleR dataset (Luo et al., 2025b)) that exhibit the VG
asymmetry. We make the following observations:

Finding 1: Negative gradients promote diverse responses
during RL training, encouraging exploration at two levels:
(i) within a rollout; and (ii) across different rollouts. For (i),
we observe that removing the negative gradient results in
an entropy collapse over the next-token distribution (Fig. 3
(d)). This curtails diversity and leads to responses with a
repeating stream of tokens when extrapolating the trained
model to larger budgets (Fig. 4). For (ii), we measure the cu-
mulative unique attempts on the CDOWN test set as we train
the model (Fig. 4) by separating each rollout into attempts
using “\n\n” and parsing the equations from each attempt.
An attempt is unique when its equations differ from those of
other attempts of rollouts across all gradient steps. We find
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Figure 3: RL training with and without negative gradients: When the base model admits asymmetries, negative gradients promote
in-context exploration by: (i) increasing length ((c)) and chaining asymmetries, which shows up as more verification attempts (b); and (ii)
increasing token entropy and thus response diversity (d). This leads to better performance on the training budget and upon extrapolation.
In (b, c), ✓ denotes the statistic computed on correct responses and ✗ on incorrect responses.

more unique attempts when training with negative gradients,
implying that the negative gradient enhances exploration.
While it is not surprising that RL algorithms benefit from
exploration (Hazan et al., 2019), we next explain how, dis-
tinctly from standard RL, this exploration can be particularly
effective when extrapolating to larger test budgets.

Finding 2: Negative gradient increases the number of
chained asymmetries, and thereby boosts structured explo-
ration (and extrapolation). Concretely, when training on
an incorrect response y with tokens y1, y2, ..,EOS, the neg-
ative gradient reduces the conditional probability of each
token yi conditioned on the prefix y1:i−1 appearing in this
response, i.e. p(yi|y1:i−1). This process also reduces the
probability of the EOS token: p(EOS|y), for any incorrect
response that ends within the response budget. Where does
this probability mass go? Clearly since total probability
is conserved, this probability mass must be repurposed to
increase the likelihood of other tokens. Fig. 3(b) shows that
the probability mass recovered from the negative gradient
is repurposed to increase the probability of chaining new
pairs of asymmetric skills to the current trace (e.g., “Wait, ...”
instead of terminating with EOS). This chaining results in a
greater response length (c) and higher overall performance.

When negative gradients are masked (GRPOMask) in
CDOWN, we see that attempts Fig. 3(b) and length Fig. 3(c)
plateau, accompanied by a decrease in performance. The
relative trends between GRPO and GRPOMask are similar
for DMATH, but differ in absolute values (e.g., the number
of absolute chained asymmetries decline in the absence of
negative gradients). We include further results in App. G
(Fig. 15), where we also demonstrate that MULT (which
does not exhibit asymmetries) benefits far less from neg-
ative gradients. This mechanism for boosting exploration
by chaining new asymmetries is different from the typical
notions of improving coverage discussed in Finding 1.

Finding 3: LLMs trained with negative gradients extrap-
olate better. Finally, we explain why negative gradients

enable extrapolation. Longer responses that chain asymme-
tries are more likely to yield correct answers and thus re-
ceive positive reward. Therefore, the policy gradient update
reinforces chaining and improves in-context exploration,
and this process exhibits a “rich gets richer” effect, where
further training incentivizes more in-context exploration
(since the gap between number of verifications with and
without negative gradient increases as training progresses
in Fig. 3(b)). As discussed in Sec. 1, models that learn
to explore in-context benefit from additional test-time com-
pute—greater search leads to better performance under large
value gaps. Fig. 3(a) confirms this: on hard DMATH prob-
lems (we classify a problem as hard if QwQ-32B attains
pass@32 performance of zero), doubling the test-time bud-
get amplifies the performance gap when negative gradients
are used, compared to the masked variant.

Takeaways: Negative gradient incentivizes in-
context exploration with large VG gaps

• Negative gradients in RL “move” probability from
short-length incorrect answers onto other modes, e.g.,
those that exploit asymmetries or those that end in a
correct answer. When the VG gap is large, longer re-
sponses that chain more asymmetries and eventually
discover the right answer are rewarded and reinforced.
As a result, in-context exploration is reinforced.

• Negative gradients boost response diversity and thus
coverage over correct answers, as confirmed by our
empirical results on CDOWN, DMATH, and theoretical
results in the bi-gram model.

4. Coupled Curriculum Training Structures
Exploration in Long Length RL

In the presence of asymmetries, training with negative gra-
dients produces models that can extrapolate beyond their
training budget. However, of course, training on just any
arbitrarily chosen training token budget Btr is not enough:
if Btr is too small, then we would not expect any form of
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in-context exploration to emerge. Perhaps unsurprisingly
it turns out that a much larger Btr is also insufficient. In
Fig. 5(a), we show that different training budgets Btr lead
to different levels of performance on the training budget, as
well as extrapolation budgets. So how should we set Btr

to attain strong extrapolation performance? And in corre-
spondence with token budgets, what prompts should we be
training on for a given budget? To answer these questions,
we run several training runs at different budgets.

4.1. Training on Static Budgets or Data is Insufficient
Setup. We evaluate extrapolation performance on DMATH

and CDOWN after training on different budgets and prompt
compositions. We split DMATH evenly across three levels
of hardness as measured by the performance of Qwen-R1-
Distilled-32B accuracy. For CDOWN, we judge problem
difficulty based on the number of terms in the equation. We
use the GRPO (Shao et al., 2024) algorithm to train models
on all compute budgets and datasets (see App. H for the
hyperparameter configurations we use).

Finding 1: Training solely at low or high Btr is not de-
sirable. We train on the easy DMATH problems at different
training budgets Btr= 4k, 8k,16k (see Fig. 5(a)). While train-
ing at the short budget Btr= 4k attains the best performance
at the same test budget of 4k tokens, it “kills” in-context
exploration since traces with many chained asymmetries are
typically longer than the training budget of 4k and are thus
negatively rewarded. This hinders length increase and chain-
ing of asymmetries driven by the negative gradient, leading
to poor extrapolation (no gains from 8k to 32k). Fig. 5(c)
shows that this biases the model to terminate prematurely.

On the other extreme, training at Btr= 16k introduces signif-
icant optimization challenges, typical of policy gradients in
long horizons suffering from high gradient variance (Agar-
wal et al., 2021). This model performs worse on its own
training budget of 16k compared to a model trained on Btr=
8k and extrapolated “zero-shot” to 16k. We find that Btr=
8k attains the best scaling when extrapolating test compute,
implying that the choice of Btr needs to strike a balance
between: (i) the length budget available for negative gradi-
ent to encourage chained asymmetries (infeasible in <4k
tokens); and (ii) mitigating optimization challenges.
Finding 2: Training naïvely on a static data mixture is in-
sufficient. Having identified a reasonable training budget of
8k, we now turn to studying the effect of data compositions
(prompt mixtures). To do so, we compare the naïve training
data mixture with equal proportions of all difficulties (easy
+ medium + hard) against easy, easy + medium at Btr= 8k.
As expected, matching train and test composition is ideal
for better in-distribution performance, i.e., when evaluating
models at a test budget of Btr, equal to the training bud-
get (see App. H). However, perhaps surprisingly, the same
is not true for performance on out-of-distribution (OOD)
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Figure 5: RL training on different data and length budgets. (a),
(c): Optimal results come from balancing optimization difficulty
(better at shorter budgets) and in-context exploration (better at
longer budgets). (b), (d): Training on hard problems at the 8k
token budget kills longer traces with in-context exploration needed
to discover solutions for hard problems

problems, especially when performance is computed at bud-
gets ≫ Btr. As shown in Fig. 5(b), the model trained on
only easy problems obtains the best performance on OOD
AIME’25 when extrapolating compute to 32k, although
AIME’25 problems are harder and few prior AIME prob-
lems are also present in the hard subset of DMATH.

Why does this happen? Given a dataset, training on bud-
gets smaller than the length of a typical response of the
base model on that dataset penalizes in-context exploration
early in training. This results in overly short solutions (see
Fig. 5(d)) that are mostly exploitative. When projected to
our pk model from App. B, this means that at short budgets,
RL mainly attempts to improve the failure probability p of
the best guess response, and does not learn to increase k
which corresponds to chaining asymmetries. To increase
k, it needs to learn to increase the number of attempts and
requires a large enough budget. But the budget cannot be
too large to result in optimization challenges.

How can we avoid challenges with training on a fixed
dataset and length budget? One approach to avoid the
above challenges is to incorporate a curriculum that varies
Btr over training. However, this alone is insufficient because
training on hard problems with short budgets suppresses
length and in-context exploration. On the other hand, we
can design a curriculum over the difficulty level and keep
the training budget fixed at a high enough value. However,
this presents optimization challenges as we also describe
above, and leads to learning over-exploratory traces tailored
to easy problems (see App. H for a detailed study of this
on CDOWN). In a nutshell, a curriculum that only varies
the training budget or the dataset composition is insufficient
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Figure 6: RL training with coupled curricula: (a): coupled cur-
riculum outperforms data/budget curricula (shaded area indicates
extrapolation regime), (b): extrapolation gain from switching to a
longer token budget of 16k on medium and hard problems.

to incentivize in-context exploration. To mitigate this, we
describe our recipe which proposes a “coupled” curriculum
over data composition and training budget.

4.2. Our Recipe e3: Coupled Curriculum for
In-Context Exploration

We develop a coupled curriculum that varies the training
budget Btr and problem difficulty correspondingly during
training on a base model with asymmetries. We refer to our
recipe (chained asymmetries, negative gradient, and the cou-
pled curriculum) as e3: exploration enables extrapolation.

