
[Re] Exact Combinatorial Optimization with Graph
Convolutional Neural Networks

Audrey-Anne Guindon
HEC Montreal

audreyannehebertguindon@gmail.com

Lourdes Crivelli
HEC Montreal

crivellilourdes@gmail.com

Abstract

In this paper we reproduce and corroborate the results presented in the paper
"Exact Combinatorial Optimization with Graph Convolutional Neural Networks"
submitted to the NeurIPS 2019 Conference [1]. We implement the published
code, run the experiments and propose suggestions to improve the overall repro-
ducibility of the paper. We conclude that the paper is reproducible. The code
repository can be accesses through the following link: https://github.com/
audreyanneguindon/NeurIPS_2019

1 Introduction

The paper [1] proposes an innovative approach to learning branch-and-bound variable selection
policies by applying graph convolution neural network (GCNN) models to learn branch-and-bound
variable selection for mixed-integer linear programs (MILP). The authors’ objective is to learn a
policy for variable selection in MILPs that leads to shorter computational time. In order to achieve
this, the authors train their model using behavioural cloning and an expert strong branching rule to
produce smaller trees.

The authors propose to encode the branching policies into a GCNN, which allows to exploit the
natural bipartite graph representation of MILP problems, thereby reducing the need for manual
feature engineering. GCNNs provide other advantages, mainly that they are well defined regardless
of the input graph size, they will always produce the same outputs regardless of the order in which
the nodes are presented, and their computational complexity is related to the density of the graph.
These properties allow the authors to encode the state of an MILP branch-and-bound even with its
variable structure and size.

In the following reproducibility paper, our aim is to test the proposed GCNN model and determine
whether we can achieve the same results as reported by the authors. In Section 2, we will review
related works. In Section 3, we will discuss the implementation of the code and provide insights
and suggestions to assist researchers in implementing the model. In Section 4, we will highlight the
experiments results and contrast them with the authors’ work. Finally, we discuss our findings in
Section 5.

To determine the reproducibility of the paper and confirm its conclusions, the main questions we will
answer are:

• Can we reproduce the reported results with the given code?

• Does a model trained on smaller problems generalize to larger instances?

• How can the code be further expanded to facilitate reproduction?

Preprint. Under review.

https://github.com/audreyanneguindon/NeurIPS_2019
https://github.com/audreyanneguindon/NeurIPS_2019


2 Related Work

Most NP-Hard computer problems (non-deterministic polynomial-time hardness) are examples of
combinatorial problems [1]. These types of problems, although difficult to solve, can be tackled
by a broad range of algorithms that are able to find an optimal solution at the cost of exponential
time complexity [2]. One such method involves formulating the problem as a mixed-integer linear
program (MILP) and using the branch-and-bound method to find the optimal solution [3].

Although branch-and-bound has been extensively studied, there is still a lack of deep mathematical
understanding on the decision process involved in selecting among candidate variable to branch on
[4]. The current literature has focused on computational studies of said process and has recently
been combined with machine learning [5, 7, 6]. However, these approaches rely heavily on problem-
specific strategies [4]. This raises a concern for the authors, as the inability to generalize a policy
impacts on its applications. The authors’ aim is to build a model that can be applied regardless of
the problem formulation and that is able to generalize to instances larger than those used to trained
the model. In order to achieve this, their work focuses on the variable branching decision of the
branch-and-bound method.

Building on previous research, which shows that the sequential decisions made by the branch-and-
bound method can be assimilated to a Markov decision process [9, 8], the authors encode the states of
the branch-and-bound process as a bipartite graph and use GCNNs to study the decisions made at each
state. By using GCNN, the researchers are able to leverage the natural bipartite graph representation
of MILP problems to avoid manual feature engineering [1], which one of the concerns the paper
is trying to solve. Although there are numerous strategies for selecting a branching variable in the
branch-and-bound method, strong branching was selected because it produces small search trees [5].

Previous work [5, 6, 7] has used imitation learning to learn a substitute function to replicate the strong
branching strategy at reduced computational time. Following these imitation learning studies [10],
the proposed model is trained by using behavioral cloning on the strong branching strategy. The
selected policy is selected by minimizing the cross-entropy loss [1].

