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Abstract
Catastrophic forgetting poses a grand challenge
for continual learning systems, which prevents
neural networks from protecting old knowledge
while learning new tasks sequentially. We propose
a Differentiable Hebbian Plasticity (DHP) Soft-
max layer which adds a fast learning plastic com-
ponent to the slow weights of the softmax output
layer. The DHP Softmax behaves as a compressed
episodic memory that reactivates existing mem-
ory traces, while creating new ones. We demon-
strate the flexibility of our model by combining it
with existing well-known consolidation methods
to prevent catastrophic forgetting. We evaluate
our approach on the Permuted MNIST and Split
MNIST benchmarks, and introduce Imbalanced
Permuted MNIST — a dataset that combines the
challenges of class imbalance and concept drift.
Our model requires no additional hyperparam-
eters and outperforms comparable baselines by
reducing forgetting.

1. Introduction
A key aspect of human intelligence is the ability to continu-
ally adapt and learn in dynamic environments, a characteris-
tic which is challenging to embed into artificial intelligence.
Recent advances in machine learning (ML) have shown
tremendous improvements in various problems, by learn-
ing to solve one complex task very well, through extensive
training on large datasets with millions of training examples
or more. Most of the ML models that we use during de-
ployment assume that the real-world is stationary, where in
fact it is non-stationary and the distribution of acquired data
changes over time. Therefore, after learning is complete,
and these models are fine-tuned with new data, performance
degrades with respect to the original data. This phenomenon
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known as catastrophic forgetting or catastrophic interfer-
ence (McCloskey & Cohen, 1989; French, 1999) serves
to be a crucial problem for deep neural networks (DNNs)
that are tasked with continual learning (Ring, 1994) or life-
long learning (Thrun & Mitchell, 1995). In this learning
paradigm, the goal is to adapt and learn consecutive tasks
without forgetting how to perform previously learned tasks.
Some of the real-world applications that typically require
this kind of learning include perception for autonomous
vehicles, recommender systems, fraud detection, etc.

In most supervised learning methods, DNN architectures
require independent and identically distributed (iid) samples
from a stationary training distribution. However, for ML
systems that require continual learning in the real-world,
the iid assumption is easily violated when: (1) There is con-
cept drift or class imbalance in the training data distribution.
(2) Data representing all scenarios in which the learner is
expected to perform are not initially available. In such situ-
ations, DNNs face the “stability-plasticity dilemma” (Car-
penter & Grossberg, 1987; Abraham & Robins, 2005). This
presents a continual learning challenge for models that need
to balance plasticity (integrate new knowledge) and stability
(preserve existing knowledge).

Two major theories have been proposed to explain a hu-
man’s ability to perform continual learning. The first theory
is inspired by synaptic consolidation in the mammalian neo-
cortex (Benna & Fusi, 2016) where a subset of synapses are
rendered less plastic and therefore preserved for a longer
timescale. The second theory is the complementary learning
systems (CLS) theory (McClelland et al., 1995; O’Reilly
et al., 2014; Kumaran et al., 2016), which suggests that hu-
mans extract high-level structural information and store it
in a different brain area while retaining episodic memories.

Here, we extend the work on differentiable plasticity (Mi-
coni, 2016; Miconi et al., 2018) to a continual learning
setting and develop a model that is capable of adapting
quickly to changing environments as well as consolidating
previous knowledge by selectively adjusting the plasticity
of synapses. We modify the traditional softmax layer and
propose to augment the slow weights with a set of plastic
weights implemented using Differentiable Hebbian Plastic-
ity (DHP). The model’s slow weights learn deep representa-
tions of data and the fast weights implemented with DHP
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learn to quickly “auto-associate” the class labels to represen-
tations. We also demonstrate the flexibility of our model by
combining it with recent task-specific synaptic consolidation
based methods to overcoming catastrophic forgetting such
as elastic weight consolidation (Kirkpatrick et al., 2017;
Schwarz et al., 2018), synaptic intelligence (Zenke et al.,
2017) and memory aware synapses (Aljundi et al., 2018).
Our model unifies core concepts from Hebbian plasticity,
synaptic consolidation and CLS theory to enable rapid adap-
tation to new unseen data, while consolidating synapses
and leveraging compressed episodic memories to remember
previous knowledge and mitigate catastrophic forgetting.