Key insight for curriculum design. We simplify curricu-
lum design by fixing the dataset at each stage and progres-
sively increasing task difficulty in a stage-wise manner, from
easy to hard. Now, at each curriculum stage i, we define
a dataset Di and focus on selecting an appropriate token
budget Btr,i. The goal is to choose Btr,i such that training
with this budget encourages in-context exploration. That is,
RL should reward longer reasoning traces that successfully
chain asymmetries and are discoverable with high probabil-
ity under the current model πi, within budget Btr,i. This
ensures that the resulting policy can extrapolate to longer
sequences and provides a strong initialization for the next
stage i+1, where the token budget increases to Btr,i+1. At
the same time, for optimization to be efficient, the bud-
get Btr,i should be as small as possible while still accom-
modating most valid completions from πi. Balancing these
desiderata, we formalize the choice of Btr,i via the follow-
ing optimization as a thumb rule:

B⋆
tr,i(Di) = argmin

B≥B0

B s.t.

J(πi;Di, 2 ·B) ≤ κ · J(πi;Di, B), κ > 1
(1)

where J(π;D,B) denotes the performance of π at budget
B on dataset D, and the budget B0 denotes a reasonable
minimal length for π on dataset Di, e.g., B0 can be the aver-
age token length of responses from π on Di. In practice, we
solve the optimization over B by restricting to a fixed set of
training budgets: 4k, 8k, 16k. We find the above strategy of
choosing the token budget to be a useful heuristic for greed-
ily choosing the budget Btr,i at stage i of the curriculum
in a way that incentivizes in-context exploration, since it is

Model AIME 2025 HMMT 2025
k=1 2 4 8 16 32 k=1 2 4 8 16 32

Qwen3-1.7B 35.5 41.4 47.0 52.4 58.3 65.2 22.2 27.3 33.0 39.5 46.7 54.9
R1-1.5B 23.1 29.2 34.5 40.1 46.3 52.5 12.5 19.1 24.3 27.9 36.1 42.8
Nemotron-1.5B 33.6 38.5 43.6 48.9 53.8 58.0 17.4 22.5 29.6 35.2 40.7 45.0

e3-1.7B 43.8 51.1 56.7 60.8 64.0 67.2 24.7 30.4 37.0 44.1 50.8 56.1

Table 1: Final results with e3: Best <2B sized model on
AIME/HMMT’25: We measure pass@k (%) on AIME’25 and
HMMT’25 for our 1.7B model obtained by post-training the
Qwen3-1.7B base model on DMATH with our recipe e3. Fol-
lowing Sec. 4.2, we use a coupled task and budget curriculum
during RL training (first train on easy problems at Btr=8k, and
then on medium and hard ones at Btr=16k). We compare the gains
with the base model and other strong reasoning models withing
the <2B model family. Note that unlike recent trends (Yue et al.,
2025) that show RL training improving pass@1 at the cost of
pass@k for a higher k, we note that e3 trained models improve
performance by not just sharpening the base model distribution
around high reward traces, but by actually chaining asymmetries
and discovering new solutions with longer traces.

challenging to jointly optimize the budgets across all stages.
E.g., setting κ = 1.2, we find 8k to be the best choice for
training on easy problems (observe that the trained model
satisfies the condition in Eq. 1 at κ = 1.2 in Fig. 5(a)). Fol-
lowing this, e3 fine-tunes the Qwen3-1.7B base model on
easy problems in DMATH at Btr of 8k, and subsequently
continues training on medium and hard problems in DMATH

with a token budget of 16k. For training on medium and
hard problems in DMATH, we can also optimize the train-
ing budget, as we did for the run on easy problems. From
Fig. 5(a), we note that the model trained with a token budget
of 8k extrapolates compute to a budget of 16k and even
24k on AIME ’25, after which the gains start diminishing.
We find similar extrapolation performance on medium and
hard problems in DMATH. Thus, we can safely train on a
budget of 16k or 24k on this set, and due to GPU memory
constraints, we chose to train on the shorter of the two (16k).
Finally, in Fig. 6(b), we show that the model produced by
e3 by training on easy problems at the end of the first stage
does extrapolate well, which is helpful to kickstart RL train-
ing when we move from the budget of 8k to 16k. Concretely,
we observe a >10% performance gain with extrapolation.

Illustrating the efficacy of coupled curriculum. We first
demonstrate the efficacy of e3 on CDOWN by training on
problems of 3, 4, and 7 numbers. In our coupled curriculum,
we first train on problems of easier difficulty with 3 and 4
numbers, on a budget of 256 tokens. Following Eq. 1 with
say κ = 1.2, to select the budget for the next stage, we
examine the performance of this first-stage model on the
second-stage dataset consisting of harder problems with 7
numbers. Eq. 1 prescribes that we pick the smallest but
reasonable B such that there is only a marginal improve-
ment from extending B to 2B, defined by κ = 1.2. As
shown in Fig 8(a), this corresponds to B⋆

tr,1(D1) = 1024
(where D1 is the second stage training dataset). Indeed,
at B⋆

tr,1(D1) = 1024, we get nearly the best extrapola-
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Figure 7: RL training with coupled curricula (e3). The shaded area indicates the extrapolation regime and dashed curves indicate that
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budget forcing with “wait” prompt 2-8 times, as proposed in s1 (Muennighoff et al., 2025).

28 29 210 211 212

Test budget / Btr

0.0

0.2

0.4

J(
1)

 / 
J(

2)

0.06

0.17
0.23 0.24 0.24

0.33
0.39 0.42 0.44 0.42

 = 2.92
 = 1.38  = 1.02  = 1.00

J( 1) at test budget
J( 2) after training on Btr

(a)

None Budget Coupled
Curriculum

0.0

0.2

0.4

Ac
cu

ra
cy 0.26

0.32
0.37

0.33 0.35

0.42

Test budget
1024 (Btr)
4096 (extrapolation)

(b)
Figure 8: Coupled curriculum on CDOWN: (a): illustrating how
budget Btr can be selected via Eq. 1 on CDOWN; Btr = 210

is the smallest value with κ < 1.2, and it corresponds to the
budget where accuracy plateaus. J(π1) is pass@128 performance
and J(π2) is accuracy. (b): coupled curriculum leads to better
extrapolation and standard accuracy on hard problems (7 numbers)

tion performance to 4096 tokens on the harder problems (7
numbers). We also note that while Btr = 2048 marginally
improves test performance over Btr = 1024, it is unclear
apriori if Btr = 2048 would train stably and our goal is to
make a thumb rule prescription. We also find in Fig 8(b),
that our coupled curriculum outperforms budget curriculum
or not training with any curriculum.

4.3. Final Results with e3: State-of-the-art <2B Model
on AIME/HMMT’25

Extrapolation to 32k with e3. In Fig. 7(a,b), we compare
the performance of a Qwen3-1.7B model fine-tuned using
e3 with open-source models, including some 7B and 32B
models. As shown, at a test-time token budget of 32k tokens,
e3 achieves state-of-the-art performance on AIME’25 and
HMMT’25, within a model class of size <2B. We outper-
form the best model in this class by >8% on AIME’25 in
terms of peak performance, and show that our model, trained
only up to a budget of 16k, extrapolates better than other
models including s1.1-32B (Muennighoff et al., 2025) and
OpenThinker-7B (Team, 2025) when we extrapolate them
to 32k output tokens. In principle, one can simply force
the model (trained even with SFT) to use more test-time
compute by intervening its output trace with an appended
prompt (e.g., by appending “Wait” to an output trace as
suggested in s1 (Muennighoff et al., 2025)). Interestingly,
Fig. 7(c) shows that compared to budget forcing via “Wait”,
e3 achieves substantially better scaling, without any form
of prompting or budget forcing.

Improving pass@32 with e3. In Tab. 1, we also report
the pass@k performance, comparing e3 with other mod-
els of a similar size. We find that our final model at the
end of second stage of training on a budget of 16k outper-
forms other models on higher values of k, on AIME and
HMMT ’25. We especially note the comparison against
the Nemotron-Reasoning-1.5B model (Liu et al., 2025a)
trained with a prolonged RL training recipe on a broader
dataset, including our training data. This model consistently
improves pass@16 performance during RL training (Liu
et al., 2025a). To concretely describe our estimation proce-
dure, we used 128 rollouts per prompt to compute a boot-
strapped estimate (Chen et al., 2021) of the pass@k perfor-
mance for k = 1, 2, . . . , 32. Evaluating pass@k at higher
values of k would require a much higher number of roll-
outs (>2048) since the variance of the pass@k estimate
increases sharply with k, for a given number of rollouts.
Moreover, in all of our GRPO training runs, we only use a
maximum of 32 rollouts per problem to estimate the advan-
tage value. Therefore, we can conclude that if e3 is able
to improve over pass@32 of the base model, then it does
improve beyond any naïve distillation-based approach, that
aims to distill the pass@32 policy corresponding to the
base model into a better pass@1 policy.

Takeaways: Coupled data & budget curriculum
structures exploration during training.

• RL with fixed Btr, D hurts in-context exploration:
(i) short Btr penalizes exploration on hard problems
as budget is overrun; (ii) large Btr overfits on over-
exploratory behavior on easy ones.

• We propose a coupled curriculum e3: at each stage,
given D, choose smallest Btr such that chaining more
asymmetries till a budget of 2 · Btr is positively re-
warded at RL initialization.

• By fine-tuning Qwen3-1.7B with e3, we outperform
<2B models on AIME’25, HMMT ’25.
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Appendices
A. Problem Statement: Optimizing & Extrapolating Test-Time Compute
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Figure 9: Accuracy of various
open-source models at different
budgets on AIME 2025. Perfor-
mance gains diminish as the test-
time budget increases, with vir-
tually no gains from 16k to 32k.