However, though the authors use imitation learning in their studies, they differ from previous work
by contrasting their results against both state-of-the-art branching rules and related machine learning
branchers [6, 5, 7]. They also evaluate their work on different complexities, proving that their method
is able to generalize not only on larger instances but also on various types of NP-hard problems.

Our contribution through this reproduction paper will be to clarify the implementation of the model
and corroborate the results reported. We also address reproductibility concerns and offer recommen-
dations based on our experience and the insights we obtained during the reproductibility.

3 Methodology

3.1 Experiments

In the paper, the authors compare their GCNN model against three competing machine learning
approaches and SCIP’s default branching rule. The authors also perform an ablation study to validate
their architectural choices. They evaluate their approach on four NP-hard problem benchmarks,
namely, a set-covering, combinatorial auction, facility location, and maximum independent set
instances problem.

Within the experiments described in the paper, we focus on replicating the GCNN results for the
combinatorial auction problem and extending the ablation study to this problem. We also reproduced
the results of the reliability pseudocost (RPB), a variant of hybrid branching [12] which is used by
default in SCIP to form the baseline for our evaluation. Unfortunately, not every result from the paper
was reproduced due to lack of time.

We found that the paper was well written and very amenable to reproduction. The authors provided
their code, which included all details related to the implementation as well as the method to generate
the training samples. The supplementary material attached to the paper provided sufficient details to
replicate all experiments and also described the machine used.

2



3.2 Implementation details

The author’s repository includes detailed instructions on how to install and set up all the required
libraries, and the supplementary section to their paper describes the machine used as well as the
model’s architecture. We executed our code in Jupyter Notebook on Google Cloud Platform (GCP)
in a server with 8 cores, 30G of RAM, and 2 Nvidia Tesla V100 GPUs. To generate the training
samples, we used a GCP server with 34 cores and 190G of RAM. Training the models was done with
Tensorflow. Throughout all experiments, we used SCIP 6.0.1 as the backend solver with a time limit
of 1 hour.

In order to replicate the paper’s baseline, we maintained the GCNN architecture described by the
authors. First, each prenorm layer is pretrained sequentially on the training dataset. Then, the authors
minimize the cross-entropy loss using the Adam optimizer [11] to learn the branching policy with
a batch size of 32 and an initial learning rate of 0.001. They divide the training loss by 5 when the
validation loss does not improve for 10 epochs, and stop training if it does not improve for 20 epochs.
These parameters were untouched in our implementation due to lack of time. Hyperparameter search
can be quite difficult for these benchmark problems due to the prohibitive time it takes to solve MILP
problems. We elaborate on the computational costs in the following subsections.

As part of our reprodubility challenge, we run the presented ablation study. As the authors opt for
un-normalized convolutions, a prenorm layer is added to stabilize the learning procedure and prevent
weight initialization issues. We run the three proposed configurations : sum convolutions, mean
convolutions and the sum convolutions with a prenorm layer. This results are included in Section 4.

3.3 Training samples

The authors provided the code which allowed us to easily collect the training, validation and test
samples from the instances. The process records strong branching decisions and extract bipartite
state representations during branch-and-bound on a collection of instances. This yields a dataset
of state-action pairs. Like the authors, we generate 100,000 branching samples extracted from
10,000 randomly generated instances for training, 20,000 branching samples from 2,000 instances for
validation, and the same for testing. Since we have to run the strong branching rule to collect training
samples, the process was not trivial. In the original paper, the strong branching rule is referred
to as a “slow expert” by the authors with reason. Since each benchmark represents an NP-Hard
problem, running strong branching at every node is prohibitive. Indeed, generating the samples for
the set-covering problem, combinatorial auction problem, and facility location problem took 24 hours,
12 hours, and 20 hours on 8 cores respectively. In the case of the set-covering and facility location
problems, our server ran out of memory before the validation samples finished generating. This
was one of the limitations which led us to replicate the combinatorial auction problem. For future
reproductions, we recommend generating the training samples and the validation and testing samples
separately to preserve memory.