2. Relevant Work
Plastic Neural Networks: One of the major theories that
have been proposed to explain a human’s ability to learn con-
tinually is Hebbian learning (Hebb, 1949), which suggests
that learning and memory are attributed to weight plasticity,
that is, the modification of the strength of existing synapses
according to variants of Hebb’s rule (Paulsen & Sejnowski,
2000; Song et al., 2000; Oja, 2008).

Recent approaches in the meta-learning literature have
shown that we can incorporate fast weights into a neural
network (Munkhdalai & Trischler, 2018; Rae et al., 2018).
Munkhdalai & Trischler (2018) augmented fully-connected
(FC) layers preceding the softmax with a matrix of fast
weights. Here, the fast weights were implemented with
non-trainable Hebbian learning-based associative memory.
Rae et al. (2018) proposed a softmax layer that can improve
learning of rare classes by interpolating between Hebbian
updates and stochastic gradient descent (SGD) updates on
the output layer using an arbitrarily engineered scheduling
scheme. Miconi et al. (2018) proposed differentiable plas-
ticity, which uses SGD to optimize the plasticity of each
synaptic connection composed of a slow weight and a plas-
tic (fast) weight. Although this approach served to be a
powerful new method for training neural networks, it was
mainly demonstrated on RNNs for solving simple tasks.

Overcoming Catastrophic Forgetting: This work lever-
ages two biologically inspired strategies to overcome the
catastrophic forgetting problem: 1) Task-specific Synaptic
Consolidation — Protecting old knowledge by dynamically
adjusting the synaptic strengths to consolidate and retain
memories. 2) CLS Theory — A dual memory system where,
structural knowledge is acquired through slow learning via
the neocortex and rapid learning via the hippocampus.

There have been several notable works inspired by task-
specific synaptic consolidation for overcoming catastrophic
forgetting (Kirkpatrick et al., 2017; Zenke et al., 2017;
Aljundi et al., 2018). All of these approaches propose a
method to estimate the importance of each parameter or

synapse, Ωk, where the least plastic synapses can retain
memories for a long time and the more plastic synapses are
considered less important. The Ωk and network parameters
θk are updated online or after learning task Tn. Therefore,
when learning new task Tn, a regularizer is added to the
original loss function Ln(θ), so that we dynamically ad-
just the plasticity w.r.t. Ωk and prevent any changes to the
important parameters of previously learned tasks:

L̃n(θ) = Ln(θ) + λ
∑
k

Ωk(θnk − θn−1k )2︸ ︷︷ ︸
regularizer

(1)

where θn−1k are the learned network parameters after train-
ing on the previous n− 1 tasks and λ is a hyperparameter
for the regularizer to control the amount of forgetting.

In Elastic Weight Consolidation (EWC), Kirkpatrick et al.
(2017) use the diagonal values of an approximated Fisher
information matrix for Ωk, and it is computed offline af-
ter training on a task is completed. Schwarz et al. (2018)
proposed an online variant of EWC to improve scalability
by ensuring the computational cost of the regularization
term does not grow with the number of tasks. Zenke et al.
(2017) proposed an online method called Synaptic Intelli-
gence (SI) for computing the parameter importance where,
Ωk is the cumulative change in individual synapses over the
entire training trajectory on a given task. Memory Aware
Synapses (MAS) from Aljundi et al. (2018) measures Ωk

by the sensitivity of the learned function to a perturbation in
the parameters and use the cumulative change in individual
synapses on the squared L2-norm of the penultimate layer.