Post-training for test-time scaling. RL and SFT are two categories of post-training algo-
rithms that refine a pre-trained base LLM πb into a reasoning model, especially one that
utilizes more test-time compute by producing long CoTs. Typical outcome-reward RL trains
LLM π (initialized with πb) to maximize performance on outcome 0/1 reward r⋆(x,y), for
inputs x ∼ ρ and response y ∼ π(y | x) restricted to an apriori fixed maximum token length
or training budget Btr (Yu et al., 2025; Luo et al., 2025b). On the other hand, SFT fine-tunes
πb on long thinking traces from more capable models or humans to distill their reasoning
capabilities (Team, 2025; Muennighoff et al., 2025), where the maximum length of the expert
traces also implicitly induces a training budget Btr, similar to RL. Our goal is to train models
that can improve performance when we extrapolate test-compute beyond Btr. Even though
the true promise of test-time compute is extrapolation performance, we find that current
thinking models fall short on extrapolation. We evaluate multiple models on a test budget
of 32K, ≈1.5-2×Btr across all models. We plot our results on AIME25 in Fig. 9 (see App. E
for a detailed comparison) and note that performance gains are minuscule as we go beyond Btr.

Negative gradient in RL. A key distinction between SFT and RL is the negative gradient, which corresponds to the part
of the policy gradient coming from traces that fail. In Eq. 2 we present a simplified yet generalizing version of the policy
gradient adopted by most RL post-training methods: REINFORCE (Ahmadian et al., 2024), PPO (Schulman et al., 2017),
and GRPO (Shao et al., 2024). From this, we note that on a prompt x, RL training observes two types of gradients: (i) the
positive gradient which maximizes the likelihood of a correct responses y with a positive advantage A(x,y), and (ii) the
negative gradient which pushes down the likelihood of an incorrect response with a negative advantage A(x,y). Here, y
can be sampled on-policy π = π̃ or off-policy π ̸= π̃. Thus, we can view SFT as a purely positive gradient method that only
maximizes likelihood on correct reasoning traces. In Sec. 3, we show why the negative gradient is largely responsible for
driving up response lengths and in-context exploration during RL, thereby enabling RL-trained models to explore more at
test-time and extrapolate better compared to SFT-based ones.

Ey∼π̃(·|x) [Ai(x,y) · ∇π log π(y | x)] (2)

B. Analyzing Negative Gradient Dynamics in the pk Model
In this section, we introduce a didactic pk model, where an LLM samples k independent actions sequentially, verifies them
(with a perfect accuracy), and terminates immediately after the correct one is produced. In this section, we introduce a
didactic setup where verification is perfect (and hence, there is a high VG gap), and formalize the intuitions regarding
negative gradient from the previous section.

Didactic analysis setup. We consider a Markov decision process (MDP) (Puterman, 1994) with action space Ā =
A ∪ {stop}, where A = [100] are standard actions and stop is an early “stopping” action (like EOS) that terminates
the trace. For simplicity, we consider policies parametrized as a softmax bigram model πM (at+1 | at): in this model,
the policy only retains one token in its history and is parameterized by a softmax over logits described by bi-grams, i.e.,
πM (at+1|at) ∝ exp(M(at, at+1)). In this bi-gram model, the current state st always matches the previous action at−1,
and a⋆ ∈ A denotes the optimal action. In a rollout a1, ..., at, the initial action a1 is sampled from a fixed π0. For t > 1,
a learner policy samples an action at∼π(·|a1:t−1) ∈ △(A). The MDP terminates with reward 1 at time t if at = a⋆, and
with reward 0 if at = stop (stops too early), or t > Btr (budget is exhausted before a correct response). The policy is
initialized to one that puts a high probability mass on choosing a = stop. Details are in App. G.

We say that the model learns to explore in-context if it learns to never play stop for any t (no early stopping), until a⋆ is
observed, i.e., increasing k in pk. On the other hand, classical exploration amounts to upweighting π(a⋆ | a1:t−1) without
reducing p(stop), i.e., improving p in pk.

Finding 1: Negative gradient increases length until p(a⋆) is reasonably high. In Fig. 10(a), standard GRPO (Btr = 100)
increases average response length from 15 to 45 at budget, driven by the drop in the marginal probability of stopping
early p(stop) (Fig. 10(c)). After multiple RL iterations with negative gradients, the average number of attempts per
trace is sufficiently large, and the learner can sample a⋆ with non-trivial probability in any given trace. Once this happens
(Fig. 10(c)), in our simple bigram setup, the model rapidly upweights the likelihood of one-step transitions to a⋆, resulting
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Figure 10: Negative gradients in the pk-model. Negative gradients push down p(stop) during training (c), increasing length (a) and
entropy of the next action distribution (d) to accommodate more in-context exploration, only decreasing them when a⋆ is discovered. In
contrast, positive gradients rarely change p(stop) or entropy.

in a phase transition where reward increases as length drops. In contrast, GRPOMask (Fig 10(b)) fails to improve reward or
increase length. The first phase is akin to chaining more asymmetries in LLMs and results in a longer response length. In
our LLM benchmarks, however, we do not see the same phase transition since finding “shortcuts” to correct responses is
considerably more difficult. Moreover, the LLM is conditioned on an entire history and learns to utilize the history carefully
in the first phase. This makes it unlikely for it to quickly learn to reduce length substantially even if it transitions into this
second phase on some problems.

Finding 2: Negative gradient improves coverage by increasing entropy of πM (· | a1:t−1). When πM samples a highly
likely yet incorrect action, the negative gradient computed on this sample increases entropy by moving probability mass
onto less-seen modes of the distribution, including a⋆. Note that no explicit entropy bonus is applied. We show this formally
in Theorem B.1 where we prove that upon sampling a highly likely incorrect action with probability p, GRPO update with a
negative gradient results in an entropy increase of ≈ p2 when all other actions, including a⋆ are highly unlikely. We note
this empirically as well in Fig. 10(d), where conditional entropy increases across states, until a⋆ is discovered, after which it
drops sharply as the positive gradient rapidly moves mass onto a⋆ within a few iterations.

Theorem B.1 (Negative gradient increases entropy when a⋆ is unlikely; formal version in Thm. I.3). At state s, if the most
likely action under π is a1 =: argmaxa′ π(a′|s) ̸= a⋆, then, for any π, a negative stochastic gradient step increases the
entropy of π(·|s) with prob. ≥ π(a1|s). Additionally, in a suitable regime of π, the increase >∼ (π(a1|s)− π(a2|s))2, where
a2 is second most likely after a1. In contrast, in the absence of the negative gradient, the entropy is preserved with prob.
1− π(a⋆|s).

C. Related Work
Scaling test-time compute via long CoT reasoning. Prior work explores a number of avenues for scaling test-time compute,
including majority voting (Wang et al., 2022), best-of-n sampling, and beam search (Setlur et al., 2024; Snell et al., 2024),
as well as sequential self-correction (Qu et al., 2024; Kumar et al., 2024). More recent results indicate that training models
to use test-time compute to generate longer chains of thought (CoT) that combine verification, search, and self-correction –
all in a free-form manner, performs better (DeepSeek-AI et al., 2025; Team et al., 2025; OpenAI et al., 2024), resulting in
widespread open-source reproduction efforts (Face, 2025; Yeo et al., 2025; Zeng et al., 2025b; Luo et al., 2025b). We situate
our work in the paradigm of long CoT reasoning.

Test-time extrapolation. The true benefit of test-time scaling is consistently improving performance as we extrapolate
test compute. While prior work tests the model’s performance on budgets longer than the training budget (Zeng et al.,
2025a; Luo et al., 2025a), they do not explain the relationship between the training recipe and the extrapolation, like we
aim to do in our work. Other works perform extrapolation by explicitly prompting models to generate more tokens when a
response terminates (Muennighoff et al., 2025; Aggarwal & Welleck, 2025), whereas, we show that models that learn to
explore in-context extrapolate test compute better than prompting-based approaches (Fig. 7). In particular, we study the role
played by the base model, training algorithm (RL), as well as data mixtures and token budgets, on the ability to extrapolate.
Furthermore, prior work (Setlur et al., 2025b) has investigated scaling when train and test budgets are the same, but we
expand the scope of this comparison substantially.

Exploration in test-time scaling. While prior works have shown the importance of the base model’s ability to conduct
exploration (Gandhi et al., 2025; Liu et al., 2025b), we discover that it is crucial for extrapolation. We show that the negative
gradient in RL incentivizes chaining multiple asymmetries and leads to longer response length, and better performance.
SFT alone does not provide this kind of chaining or exploration benefits. Our analysis is orthogonal to theoretical works
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Setlur et al. (2025b); Swamy et al. (2024), which shows that RL performs better than SFT, but from a statistical perspective,
whereas our argument is more focused on the learning dynamics. Concurrent work builds techniques to boost exploration
during RL via advantage normalization (Li et al., 2022; Yu et al., 2025) or PPO clipping (Yu et al., 2025), and these
techniques can be combined with e3, but they do not study the role of negative gradients in learning to explore. Finally,
Wang et al. (2025b) briefly remarks about the role of policy gradient loss and entropy when running RL with only a few
examples. Our study investigates the underlying mechanism of negative gradients increasing length and entropy.