3.4 Reproducibility Cost

The authors describe some of the computational resources required in their paper, but this is not
discussed in detail. Training the GCNN on the combinatorial auction samples took 4 hours per
seed with 5 seeds for a total of around 20 hours using the Tesla V100 GPU. The authors shared
with us that average training time per seed was about 14 hours (a total of 70 hours) for GCNN on
the set-cover problem, which also ran on a Tesla V100 GPU. As previously mentioned, generating
the training samples was also computationally expensive as it involved strong branching. In fact,
combinatorial optimization problems inherently have a polynomial time complexity. For example,
the paper shows that the hard instances of the set-covering problem in the best case had a solving
time of 28 minutes. Overall, we deem that the computational cost of running the experiments is high,
which can hinder the reproduction of the results. To facilitate future reproduction efforts, a set of
instances and corresponding training samples could be provided with the code.

4 Results

The results of our comparative experiments are summarized in tables 1 to 3 and include some of the
results from the original paper for comparison. In table 4, we display the results of our ablation study.

3



4.1 Comparative experiment

In terms of prediction accuracy, GCNN performed comparatively to the original paper for the
combinatorial auction problem. We did not reproduce the exact results due to the random nature of
the generated instances. GCNN outperforms SCIP’s default branching rule RPB in terms of running
time and node count for every configuration. Furthermore, as in the original paper, we see that the
GCNN generalizes well to instances of larger size than seen during training. Although the model
was trained on combinatorial auction instances with 100 items and 500 bids (Easy), it was able to
generalize to larger instances with 200 items and 1000 bids (Medium) and 300 items and 1500 bids
(Hard). Our findings confirm those found in the original paper. This was a particularly interesting
result to validate as it indicates that a GCNN model could be used to improve current solvers by
speeding up mixed-integer programming.

Table 1: Imitation learning accuracy on the test sets.

Model acc@1 acc@5 acc@10

[RE] GCNN 60.6 ±0.1 90.7 ±0.1 97.7 ±0.1
[OR] GCNN 60.8 ±0.2 90.8 ±0.1 97.6 ±0.0

Table 2: Policy evaluation on separate instances in terms of number of wins (fastest method) over the
number of solved instances, and number of resulting branch-and-bound nodes (lower is better).

Wins Nodes Reported Wins Reported Nodes

Easy GCNN 97/100 69 ±11.6 25/100 70 ±12.0
RPB 3/100 11 ±31.7 0/100 10 ±32.1

Medium GCNN 100/100 659 ±13.5 99/100 689 ±21.2
RPB 0/100 696 ±20.7 0/100 657 ±12.2

Hard GCNN 92/100 8028 ±7.5 87/100 5169 ±14.9
RPB 8/100 9128 ±11.1 13/100 5511 ±11.7

Table 3: Policy evaluation on separate instances in terms of solving time.

Easy Medium Hard

Reproduction GCNN 2.39 ±5, 2 13.56 ±7.1 154.9 ±5.7
RPB 3.52 ±8.1 23.13 ±7.2 188.80 ±7.7

Original GCNN 1.85 ±5.0 10.29 ±7.1 114.16 ±10.3
RPB 2.74 ±7.8 17.41 ±6.6 136.17 ±7.9

4.2 Ablation study

In the original paper, the authors present an ablation study of their proposed GCNN model on the
set-covering problem by comparing three variants of their convolution operation: mean convolution
(MEAN), sum convolution without the prenorm layer (SUM), and the sum convolution with prenorm
layer (GCNN) used in the comparative experiments. We extended this ablation study to the problem
of combinatorial auction. The authors found that the the solving performance of both variants MEAN
and SUM was similar to that of the baseline GCNN on small instances, but performed significantly
worse in terms of both solving time and number of nodes on harder instances. Our results show a
similar trend, with a narrower gap for small and medium instances. These results help confirm the
authors’ hypothesis that sum-convolutions offer a better architectural prior than mean convolution
and that the prenorm layer helps stabilize training [1].

4



Table 4: Ablation results in terms of solving time, number of wins and number of resulting nodes.

Time Wins Nodes

Small
GCNN 2.84 ±5.8 43/100 69 ±11.6
MEAN 2.93 ±5.7 15/100 71 ±13.2
SUM 2.83 ±6.0 42/100 71 ±12.1

Medium
GCNN 16.61 ±7.2 40/100 659 ±13.5
MEAN 17.16 ±7.9 24/100 673 ±14.8
SUM 17.68 ±17.0 36/100 705 ±22.8

Table 5: Ablation results in terms of accuracy on the test sets.