There have been numerous approaches based on CLS prin-
ciples involving pseudo-rehersal (Robins, 1995; Ans et al.,
2004; Atkinson et al., 2018), episodic replay (Lopez-Paz
& Ranzato, 2017; Li & Hoiem, 2018) and generative re-
play (Shin et al., 2017; Wu et al., 2018). However, in our
work, we are primarily interested in neuroplasticity tech-
niques inspired from CLS theory for representing memories.

Hinton & Plaut (1987) showed how each synaptic connec-
tion can be composed of a fixed weight where slow learning
stores long-term knowledge and a fast weight for temporary
associative memory. Recent research in this vein has in-
cluded replacing soft attention mechanism with fast weights
in RNNs (Ba et al., 2016), the Hebbian Softmax layer (Rae
et al., 2018), augmenting the FC layer with a fast weights
matrix (Munkhdalai & Trischler, 2018), differentiable plas-
ticity (Miconi et al., 2018) and neuromodulated differen-
tiable plasticity (Miconi et al., 2019). However, all of these
methods were focused on rapid learning on simple tasks or
meta-learning over a distribution of tasks. Furthermore, they
did not examine learning a large number of new tasks while,
alleviating catastrophic forgetting in continual learning.
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3. Model
In our model, each synaptic connection in the softmax layer
has two weights: 1) The slow weights, θ ∈ Rm×d, where
m is the number of units in the final hidden layer. 2) A
Hebbian plastic component of the same cardinality as the
slow weights, composed of the plasticity coefficient, α, and
the Hebbian trace, Hebb. The α is a scaling parameter for
adjusting the magnitude of the Hebb. Hebb accumulates
the mean activations of the penultimate layer for each target
label in the mini-batch {y1:B} of size B which are denoted
by h̃ ∈ R1×m (refer to Algorithm 1). Given the activation
of each neuron in h at the pre-synaptic connection i, the
unnormalized log probabilities z at the post-synaptic con-
nection j can be more formally computed using Eq. 2. Then,
the softmax function is applied on z to obtain the desired
logits ŷ thus, ŷ = softmax(z). The η parameter in Eq. 3
is a “learning rate” that learns how quickly to acquire new
experiences into the plastic component. The η parameter
also acts as a decay term to prevent instability caused by a
positive feedback loop in the Hebbian traces.

zj =

m∑
i=1

( θi,j︸︷︷︸
slow

+αi,jHebbi,j︸ ︷︷ ︸
plastic (fast)

)hi (2)

Hebbi,j := (1− η)Hebbi,j + ηh̃i,j (3)

The network parameters αi,j , η and θi,j are optimized by
gradient descent as the model is trained sequentially on
different tasks in the continual learning setup. Hebb is
initialized to zero only at the start of learning the first task
T1 and is automatically updated based on Algorithm 1 in
the forward pass during training. Specifically, the Hebbian
update for the active class c in y1:B is computed on line
6. This Hebbian update 1

s

∑B
b=1 h[yb = c] is analogous

to another formulaic description of the Hebbian learning
update rulewi,j = 1

N

∑N
k=1 a

k
i a

k
j (Hebb, 1949), wherewi,j

is the change in weight at connection i, j and aki , akj denote
the activation levels of neurons i and j, respectively, for
the kth input. Therefore, in our model, w = h̃ the Hebbian
weight update, ai = h the hidden activations of the last
hidden layer, aj = y the active target class in y1:B and
N = s the number of inputs for the corresponding class in
y1:B (see Algorithm 1). Across the model’s lifetime, we
only update Hebb during training and during test time, we
use the most recent Hebbian traces to make predictions.

The plastic component learns rapidly and performs sparse
parameter updates to quickly store memory traces for each
recent experience without interference from other similar
recent experiences. Furthermore, the hidden activations
corresponding to the same active class are accumulated into
one vector h̃, thus forming a compressed episodic memory
in the Hebb to reflect individual episodic memory traces.
This method improves learning of rare classes and speeds up
binding of class labels to deep representations of the data.