Data and length curricula. Recent works have also investigated using a curriculum on problem difficulty (Team et al.,
2025; Xie et al., 2025; Shi et al., 2025) and output length (Luo et al., 2025b; Liu et al., 2024) during RL training. Their
motivation stems primarily from an efficiency standpoint: avoiding zero advantage updates (Shi et al., 2025; Yu et al., 2025),
efficient optimization (Luo et al., 2025b), or efficiency of using test-time compute (Qu et al., 2025). While we do make
similar observations regarding each curriculum individually, perhaps our most interesting finding is that carefully coupling
both data and budget curricula can lead to much better performance and extrapolation, beyond merely some gains in efficient
training. We show that training on hard problems with short budgets often yields terse solutions that fail to extrapolate,
while easy problems with long budgets can cause optimization issues or verbose outputs. Thus, curricula must be carefully
designed to support effective extrapolation. Conceptually, our curricula are most related to dense progress rewards (Qu
et al., 2025; Setlur et al., 2024), in the sense that curricula incentivize different degrees of progress for different questions, at
different points in training.

D. Discussion and Conclusion
We show that in-context exploration is a core capability to enable extrapolation of test-time compute in LLMs. Therefore
we build a recipe that amplifies in-context exploration. Our recipe e3, leverages (1) asymmetries in the base model, (2)
negative gradients during RL training, and (3) a coupled curriculum over data and token budget to train a model that can
perform in-context exploration. Applied to the Qwen3-1.7B model, our method achieves state-of-the-art performance on
the AIME/HMMT’25 benchmarks, with particularly strong gains in the extrapolation regime. We also show that our e3
recipe also improves pass@k over the course of training, for values of k upto 32 that we evaluate. There are a number of
implications of our work and a number interesting directions that future work should build upon. We list the main technical
implications and open questions below.

• Sharpening vs in-context exploration. A number of concurrent RL results either directly (Yue et al., 2025) or
indirectly (Shafayat et al., 2025; Zhao et al., 2025; Shao et al., 2025; Prabhudesai et al., 2025) argue that RL training on
LLMs sharpens the base model’s distribution, as also previously studied by Huang et al. (2024). In contrast to this, our
study shows that if we can utilize a coupled curriculum on top of a base model that admits asymmetries, RL can actually
enable chaining new asymmetries, resulting in an increase in length, indicating the presence of structured exploration.
This behavior is distinct from traditional sharpening that corresponds to cloning one (or few) of the responses sampled
from the base model. In fact, our conceptual study in the pk model in Section B also highlights these two distinct
phases during RL: an initial in-context exploration phase where negative gradients lead to an increase in response
length and the policy learns to utilize test-time compute for better exploration, followed by a phase where it sharpens to
the best traces found thus far. The design of e3 enables it to operate in the former phase. We believe concurrent works
that finds RL largely sharpens the model operate in the second regime by training on data that does not require chaining
asymmetries or operating with a very low training budget such that chaining is impossible. As a result, models trained
purely in the sharpening regime may behave similarly to the base model with an alternate prompt, with RL perhaps
offering little more than an implicit prompt tuning effect. But we would not expect this for the chaining regime. A
detailed study on separating these regimes, and identifying all the factors that draw RL training into these regimes is an
interesting direction for both theoretical and empirical research.

• Connection with dense progress rewards. While e3 utilizes a coupled curriculum, this curriculum is closely
connected with the use of dense rewards, as prescribed by our prior work (Qu et al., 2025; Setlur et al., 2024). To see
why, note that one can reparameterize coupled curriculum into a single round of training with dense rewards applied to
short segments of the output response, perhaps in a similar way as Qu et al. (2025); Qi et al. (2025). Therefore, the
success of the coupled curriculum approach in e3 at improving performance and not only in reducing total training
compute perhaps hints at future success with dense rewards at scale, with initial results showing that dense rewards
help larger models already being shown in the community (Wang et al., 2025a). We encourage readers to explore the
connection between curriculum and dense rewards further.

• Introducing new asymmetries. The conceptual model behind e3 applies with any asymmetry, though most experi-

14



e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs

ments in this paper utilize only the verification-generation gap. It would be interesting to identify other asymmetries
and study methods to imbue base models with these asymmetries. Definition 2.1 in Section 2 provides a starting point
to define these asymmetries.

• Is curriculum fundamentally needed? A natural question is whether curriculum is fundamentally necessary as we
vary model sizes and capabilities. Unlike supervised learning on a fixed dataset, online RL generates its own rollouts.
Reinforcing chaining behavior via negative gradients (Sec. 3) requires that such chaining reliably improves performance
on training problems much more substantially compared to sampling diverse traces that do not chain asymmetries.
This likely necessitates specific training configurations regardless of model size with standard outcome-reward RL, or
the use of dense rewards (as discussed above). While larger models may admit simpler curricula, deliberately using
currciulum or dense rewards as inspiration may be critical.

• Explicit exploration bonuses. In our runs, the main issue hindering us from benefits of further scaling of output length
during RL is the repetition bias in the base model, where it tends to repeat previously-generated segments in its trace
beyond a certain output length. This repetition bias inhibits the efficacy of in-context exploration beyond a certain
output length and as a result inhibits further test-time scaling. We believe that explicit exploration bonuses that enable
the model to search for tokens in this regime would result in even better in-context exploration.

Finally, our study is limited in terms of model scale and domain. Future work should explore how e3 generalizes to larger
model scales and other reasoning domains.

E. Testing Extrapolation of Open-Source Models
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Figure 11: Extrapolation of test-time compute:We plot the performance (pass@1) on AIME 2025 at different test-time compute budgets
across multiple open-source models of different sizes, trained with SFT or RL.

Extrapolation on AIME 2025. Extrapolation (i.e. the chaining of generation, verification, refinement, etc.) can potentially
extend LLM performance after training, and do so beyond the context length the model was originally trained on. To
evaluate this properly, we need sufficiently challenging problems that allow meaningful expressiveness in reasoning beyond
small context lengths. The math problems associated with AIME align with this, and our evaluations prioritize AIME 2025
to attempt to mitigate any potential data contamination in the models’ training sets from previous years of AIME. The goal
of the experiment is to measure the extent to which test-time compute influences overall model performance as context
length increases, with the expectation that increasing output length allows models to "reason" for longer periods, continuing
the extrapolation process, and ultimately arriving at the correct answer more frequently.

Experiment setup. Inference for every open-source model was performed using Oumi through data-parallel SGLang.
All models had inference run with a max output length of approximately 32k tokens, though some are slightly lower due
to this exceeding their max context length when combined with the prompt. The exact inference hyperparameters are
described in Table 2. After inference, the model responses were truncated from the right side until the number of remaining
tokens present was equal to the specified test-time budget. 16 responses were collected for every problem in AIME with
the specified inference settings, and the Pass@1 rate was calculated by averaging over these 16 responses. Final answers
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were extracted using a regular expression for the boxed portion of the answer, with correct answers marked as passing and
incorrect or incorrectly parsed answers marked as nonpassing. The prompt used is in Box E.1, and the problems were taken
from the FVU AIME 2025 dataset on HuggingFace2.

Box E.1: AIME Evaluation Prompt Template

You will be given a math problem. Solve the problem step by step. Output your final answer in the form of
\\boxed{your answer}. Problem: {problem}

Model Temp. Top p Rollouts Max New
Tokens

Model Max
Length

MiniMath R1-1.5B 0.6 0.95 16 32768 40960
DeepSeek R1-Distill-Qwen-1.5B 0.6 0.95 16 32768 40960
OpenThinker-7B 0.6 0.95 16 31000 32768
DeepSeek-R1-Distill-Qwen-7B 0.6 0.95 16 32768 40960
s1.1-32B 0.6 0.95 16 31000 32768
DeepSeek-R1-Distill-Qwen-32B 0.6 0.95 16 32768 40960
DeepScaleR-1.5B-Preview 0.6 0.95 16 32768 40960
STILL-3-1.5B-preview 0.6 0.95 16 32768 40960
II-Thought-1.5B-Preview 0.6 0.95 16 32768 40960
Open-RS1 0.6 0.95 16 32768 40960

Table 2: Inference parameters used for generating the extrapolation plots in Figure 9.

Results. The results in Figure 11 show that as the maximum number of output tokens increases, every model capable of
"reasoning" is able to attain a higher Pass@1 rate, with performance generally saturating at 16k tokens with relatively
minor improvements at 32k. We do not observe this with MiniMath-R1-1.5B, and we suspect this is due to its fine-tuning
focusing solely on smaller math problems trained with supervised fine-tuning, likely resulting in catastrophic forgetting of
the ability to continuously extrapolate. Interestingly, we do not see a strong improvement in extrapolation behavior among
models tuned with reinforcement learning compared to DeepSeek R1-Distill-Qwen-1.5B, which was trained with supervised
fine-tuning. We suspect that this is likely due to the nature of the distillation data from the R1 model, which, if varied
sufficiently in length, could avoid the length bias normally learned from supervised fine-tuning, while still teaching the
model to perform extrapolation.

F. Additional Experiments and Details for Section 2 (Chained Asymmetries)
F.1. Details on MULT and MULT-V

Data collection. Both MULT and MULT-V consist of multiplication traces for solving a 5-digit × 5-digit multiplication
problem. For the MULT task, we use a Llama3.2-3B instruction tuned model where the number of intermediate verification
attempts is much lower in a trace when asked to solve a multiplication problem. In fact, it is not hard to see that, in general,
for multiplication, generation of a trace may be as hard as verifying a generated one, as the only way to verify the entire
trace is to re-attempt the multiplication or carry out a division with the computed target. We contrast this task with the
MULT-V task, where the Llama3.2-3B models are first finetuned on traces from Qwen-32B-R1-Distilled and GPT-4o models.
These traces contain multiple verification attempts that verify intermediate steps solving smaller multiplication problems,
and the steps are part of an entire trace that attempts to solve the main multiplication problem involving two 5-digit numbers.
For collecting data we used the prompt in Box F.1. In App. L Example 2, we also provide an example multiplication trace
with verification attempts sampled by the base model in MULT-V. As we will see in Fig. 15, the absence of asymmetries in
MULT leads to lower accuracy and verifications when compared to MULT-V, where asymmetries are present.