Model Accuracy

Small GCNN 60.6 ± 0.1
MEAN 60.7 ± 0.6
SUM 60.7 ± 0.3

Medium GCNN 90.7 ± 0.1
MEAN 90.4 ± 0.2
SUM 90.4 ± 0.2

Hard GCNN 97.7 ± 0.1
MEAN 97.5 ± 0.1
SUM 97.5 ± 0.0

5 Discussion of findings

We were able to validate the authors’ hypothesis that the GCNN models can improve the solving
time of combinatorial optimization problems for the NP-Hard combinatorial auction benchmark and
that GCNN models trained on small instances can generate to larger instances. We also extended the
ablation study performed by the authors to the combinatorial auction benchmark and our results

Overall, the paper was clearly written, implementation details were well documented, and the authors
provided their code making it easy to replicate the results reported. However, we still encountered
some problems during the replication.

The process of generating the 120,000 samples (state-action pairs) was the most time consuming
aspect of the reproducibility. The data generation process took from 12 to 35 hours even when using
multiple CPUs. The resulting datasets were of 4GB which made them difficult to work with. The
time it took to generate training instances speaks to the importance of this paper in addressing solver
efficiency. Furthermore, the version of full strong branching, vanillafullstrong, developed by the
authors was removed from subsequent versions of PySCIPOpt, meaning the package was no longer
up to date. A similar issue arose with the implementation of tensorflow’s contrib, which is no longer
supported.

6 Conclusions

We have shown that the paper is reproducible and that it is possible to achieve the presented results.
Though we faced some minor drawbacks in the implementation, the authors were willing to answer
our questions and guide us.

We would like to comment briefly on the writing of the paper. As students in a machine learning, we
found the explanations to the point and commend the authors in their ability to clearly convey such
complex information. The reasoning was easy to follow and the authors were able to communicate
the need for this research and its benefits in practice.

We would offer the following suggestions to improve the reproducibility of the paper:

5



• Publish the training and test instances as well as the training samples to decrease the overall
time complexity involved in reproducing the results.

• Update the code to work with newer versions of Tensorflow.

References

[1] Gasse, M. , Chételat , D. , Ferroni , N. , Charlin , L. and Lodi , A. (2019) Exact Combinatorial Optimization
with Graph Convolutional Neural Networks. arXiv:1906.01629

[2] Wolsey, L.A. (1988) Integer Programming. Wiley-Blackwell

[3] Land. H. A and Doig, A.G (1960) An automatic method of solving discrete programming problems
Econometrica 28:497–520.

[4] Lodi, A. and Zarpellon G. (2017) On learning and branching: a survey. 25:207–236

[5] Khalil, B.E. Le Bodic, P. Song, L. Nemhauser, G. and Dilkina, B. (2016) Learning to branch in mixed
integer programming. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence pages 724–731.

[6] Alvarez, A.M. Louveaux, Q. and Wehenkel, L. (2017) A machine learning-based approximation of strong
branching. Journal on Computing, 29:185–195

[7] Hansknecht, C. Joormann, I. and Stiller, S. (2018) Cuts, primal heuristics, and learning to branch for the
time-dependent traveling salesman problem. arXiv:1805.01415

[8] He, H. Daumé, H. III and Eisner, J.(2014) Learning to search in branch-and-bound algorithms. Advances in
Neural Information Processing Systems 27, pages 3293–3301

[9] Ronald, A.H. (1960) Dynamic Programming and Markov Processes. MIT Press, Cambridge

[10] Pomerleau, D.A. (1991) Efficient training of artificial neural networks for autonomous navigation.Neural
Computation, 3:88–97

[11] Kingma, D.P and Ba, J. (2015) Adam: A method for stochastic optimization.In Proceedings of the Third
International Conference on Learning Representations

[12] Achterberg, T. and Berthold, T. (2009) Hybrid branching. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems

6


	Introduction
	Related Work
	Methodology
	Experiments
	Implementation details
	Training samples
	Reproducibility Cost

	Results
	Comparative experiment
	Ablation study

	Discussion of findings
	Conclusions