Algorithm 1. Batch update Hebbian traces.
1: Input: h1:B (hidden activations of penultimate layer),

y1:B (target labels),
Hebb (Hebbian trace)

2: Output: z1:B (softmax pre-activations)
3: for each target label c ∈ {y1:B} do
4: s←

∑B
b=1[yb = c] /*Count total occurences of c ∈ y.*/

5: if s > 0 then
6: h̃← 1

s

∑B
b=1 h[yb = c] /*Update Hebb for active class c.*/

7: Hebb:,c ← (1− η)Hebb:,c + ηh̃
8: end if
9: end for

10: z ← (θ + αHebb)h /*Compute softmax pre-activations.*/

Updated Loss: Following the existing work for overcoming
catastrophic forgetting such as EWC, Online EWC, SI and
MAS (see Eq. 1), we regularize the loss Ln(θ, α, η) and
update the synaptic importance parameters of the network
in an online manner. We rewrite Eq. 1 to obtain Eq. 4 and
show that the network parameters θi,j are the weights of the
connections between pre- and post-synaptic activity, as seen
in Eq. 2.

L̃n(θ, α, η) = Ln(θ, α, η)

+λ
∑
i,j

Ωi,j(θ
n
i,j − θn−1i,j )2 (4)

We adapt these existing consolidation approaches to our
model and only compute the synaptic importance parameters
on the slow weights of the network. The plastic part of our
model can alleviate catastrophic forgetting of learned classes
by optimizing the plasticity of the synaptic connections.

4. Experiments
We tested our continual learning approach on the Permuted
MNIST, Imbalanced Permuted MNIST and Split MNIST
benchmarks. We evaluated the methods based on the aver-
age classification accuracy on all previously learned tasks.
To establish a baseline for comparison of well-known synap-
tic consolidation methods, we trained neural networks with
Online EWC, SI and MAS, respectively, on all tasks in a
sequential manner. In the Permuted MNIST and Imbalanced
Permuted benchmarks we trained a multi-layered perceptron
(MLP) network on a sequence of 10 tasks using plain SGD.
Detailed descriptions of the hyperparameters and training
setups for all benchmarks can be found in Appendix A.

Permuted MNIST: In this benchmark, all of the MNIST
pixels are permuted differently for each task with a fixed
random permutation. Although the output domain is con-
stant, the input distribution changes between tasks thus,
there exists a concept drift. Figure 1 shows the average
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test accuracy as new tasks are learned. The network with
DHP Softmax alone showed significant improvement in its
ability to alleviate catastrophic forgetting across all tasks
compared to the baseline finetuned vanilla MLP network
we refer to as Finetune in Figure 1. Then we compared
the performance with and without DHP Softmax using the
synaptic consolidation methods. We find our DHP Softmax
with synaptic consolidation maintains a higher test accuracy
after T10 tasks than without DHP Softmax for all variants.
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DHP Softmax: 78.49
Finetune: 76.73
DHP Softmax + SI: 85.2
SI: 84.72

DHP Softmax + Online EWC: 87.3
Online EWC: 86.24
DHP Softmax + MAS: 89.53
MAS: 88.52

Figure 1. The average test accuracy on a sequence of Permuted
MNIST tasks Tn=1:10. The average test accuracy after T10 tasks
is given in the legend. Error bars correspond to SE on 10 trials.

Imbalanced Permuted MNIST: This benchmark is identi-
cal to the Permuted MNIST benchmark but, now each task is
an imbalanced distribution. The statistics of the class distri-
bution in each task are presented in Appendix A.2, Table 1.
Figure 2 shows the average test accuracy as new tasks are
learned. We see that DHP Softmax achieves 80.85% after
learning 10 tasks, thus providing significant improvement
over the standard neural network baseline of 76.4%. The sig-
nificance of the compressed episodic memory mechanism
in the Hebbian traces is more apparent in this benchmark
because the plastic component allows rare classes that are
encountered infrequently to be remembered for a longer pe-
riod of time. We find that DHP Softmax with MAS achieves
88.8%; outperforming all other methods and across all tasks.