2https://huggingface.co/datasets/FVU/AIME_2025
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Box F.1: Prompt for generating MULT-V data

Multiply {num1} and {num2}. Please reason step by step, and put your final answer within \\boxed{}. At each step,
try to verify your response if possible and prefix the line with “Check:”. <think>

Hyperparameter Values

train_batch_size 256
ppo_mini_batch_size 64
learning_rate 5.0e-6
kl_loss_coef 0.001
entropy_coeff 0.001
temperature 1.0
rollout.n 16
ppo_lowerclip_threshold 0.2
ppo_higherclip_threshold 0.2

Table 3: Verl (Sheng et al., 2024) hyperparameters used for MULT and MULT-V.

Training details. Hyperparameters for our experiments on MULT and MULT-V are given in Table 3.

F.2. Details on CDOWN

Training details. Hyperparameters in CDOWN experiments follow the table below unless otherwise specified. In all of our
CDOWN experiments, we take the fine-tuned Llama3.2-3B base model from (Gandhi et al., 2025). For Fig. 2, we trained with
Btr = 512, 1024, 2048 on problems with 3, 4, 5, 6 candidates. The total number of datapoints we used was 40000, which
were evenly split across the four difficulties.

Hyperparameter Values

train_batch_size 128
ppo_mini_batch_size 32
learning_rate 1.0e-6
kl_loss_coef 0.001
entropy_coeff 0
temperature 0.6
rollout.n 8
ppo_lowerclip_threshold 0.2
ppo_higherclip_threshold 0.2

Table 4: Verl (Sheng et al., 2024) hyperparameters used for CDOWN.

Evolution of chained asymmetries at test time. In Fig. 12, we show that as training progresses, responses with more
chained asymmetries enjoy a greater improvement. If we move across any diagonal parallel to the main diagonal from
top left to bottom right, we move across a constant attempt budget (e.g., moving from 16 chained asymmetries × 1 pass
to 8 chained asymmetries × 2 passes). Having sequential chained asymmetries become increasingly better than parallel
rollouts as training progresses, indicating the exploitation of asymmetries in RL training. See example of chained asymmetry
in App. L, Example 1.

F.3. In the Presence of Asymmetries, KL Divergence with Base LLM Reduces as Training Token Budget Increases

In Fig. 13, we interestingly observe that training with higher Btr results in a smaller token KL-divergence from πb all
throughout training on countdown. On multiplication in the absence of asymmetries, the KL-divergence values are roughly
similar for all Btr. This means that when the verification-generation asymmetry is present, the training process deviates less
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Figure 12: Evolution of asymmetries during training on CDOWN: More chained asymmetries lead to a greater improvement in pass@k
performance across gradient steps.
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Figure 13: KL-divergence with base LLM on CDOWN and MULT: When running RL training on CDOWN and MULT with multiple
training budgets (512, 1024, 2048 on CDOWN and 1024, 2048, 4096 on MULT) we note that the KL divergence is lower when running
RL training on higher training budgets, when the base model presents asymmetries (in here the asymmetry is given by the verification
generation gap on CDOWN).

from πb at each token, but is able to “chain” multiple verification and generation attempts together to improve accuracy, by
learning to explore over the space of basic skills. Prior work argues that a model that deviates less from the base pre-trained
model generalizes better on unseen prompts (Gao et al., 2019). If we were to apply this argument in our case, this means
that models that are able to use asymmetries better should result in better performance on unseen prompts, especially when
operating at higher test compute.

G. Additional Experiments and Details for Section 3 (Negative Gradient)
G.1. Details for CDOWN

We trained models for 90 steps on problems with 5 candidate numbers with a training budget of 2k.

Cumulative unique attempts plot. Fig. 4 (left) was filtered on incorrect traces on problems with < 50% success across
gradient steps. We select only incorrect traces to capture the ability of the model to explore for the correct trace, rather than
to output diverse correct traces once one is found. We filter for problems with < 50% success across training for GRPO and
GRPOMask because otherwise the algorithm with better rewards would see more problems with lower cumulative unique
attempts, as the correct traces are discovered early and subsequently reinforced.

Evolution of the conditional distribution given past attempts in CDOWN. We run ablations on the conditional distribution
of a new attempt (sequence of tokens that constitute an attempt to plug-in operations so as to match the target CDOWN) given
past attempts in three different settings, shown in Fig. 14. In (a), we plot log p(ak|a1:k−1)− log p(ak|a1:k−2), which should
average to roughly 0 if the attempts are independent. As training progresses, this quantity grows, indicating a correlation
between attempts, especially with larger k (potentially because the new attempt can attend to more previous attempts, and
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thus becomes more dependent on them). In (b), we plot log p(ak|a1:k−1)− log p(ak−1|a1:k−2), which also grows over time.
This indicates that the conditional distribution p(new attempt|past attempts) sharpens as the number of past attempts grows,
implying that the model gets more confident as it explores more in-context. In (c), we plot log p(ak−1|a1:k−1) and note that
it reduces with more attempts way more on the trained model, compared to initialization. This means, that the model has
learned not to repeat its previous attempt when it immidiately re-attempts to solve the problem. These three trends jointly
tell us that the learned model indeed learns to explore-in-context where it adapts and sharpens the conditional distribution
over the next attempt with more previous attempts.
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Figure 14: Probing the conditional distributions conditioned on past attempts in CDOWN. (a): New attempts are not independent of past
attempts (b): Model becomes more certain of what to try next given more past attempts (c): Model learns not to repeat past attempts.

G.2. Additional Experiments with MULT

In Section 3 we saw that training with the negative gradient leads to more exploration during RL training, which in turn leads
to the amplification of any chained asymmetries that may be present in the base model, e.g., more generation-verification
steps. In particular, we noted the increase in the number of verification steps in Fig. 3(b). To see how negative gradients
affect the response length and number of chained asymmetries in the absence of a strong VG gap, we compare running
GRPO with and without negative gradients on our multiplication task MULT where the VG gap is weaker in the base model.

We plot results in Fig. 15, where we note two trends when running RL training with and without negative gradients on MULT

(without VG gap), and MULT-V (with VG gap) using a training budget of 4096 tokens. First, we note that the number of
verifications is higher when we use negative gradients in a setting with a large VG gap. When the VG gap is absent, the
number of chained asymmetries (verification-generation steps) are roughly the same with and without masking the negative
gradient. Second, we note that the accuracy is much higher with negative gradients in the presence of VG gap (MULT-V),
and comparable to a run where we mask the negative gradients in the setting where the VG gap is poor (MULT). Together,
this tells us that the boost in exploration driven by negative gradients leads to more chained asymmetries when the base
model presents some of them, like a large VG gap.
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Figure 15: Negative gradient amplifies verification when VG gap is large. While utilizing the negative gradient amplifies the number of
calls to verification in MULT-V, the number of verification calls does not grow over training in MULT. Interestingly, though, we find that
when negative gradient is masked out on MULT-V, the number of verification calls is still very low and does not increase, corroborating
our findings that exploration driven by negative gradients results in in-context exploration only in the presence of asymmetries in the base
model. A similar trend is also observed in terms of the raw accuracy.
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G.3. Additional Details for the Didactic Setting in Sec. 3

First, we comment on exploration and meta-exploration in RL, and how negative gradients in our didactic setting can
connnect one to the other in the presence of asymmetries. Next, we introduce some details for the policy parameterization
and training.

Negative gradients boost exploration, which in the presence of asymmetries incentivizes in-context exploration. In
Sec. 3 we showed how negative gradients can boost exploration in RL, and in the presence of asymmetries in the base
model, lead to more chained asymmetries and longer responses – a phenomenon we call in-context exploration. Here, we
present a theoretical result that explains why negative gradient can incentivize the more “traditional exploration” in RL, in
our didactic bi-gram model. Since verification is perfect in our bi-gram model, any policy in our policy class always stops at
the stop token. Thus, an increase in exploration leads to longer traces, and more chained asymmetries. As a result, in this
setting, we can view an improvement in exploration as an improvement in meta-exploration (or in-context exploration),
driven by negative gradients.

Parameterization of the policy class. We parameterize the policy class as a softmax policy, where the probability of next
action at+1, at state current at (in a bi-gram model current state is equivalent to the previous action) is parameterized with
the vector of logits [M(a | at)]a∈Ā, i.e.:

πM (at+1 | at) =
eM(at+1|at)∑
a′∈Ā eM(a′|at)

, at+1 ∈ Ā, a ∈ A (3)

where M = [M(a+ | a)]a+∈Ā,A∈A can be expressed as a matrix in R(K+1)×K . Note that the cuurent state can never be the
stop action, since a stop always terminates the MDP.

Training details. We set the initial distribution π0 to be the uniform distribution over all actions except a⋆, i.e., π0(a
⋆) = 0.

For each state s, the policy is first initialized with random values of M(· | s) in [−3.0, 3.0], and then we set M(stop |
s) = 4.0, M(a⋆ | s) = −4.0, which mimics the setting where the probability of sampling the stop action is higher than
any random action, and the probability of sampling a⋆ is lower than any random action. We train with a learning rate
of 1e-2 and use stochastic gradient descent to update the policy where a single update samples a random trajectory τ ,
starting from a random state sampled from the initial state distribution π0, by running the policy until termination of the
MDP. We then compute the policy gradient term, by averaging the policy gradient loss over the tokens in the trajectory τ :
1/|τ | ·∑i∈|τ | log πM (ai | a1:i−1) ·A(ai, a1:i−1).

H. Additional Experiments and Details for Section 4 (Curricula Training)
H.1. Training Details and In-distribution Performance on Training Budget

We present our hyperparameters for e3 training runs in Table 5.

Note on in-distribution performance. In Sec. 4 we note that for best extrapolation performance, it is important to vary the
mixture of tasks in the dataset, as well as the training budget (max token length) in a a coupled way, over the course of RL
training. Here, we note that if we were to only care about in-distribution performance, i.e., performance on a fixed task
mixture (of equally proportioned easy, medium, and hard questions in DMATH), then the best way to train is to match the test
token budget and prompt mixture with training. In particular, training only on easy problems and a budget of 8k yields a
performance of 54.3% on a test dataset consisting of all tasks (from easy, medium and hard splits). But, if we match the test
mixture with train, and train on all difficulties, then on the same 8k test budget, we note a performance of 58.9%, averaged
over all difficulties. Note that the exptrapolation performance (on hard, out-of-distribution AIME ’25 questions) of the same
models is flipped in Fig. 5, indicating that the curricula design is mainly needed for extrapolation, via in-context exploration,
as opposed to best performance at a fixed test Btr.

Hyperparameters for e3. In Tab 5, we report the hyperparameters we used for RL training during different stages of our
coupled curriculum runs on DMATH. For the first stage of training on Btr=8k, we used fewer number of rollouts per prompt
(16), and increased this to 32 for second stage training when Btr=16k. We did this to account for the larger outcome-reward
variance typically associated with long horizon RL training (Agarwal et al., 2021). In general, we find that a successful RL
run at a budget of 16k can generally characterized by the following trends: (i) averag per-token entropy increases during
training (or at least does not drop during training); and (ii) the number of chained asymmetries (verification attempts) and
the response length increases during RL training. To improve token-level entropy we move away from purely on policy RL,
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Hyperparameter Values (Btr = 8k) Values (Btr = 16k)

train_batch_size 128 64
ppo_mini_batch_size 32 32
learning_rate 1.0e-6 1.0e-6
kl_loss_coef 0.001 0.001
entropy_coeff 0.002 0.001
temperature 0.6 0.6
rollout.n 8 32
ppo_lowerclip_threshold 0.2 0.2
ppo_higherclip_threshold 0.5 0.35

Table 5: Verl (Sheng et al., 2024) hyperparameters used for e3 runs on DMATH.

and use off-policy data to update the current policy, with the policy density ratio clipping mechanism to avoid aggressively
off-policy updates. Consistent with the findings in Yu et al. (2025), we find that when updating the policy on stale off-policy
data, using a higher clip ratio for the positive advantage tokens is critical for increasing token-level entropy during RL
training. This is mainly to weight the probability of some very low probability and positive advantage tokens. But increasing
the clip ratio too substantially can also de-stabilize training, as we observed in the 16k training runs, due to which we
dropped the clip threshold from 0.5 to 0.35. The rest of the hyperparameters are consistent with the default options in
Verl (Sheng et al., 2024).

H.2. Fixed train budget, vary dataset curriculum on CDOWN

In this subsection, we demonstrate that training with a data curriculum based on difficulty with a fixed train budget can lead
to over-exploratory output traces, on the example task of CDOWN. With the data curriculum (i.e., fixed budget, vary data), we
train first on CDOWN problems with 3 candidate numbers (the “easy” problems) for 60 gradient steps, then those with 6
candidate numbers for 60 gradient steps (the “hard” problems), with a 1k budget across all steps. We compare this with the
coupled curriculum in which the first 60 gradient steps are trained with a budget of 256. As shown in Fig. 16, the latter
achieves better reward on “hard problems”.
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Figure 16: Coupled vs. data curriculum on CDOWN: training only on easy problems at large budgets leads to overfitting on “over
exploratory” traces, failing to balance explore-exploit tradeoff on harder problems later on. Reward graphs are displayed for hard
problems.

Why is data curriculum worse than the coupled curriculum? We can view the learning of correct traces as largely composed
of two stages: (i) negative gradients encourage exploration, leading to the discovery of correct traces, (ii) positive gradients
reinforce correct traces, once discovered.

For (i), we observe that training on easy problems exacerbates a tendency to perform over-exploratory in-context exploration
“underthinks” (see Example 3 in App. L), restricting the discovery of solutions to harder problems. When utilizing a coupled
curriculum, this bias propagates to a shorter budget when compared to the data curriculum, since easy problems are trained
on 256 rather than 1K tokens. As shown in Figure 16, the average number of equations per attempt (naïvely, with 3
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candidate numbers, 2 equations are required to perform a complete attempt vs. 5 equations for 6 candidates) increases
noticeably for the coupled curriculum in the second stage, but plateaus for the data curriculum, implying overfitting on
“over-exploratory” traces during the first stage.

Furthermore, for (ii), even when nontrivial positive rewards are obtained as we run the data curriculum on hard problems
for 60 additional steps (steps 120 to 180), the training reward curve converges more slowly compared to the coupled
curriculum (steps 60 to 120), implying that the data curriculum is also worse at reinforcing correct traces if the behavior is
over exploratory. While we do not run many controlled experiments to identify why this might be the case, we hypothesize
that this is because of imperfect and noisy credit assignment on over-exploratory traces with outcome rewards. It is unclear
which segments of the trace should be reinforced vs which segments might simply confuse the model.

I. Omitted Proofs
In this section, we present the formal version of Theorem B.1, and provide a detailed proof for it. First, we introduce some
notations and provide a proof overview.

Notations. We use the shorthand H(M ; s) to denote the entropy of the conditional distribution over the next action at+1

given the current state s. We also use M (i) to refer to the policy parameters (for the softmax policy in Eq. 3) at iteration i
of RL training, and use the shorthand π(i) to denote the policy induced by the parameter M (i). We use ∇M(i)f(M (i)) to
denote the gradient of function f(M), with respect to M , evaluated at M = M (i). Finally, we use Ms to denote the row of
softmax parameters that model the distribution πM (· | s), i.e., the row of parameters M(· | s) in our parameter matrix M .

Proof overview. Without loss of generality, we fix an arbitrary state s that is different from stop. Given the parameters
M (i) at current RL iterate i, we do a Taylor expansion of H(M (i); s) around M (i), and then show that the gradient
∇M(i)H(M (i); s) is positively correlated with the policy gradient with high probability over the sampling of the action
a ∼ πM(i)(· | s), i.e.:

⟨∇Mi
H(M (i); s) , ∇M(i) log π(a | s) A(s, a)⟩ ≥ 0, (4)

whp. over sampling of action a ∼ πM(i)(a | s)

Before, we prove our result that lower bounds the increase in entropy with negative gradients, we present derivations of the
entropy gradient with respect to the model parameters, as well as the policy gradient, which will simplify some calculations
in the proof.

Lemma I.1 (Entropy gradient for the softmax bi–gram conditional). Fix a previous action (because the bi–gram state is
st = at−1, conditioning on the state is equivalent to conditioning on the last action) a ∈ A. Let the (column-wise) logit
matrix at time t be M ∈ R(K+1)×K , and define the corresponding softmax conditional distribution

πM (a+ | a) =
exp

(
M(a+ | a)

)
Z(a)

, Z(a) =
∑
a′∈Ā

exp
(
M(a′ | a)

)
. (5)

Let the Shannon entropy of this conditional distribution be H
(
πM (· | a)

)
or H(M | a) Then ∇MH(M | a) ∈ RK+1 is

given by:

∇MH(M | a) = = −π ⊙
(
log π +H(π)1

)
= −

[
πi

(
log πi +H(π)

)]
i∈Ā, (6)

Proof. Write pa+ := πM (a+ | a) for brevity. By definition of the entropy,

H = −
∑
a+

pa+ log pa+ . (7)

Insert the softmax expression:

log pa+ = M(a+ | a)− logZ(a). (8)
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Hence,

H = −
∑
a+

pa+

[
M(a+ | a)− logZ(a)

]
(9)

= −
∑
a+

pa+M(a+ | a) + logZ(a)
∑
a+

pa+︸ ︷︷ ︸
=1

. (10)

Rearranging yields the following closed form expression:

H = logZ(a)−
∑
a+

pa+M(a+ | a). (11)

Computing the Jacobian of the softmax we get:

∂πi

∂M(j | a) = πi

(
δij − πj

)
, J := ∇M(·|a)π = diag(π)− ππ⊤. (12)

Starting from the definition H = −∑
i πi log πi and using the chain rule,

∂H

∂M(j | a) = −
∑
i

∂πi

∂M(j | a) (1 + log πi) = −
∑
i

πi(δij − πj)(1 + log πi). (13)

Separating the term i = j from the rest:

∂H

∂M(j | a) = −πj(1− πj)(1 + log πj) + πj

∑
i ̸=j

πi(1 + log πi) (14)

= πj

[∑
i

πi(1 + log πi)− (1 + log πj)
]
. (15)

Because
∑

i πi(1 + log πi) = 1 +
∑

i πi log πi = 1−H(π), we obtain

∂H

∂M(j | a) = πj

(
1−H(π)− 1− log πj

)
= −πj

(
log πj +H(π)

)
, (16)

which gives the stated component-wise form. Writing this for every j simultaneously yields the vector expression with the
Hadamard product.

Lemma I.2 (Policy gradient for the conditional distribution). For an action a ∼ πM (· | s), sampled from a policy πM (· | s),
at state s, the policy gradient is given by: ∇Ms log π(a | s) · A(s, a), where A(s, a) is the advantage of action a. The
expression for the bth coordinate of the policy gradient can be written down in closed form as:

[∇Ms log π(a | s) ·A(s, a)]b = (1(b = a)− π(a | s)) ·A(s, a),

where 1(·) is an indicator function.