Split MNIST: A sequence of Tn=1:5 tasks are generated
by splitting the original MNIST training dataset into binary
classification problems (0/1, 2/3, 4/5, 6/7, 8/9), making
the output spaces disjoint between tasks. Similar to Zenke
et al. (2017), we trained a multi-headed MLP network on
a sequence of 5 tasks. We compute the cross entropy loss
at the softmax output layer only for the digits present in
the current task, Tn. We observe that DHP Softmax pro-
vides a 4.7% improvement on test performance compared
to a finetuned MLP network (Figure 3). Also, combining
DHP Softmax with task-specific consolidation consistently
improves performance across all tasks Tn=1:5.
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DHP Softmax: 80.85
Finetune: 76.44
DHP Softmax + SI: 85.39
SI: 85.92

DHP Softmax + Online EWC: 87.43
Online EWC: 87.18
DHP Softmax + MAS: 88.8
MAS: 87.32

Figure 2. The average test accuracy on a sequence of imbalanced
Permuted MNIST tasks Tn=1:10. The average test accuracy after
T10 tasks is given in the legend. Error bars refer to SE on 10 trials.
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DHP Softmax: 97.44
Finetune: 92.75
DHP Softmax + SI: 99.11
SI: 97.18

DHP Softmax + Online EWC: 98.49
Online EWC: 97.35
DHP Softmax + MAS: 98.6
MAS: 98.23

Figure 3. The average test accuracy on a sequence of 5 binary
classification problems (0/1, 2/3, 4/5, 6/7, 8/9) from the original
MNIST dataset. The average test accuracy after learning T5 tasks
is given in the legend. Error bars refer to the SE on 10 trials.

5. Discussion and conclusion
We have shown that the problem of catastrophic forgetting in
continual learning environments can be alleviated by adding
compressed episodic memory in the softmax layer through
DHP. DHP Softmax alone showed noticeable improvement
across all benchmarks when compared to a neural network
with a traditional softmax layer. We demonstrated the flexi-
bility of our model where, in addition to DHP Softmax, we
can regularize the slow weights using EWC, SI or MAS to
improve a model’s ability to alleviate catastrophic forgetting.
The approach where we combine DHP Softmax and MAS
consistently leads to overall superior results compared to
other baseline methods on several benchmarks. This gives a
strong indication that Hebbian plasticity enables neural net-
works to learn continually and remember distant memories,
thus reducing catastrophic forgetting when learning from
sequential datasets in dynamic environments.
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A. Appendix

The model used for the Permuted MNIST and Imbalanced Permuted MNIST benchmarks is a multilayered perceptron
(MLP) network with two hidden layers consisting of 400 units each with ReLU nonlinearities, and a cross-entropy loss L(θ).
We train the network on a sequence of 10 tasks Tn=1:10 with mini-batches of size 64 and optimized using plain SGD with a
fixed learning rate of 0.01. We train for atleast 10 epochs and perform early-stopping once the validation error does not
improve for 5 epochs. If the validation error increases for more than 5 epochs, then we terminated the training on the task
Tn, reset the network weights and Hebbian traces to the values that had the lowest validation error, and proceeded to the
next task.

For all of the benchmarks we tested on, the η of the plastic component was set to be a small value of 0.001 and we want to
emphasize that we spent little to no efforts on tuning this parameter. Also, when training the first task Tn=1, the synaptic
importance parameter, Ωi,j in Eq. 4, was set to 0 for all of the task-specific consolidation methods that we tested on except
for SI. This is because SI is the only method we evaluated that estimates Ωi,j while training, whereas Online EWC and
MAS compute Ωi,j after learning a task.

A.1. Permuted MNIST

For the Permuted MNIST experiments shown in Figure 1, the regularization hyperparameter λ for each of the task-specific
consolidation methods is λ = 100 for Online EWC (Schwarz et al., 2018), λ = 0.1 for SI (Zenke et al., 2017) and λ = 0.1
for MAS (Aljundi et al., 2018). In SI, the damping parameter, ξ, was set to 0.1. To find the best hyperparameter combination
for each of these synaptic consolidation methods, we performed a grid search using a task sequence determined by a single
seed. The hyperparameters of the consolidation methods (i.e. Online EWC, SI and MAS) remain the same with and without
DHP Softmax, and the plastic components are not regularized.