Proof. Write Z :=
∑

c expM(c | s) and πb := πM (b | s) = expM(b | s)/Z for brevity. By definition

log πM (a | s) = M(a | s) − logZ. (17)

For any coordinate b ∈ Ā,

∂

∂M(b | s) log πM (a | s) = 1(b = a)︸ ︷︷ ︸
derivative of M(a|s)

− 1

Z

∂Z

∂M(b | s)

= 1(b = a)− expM(b | s)
Z

= 1(b = a)− πb. (18)

Multiplying every coordinate by the common scalar A(s, a) produces the stated expression for g(s, a;M).
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Theorem I.3 (Negative gradient increases H(M ; s) when p(a⋆|s) is low). For any state s, current parameters M (i),
suppose the most likely action ā is incorrect, i.e., a⋆ ̸= ā =: argmaxb πM(i)(b | s), where the probability of sampling ā | s
is πā, and the second most likely action has probability πā − ε. Then, for a small enough learning rate η > 0 s.t. with
probability ≥ πā, negative gradient produces π(i+1) with entropy H(M (i+1); s) > H(M (i); s). Additionally, there exists a
universal constant c > 0 s.t., H(M (i+1); s)−H(M (i); s) ≥ cη ·Kε2(1− pā) whenever πā ≥ ε+ e−H(M(i);s). In contrast,
without negative gradient the entropy remains same with probability 1− π(a⋆ | s).

Proof. For simplicity let us denote π(i) =
(
π1, . . . , πK+1

)
∈ ∆(Ā) be the conditional distribution produced by a bi-gram

softmax column πM(i)(· | s), i.e., the probability of sampling action a at state s, with model parameters given by the current
RL iterate M (i). Let us also denote,

ā = argmax
i

πi, H(M (i); s) =: −
∑
a∈Ā

πa · log πa,

where πa is the probability of sampling action a at state s. Given that the current policy πM samples action a ∼ π(i)(· | s),
the stochastic policy gradient that updates the parameter is given by:

M (i+1)
s = M (i)

s + η∇
M

(i)
s

log(π(i)(a | s)) ·A(s, a), (19)

where η is the learning rate. Note, that the policy parameters would only be updated for the row corresponding to the state s.
For simplicity, let us use the notation g for:

g =: ∇
M

(i)
s

log(π(i)(a | s)) ·A(s, a). (20)

Then, M (i+1)
s −M

(i)
s = η · g. A second–order Taylor expansion of the concave function H(M ; s) gives, for some M̃ on

the segment [M (i),M (i+1)]:

H(M (i+1); s) = H(M (i); s) + η · ⟨∇M(i)H(M (i); s), g⟩
+ η2

2 · (g)⊤ ∇2
M̃s

H(M̃ ; s) (g) . (21)

Let the least eigenvalue of the Hessian of the conditional entropy (note that the entropy is a concave function) with respect
to the logits be ρM̃s

, and |ρM̃s
| < ∞, the moment π(i)(a | s) > 0 for all actions a ∈ Ā. This condition is easily satisfied by

any policy in our policy class, with finite values of the parameter matrix M . Thus, whenever ⟨g,∇
M

(i)
s
H(M (i); s)⟩ > 0

there exists a small enough learning rate η,

η ≤
2⟨g,∇

M
(i)
s
H(M (i); s)⟩

ρ∥g∥22
, (22)

such that H(M (i+1); s)−H(M (i); s) is strictly positive. Thus, we can continue to reduce learning rate η such that we can
ignore O(η2) terms in Eq. 21, to get the bound:

H(M (i+1); s)−H(M (i); s) ≥ η

2
· ⟨∇

M
(i)
s
H(M (i); s),∇

M
(i)
s

log(π(i)(a | s) ·A(s, a))⟩ (23)

Next, it remains to bound the right hand side of Eq. 23 with high probability over the sampling of the action a. For a single
incorrect action draw a ∼ π we set A(s, a) to be −1 and for such an incorrect action we define the alignment scalar:

T (a) =: −
〈
∇

M
(i)
s

log π(i)(a | s) ·A(s, a), ∇
M

(i)
s
H(M (i); s)

〉
(24)

Plugging in the derivation of ∇M(i)H(M (i); s) from Lemma I.1, we compute the closed form expression for T (ai) using
the following definitions:

vi =: πi

(
H(M (i); s) + log πi

)
and, µ =:

∑
a∈Ā

πava (25)
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Thus, one has T (a) satisfy:

T (a) = va − µ when, a ∈ Ā, i ̸= a⋆. (26)

Note that vi is an increasing function in πi whenever πi > e−H(M(i);s). Next, we note that vā ≥ 0.

πā ≥ 1

|Ā| =⇒ πā ≥ e−H(M(i);s) since, H(M (i); s) ≤ log |Ā| =⇒ vā ≥ 0. (27)

Finally, since v(x) = xH(M (i); s) + x log x is convex in x:

vā ≥
∑
j

πjvj =⇒ vā − µ ≥ 0 (28)

The above two implications in Eq. 27 and Eq. 28, and the fact that ā ̸= a⋆, together lead us to a deterministic lower bound
on T (ā), implying that it is always positive:

T (ā) ≥ 0. (29)

This completes the derivation for the first part of Theorem I.3, which does not assume anything about the conditional
distribution π((i))(· | s), directly yielding the following result.

Result (i): Under the conditional distribution π(i)(· | s), whenever the most likely action ā ̸= a⋆, then with probability at
least πā, T (a) ≥ 0, for a ∼ π(i)(· | s), and any policy π in our class of softmax policies. Finally, we plug this into Eq. 23 to
conclude that the policy gradient update with probability πā always increases entropy, for a small enough learning rate.

Next, we lower bound T (ā) when the second most likely action under the distribution satisfies an additional condition. For
this, let us fix some ε ≥ 0, such that for q = argmaxb̸=ā π

(i)(b | s), we have πq = πā − ε. Based on our alignment scalar
T (·), we define the function g(x) as follows:

g(x) = x
(
H(M (i); s) + log x

)
, 0 < x ≤ 1, (30)

where H(M (i); s) is the conditional entropy we defined previously. Then, given the most probable action ā, and the runner
up action q, the gap between T (ā) can be lower bounded down as follows when πq ≥ exp(−H(M (i); s)− 1):

T (ā) = g(πā)− πā · g(πā)−
∑
b ̸=ā

πg · g(b)

≥ (1− πā) · g(πā)− (1− πā) · g(q) = (1− πā) · (g(πā)− g(πq)), (31)

where the second equality follows from the fact that g(πq) ≥ g(b) for any b ̸= ā as soon as πq ≥ exp(−H(M (i); s)), which
is implied by the condition on πā, ε in Theorem I.3.

By the mean–value form of Taylor’s theorem there exists a ξ ∈ [πq, πā] such that

g(πā) = g(q) + ε g′(q) +
ε2

2
g′′(ξ). (32)

Because g is convex, g′′(ξ) = 1/ξ > 0 and the linear term εg′(q) is non–negative. The minimum of 1/x on [πq, πā] is
attained at x = pā, whence g′′(ξ) ≥ 1/pā. Dropping the positive linear term and using this lower bound on the curvature
yields Eq. 33.

g(πā)− g(πq) ≥ ε2

2πā
≥ ε2

2
·K, (33)

since πā ≥ 1/K+1. Plugging the above result into Eq. 31 we get the follow result.

Result (ii) Under the conditional distribution, π(i)(· | s) whenever the most likely action ā ̸= a⋆, and when the second most
likely action q has probability πq ≥ exp (−H(M (i); s)), then with probability at least πā, T (a) ≥ c′ ·K(πā−πq)

2(1−πā),
for a ∼ π(i)(· | s), and a universal constant c′ > 0. Finally, we plug this into Eq. 23 to conclude that the policy gradient
update with probability πā always increases entropy by at least cη ·Kε2(1− πā), for a small enough learning rate.

Together, Result (i, ii) complete the proof of Theorem I.3.
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J. Broader Impact Statement
This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here. Our findings deepen our understanding
of how to train large language models (LLMs) to reason more effectively under test-time compute constraints, which could
influence the design of future AI systems. Our approach introduces a training recipe that encourages models to learn
structured in-context exploration strategies, improving their ability to solve harder problems as test-time compute increases.
While this has the potential to improve AI reasoning and decision-making across domains, it also raises questions around the
unequal access to models that can leverage such capabilities, especially in settings with limited compute resources. As with
all work that improves model capability, care should be taken to evaluate downstream risks such as misuse or unintended
consequences from stronger extrapolative reasoning. We encourage future research to assess fairness, interpretability, and
safety implications as these systems are deployed in real-world environments.

K. Note on Computational Resources Used for e3
For our experiments with CDOWN, MULT, MULT-v, we used a single node with 8 NVIDIA H100 GPUs. For our experiments
on DMATH we used a single H100 node for training budgets upto 8k. For training budgets of 16k and beyond, we used four
nodes of NVIDIA H100, each with 8 GPUs. Alternatively, we were able to run our experiments on CDOWN, MULT, MULT-v,
and on DMATH (upto a training budget of 8k) using TPUs. In particular, we found that v5litepod-128 TPU, which has 32
nodes, 128 total chips (TPU configuration of 32× 4) is sufficient to run our experiments. Our experiments on GPUs used
the open-source LLM post-training framework from Sheng et al. (2024) that uses FSDP sharding to parallelize data and split
model parameters across the multiple cards.

L. Example Traces

Example 1: Chained Asymmetries in Countdown

<think> Let me analyze this step by step:
1. First, let’s try to get close to 466 with simple operations: 65 + 56 = 121 (too
small) 65 - 56 = 9 (too small) 65 * 56 = way too large 56 * 65 = way too large
2. Let’s try working backwards from 466: 466 is much larger than any of the given
numbers, so multiplication will likely be needed. We need to get from 37 to 466,
which means we need to multiply by 12.5. But we don’t have 12.5, so we’ll need to
create it through division.
3. Let’s try: 37 * 14 = 518 (too large) 37 - 14 = 23 (too small) 37 + 14 = 51 (too
small)
4. Let’s try a different approach: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219
(getting closer)
5. Let’s try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 + 14 = 233 (still
too small)
6. Let’s try one more approach: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 +
14 = 233 (still not 466)
7. Let’s try: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 + 14 = 233 (still
not 466)
8. One more attempt: 65 + 61 = 126 126 + 37 = 163 163 + 56 = 219 219 + 14 = 233
(still not 466)
9. Final try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)
10. Let’s try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 + 14 = 233 (still
not 466)
11. New approach: 65 + 61 = 126 126 + 56 = 182 182 - 37 = 145 145 + 14 = 159 (not
quite there)
12. Final attempt: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)
13. Let’s try: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)
14. One last try: 65 + 37 = 102 102 + 61 = 163 163 + 56 = 219 219 + 14 = 233 (not
quite there)
15. Final attempt: 56 + 14 = 70 70 + 65 = 135 135 + 37 = 172 172 + 61 = 233 (not
quite there)
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16. New approach: 37 * 14 = 518 518 - 65 = 453 453 + 61 = 514 514 - 56 = 458 (not
quite there)
17. Final try: 61 * 14 = 854 854 - 65 = 789 789 - 56 = 733 733 - 37 = 696 (not
quite there)
18. Let’s try: 37 * 14 = 518 518 - 65 = 453 453 + 61 = 514 514 - 56 = 458 (not
quite there)
19. New approach: 56 * 37 = 2,052 2,052 / 65 approx. 31.5 (not helpful)
20. Final attempt: 65 * 14 = 910 910 - 61 = 849 849 - 56 = 793 793 + 37 = 830 (not
quite there)
21. New approach: 61 * 37 = 2,237 2,237 - 65 = 1,172 1,172 - 56 = 1,116 1,116 + 14
= 1,130 (not quite there)
22. New approach: 37 * 14 = 518 518 + 65 = 583 583 - 61 = 522 522 + 56 = 578 (not
quite there)
23. Final attempt: 65 * 14 = 910 910 - 61 = 849 849 + 56 = 905 905 - 37 = 868 (not
quite there)
24. New approach: 37 * 14 = 518 518 - 56 = 462 462 + 65 = 527 527 - 61 = 466 (This
works!) </think> <answer> (37 * 14 - 56 + 65) - 61 </answer>

Example 2: Multiplication with verification

Okay, so I need to multiply 347 by 583. Hmm, let me think about how to approach
this. I guess I can use the standard multiplication algorithm where you break it
down by each digit. Let me start by writing both numbers down:
347 × 583
-----
First, I’ll multiply 347 by each digit of 583 starting from the rightmost
digit, which is 3 in this case. Then move to the next digit (8) and finally the
leftmost digit (5), remembering to add the appropriate zeros for each subsequent
multiplication. After that, I’ll sum all the results together. Let me start with
the rightmost digit.
Starting with the units place: 3 × 347. Let me compute that:
3 × 7 = 21. I write down 1 and carry over 2.
3 × 4 = 12, plus the carried over 2 makes 14. Write down 4 and carry over 1.
3 × 3 = 9, plus the carried over 1 makes 10. Write down 10.
So, 3 × 347 = 1041. Let me check that again:
3 × 7 = 21 (correct), 3 × 4 = 12 + 2 = 14 (correct), 3 × 3 = 9 + 1 = 10 (correct).
So that’s 1041. Alright.
Check: 3 × 347 = 1041. Correct.
Next, the tens place. The digit here is 8, but since it’s in the tens place, it’s
actually 80. So, we’ll multiply 347 by 80. To make it easier, I can multiply 347
by 8 and then add a zero at the end.
8 × 347:
8 × 7 = 56. Write down 6, carry over 5.
8 × 4 = 32, plus the carried over 5 makes 37. Write down 7, carry over 3.
8 × 3 = 24, plus the carried over 3 makes 27. Write down 27.
So, 8 × 347 = 2776. Then add the zero for the tens place, making it 27760. Let me
verify:
8 × 347. 8×300=2400, 8×40=320, 8×7=56. 2400+320=2720, 2720+56=2776. Then adding
the zero gives 27760. Correct.
Check: 8 × 347 = 2776, so 2776 × 10 = 27760. Correct.
Now, the hundreds place. The digit here is 5, but it’s in the hundreds place, so
it’s 500. So, multiply 347 by 500. Again, multiply 347 by 5 and add two zeros.
5 × 347:
5 × 7 = 35. Write down 5, carry over 3.
5 × 4 = 20, plus the carried over 3 makes 23. Write down 3, carry over 2.
5 × 3 = 15, plus the carried over 2 makes 17. Write down 17.
So, 5 × 347 = 1735. Then add two zeros, making it 173500. Let me verify:
5 × 347. 5×300=1500, 5×40=200, 5×7=35. 1500+200=1700, 1700+35=1735. Then adding
two zeros gives 173500. Correct.
Check: 5 × 347 = 1735, so 1735 × 100 = 173500. Correct.
Now, add all three results together: 1041 + 27760 + 173500.
Let me do this step by step. First, add 1041 and 27760:
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1041 + 27760. Let me line them up:
1041
+27760
-----
28801
Wait, 1041 + 27760: 1000 + 27760 = 28760, then +41 = 28801. Let me check with
another method:
20000 + 7000 = 27000, 700 + 60 = 760, 27000 + 760 = 27760. Then 27760 + 1000 =
28760, +41 = 28801. Correct.
Check: 1041 + 27760 = 28801. Correct.
Now add this result to 173500:
28801 + 173500. Let me line them up:
28801
+173500
------
202301
Wait, 28000 + 173500 = 201500, then 801 + 0 = 801, so total 201500 + 801 = 202301.
Let me verify another way:
28801 + 173500. Break down 173500 into 170000 + 3500. Then 28801 + 170000 = 198801.
Then 198801 + 3500 = 202301. Correct.
Check: 28801 + 173500 = 202301. Correct.
So, putting all together, the final result is 202,301. Let me just cross-verify
using another method to ensure I didn’t make any mistakes in the addition.
</think>
The product of 347 and 583 is 202301 .

Example 3: Over-exploration in Countdown (after training only on easy problems with 3 candidates, each attempt
contains at most 3 equations when 5 is needed)

<think> Let me try to find a way to get to 66. First, let me look for numbers close
to 66 or factors/multiples that might be useful.
66 is close to 70, which is one of our numbers. Maybe we can subtract or add to get
to 66. 70 - 4 = 66, so maybe we can create 4 somewhere.
Looking at the other numbers: 77 - 70 = 7 97 - 73 = 24 (interesting, we already
have 24) 24 + 24 = 48 (not helpful) 24 * 24 = 576 (too large)
Let me try a different approach: 77 - 70 = 7 97 - 73 = 24 24 + 7 = 31 (not helpful)
New approach: 97 - 73 = 24 24 + 70 = 94 (too far)
Let’s try: 77 - 70 = 7 7 * 24 = 168 (too far)
One more attempt: 70 + 24 = 94 94 - 97 = -3 -3 * 77 = -231 (too far)
Final attempt: 97 - 24 = 73 73 - 70 = 3 3 * 77 = 231 (too far)
Let’s try: 70 + 24 = 94 94 - 77 = 17 17 + 65 = 82 (too far)
Wait: 24 * 73 = 1748 1748 - 77 = 1671 (too far)
Last try: 77 + 24 = 101 101 - 70 = 31 31 - 97 = -66 (not what we want)
Let’s try: 97 - 73 = 24 24 + 70 = 94 94 - 24 = 70 (not helpful)
Final attempt: 70 * 24 = 1680 1680 / 77 = 21.9 (not valid)
Last try: 73 - 65 = 8 8 * 24 = 192 192 / 97 = 1.98 (not valid)
I need to keep trying different combinations. What if: 24 / 3 = 8 So: 97 - 73 =
24 24 / 24 = 1 (not helpful)
Final attempt: 77 - 97 = -20 -20 * 24 = -480 -480 + 70 = -410 (too far)
Last try: 70 * 24 = 1680 1680 / 77 = 21.9
So the most promising path seems to be: 97 - 73 = 24 24 + 70 = 94 94 - 77 = 17 This
gets us too far from 66.
Let’s try: 77 - 70 = 7 7 * 24 = 168 168 - 97 = 171 (too far)
Final attempt: 97 + 70 = 167 167 - 24 = 143 143 / 73 = 1.97
Wait: 24 * 65 = 1560 1560 / 77 = 20.26
Last try: 77 - 65 = 12 12 * 24 = 288 288 / 97 = 3
I need to keep trying different combinations. What if: 97 - 70 = 27 27 / 24 =
1.125
Wait: 24 + 97 = 121 121 - 73 = 48 48 + 77 = 125 (too far)
Last attempt: 70 + 24 = 94 94 - 77 = 17 17 + 65 = 82
One final try: 24 * 65 = 1560 1560 / 97 = 16.06
Final solution: 97 - 73 = 24 24 * 65 = 1560 1560 / 77 = 20.26
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Let me try: 77 - 70 = 7 7 + 24 = 31 31 + 65 = 96 (too far)
Last attempt: 70 * 24 = 1680 1680 - 97 = 1583 1583 / 77 = 20.59
I need to keep trying. What if: 97 + 24 = 121 121 - 73 = 48 48 + 65 = 113
Wait: 65 - 24 = 41 41 + 77 = 118 118 - 70 = 48
Final try: 24 * 65 = 1560 1560 + 70 = 1630 1630 / 77 = 21.16
One last attempt: 77 * 24 = 1848 1848 / 65 = 28.46
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