A.2. Imbalanced Permuted MNIST

For each task in the Imbalanced Permuted MNIST problem, we artificially removed training samples from each class in the
original MNIST dataset (LeCun et al., 2001) based on some random probability. The distribution of classes in each dataset
corresponding to tasks Tn=1:10 is given in Table 1.

Table 1. Distribution of classes in each imbalanced dataset for the respective tasks Tn=1:10.

TASKS
CLASSES 1 2 3 4 5 6 7 8 9 10

0 4459 3780 1847 3820 5867 122 1013 4608 908 3933
1 1872 3637 1316 6592 1934 1774 5533 2569 831 886
2 2391 4125 2434 4966 5245 4593 4834 4432 3207 3555
3 4433 1907 1682 278 3027 2315 5761 3293 2545 3749
4 186 2728 2002 151 1435 5829 1284 3910 4593 927
5 4292 2472 2924 1369 4094 4858 2265 3289 1134 1413
6 2339 3403 4771 5569 1414 2851 2921 4074 336 3993
7 4717 3090 4800 2574 4086 1065 3520 4705 5400 3650
8 3295 5493 76 4184 2034 4672 682 196 2409 1709
9 2625 3880 4735 1647 2645 3921 901 4546 4649 2045

TOTAL 30609 34515 26587 31120 31781 32000 28714 35622 26012 25860

For the Imbalanced Permuted MNIST experiments shown in Figure 2, the regularization hyperparameter λ for each of the
task-specific consolidation methods is λ = 400 for Online EWC (Schwarz et al., 2018), λ = 1.0 for SI (Zenke et al., 2017)
and λ = 0.1 for MAS (Aljundi et al., 2018). In SI, the damping parameter, ξ, was set to 0.1. Similar to the Permuted MNIST
benchmark, to find the best hyperparameter combination for each of these synaptic consolidation methods, we performed a
grid search using a task sequence determined by a single seed. Across all experiments, we maintained the the same random
probabilities detemined by a single seed to artificially remove training samples from each class. The hyperparameters of the
synaptic consolidation methods (i.e. Online EWC, SI and MAS) remain the same with and without DHP Softmax, and the
plastic components are not regularized.
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A.3. Split MNIST

We split the original MNIST dataset (LeCun et al., 2001) into a sequence of 5 binary classification tasks: T1 = {0/1}, T2 =
{2/3}, T3 = {4/5}, T4 = {6/7} and T5 = {8/9}. Similar to network used by Zenke et al. (2017), we use a MLP network
with two hidden layers of 256 ReLU nonlinearities each, and a cross-entropy loss. A multi-headed approach was used
to avoid interference between digits at the softmax output layer due to changes in the label distribution. We compute the
cross-entropy loss, L(θ), at the softmax output layer for the digits present in the current task, Tn. We train the network on a
sequence of 5 tasks Tn=1:5 with mini-batches of size 64 and optimized using plain SGD with a fixed learning rate of 0.01
for 10 epochs.

For the Split MNIST experiments shown in Figure 3, the regularization hyperparameter λ for each of the task-specific
consolidation methods is λ = 400 for Online EWC (Schwarz et al., 2018), λ = 1.0 for SI (Zenke et al., 2017) and λ = 1.5 for
MAS (Aljundi et al., 2018). In SI, the damping parameter, ξ, was set to 0.001. To find the best hyperparameter combination
for each of these synaptic consolidation methods, we performed a grid search using the 5 task binary classification sequence
(0/1, 2/3, 4/5, 6/7, 8/9). The hyperparameters of the consolidation methods (i.e. Online EWC, SI and MAS) remain the same
with and without DHP Softmax, and the plastic components are not regularized.


