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ABSTRACT

With the growing attention on learning-to-learn new tasks using only a few exam-
ples, meta-learning has been widely used in numerous problems such as few-shot
classification, reinforcement learning, and domain generalization. However, meta-
learning models are prone to overfitting when there are no sufficient training tasks
for the meta-learners to generalize. Although existing approaches such as Dropout
are widely used to address the overfitting problem, these methods are typically de-
signed for regularizing models of a single task in supervised training. In this pa-
per, we introduce a simple yet effective method to alleviate the risk of overfitting
for gradient-based meta-learning. Specifically, during the gradient-based adapta-
tion stage, we randomly drop the gradient in the inner-loop optimization of each
parameter in deep neural networks, such that the augmented gradients improve
generalization to new tasks. We present a general form of the proposed gradient
dropout regularization and show that this term can be sampled from either the
Bernoulli or Gaussian distribution. To validate the proposed method, we conduct
extensive experiments and analysis on numerous tasks, demonstrating that the gra-
dient dropout regularization mitigates the overfitting problem and improves the
performance upon various gradient-based meta-learning frameworks.

1 INTRODUCTION

In recent years, significant progress has been made in meta-learning, which is also known as learning
to learn. One common setting is that, given only a few training examples, meta-learning aims to
learn new tasks rapidly by leveraging the past experience acquired from the known tasks. It is a vital
machine learning problem due to the potential for reducing the amount of data and time for adapting
an existing system. Numerous recent methods successfully demonstrate how to adopt meta-learning
algorithms to solve various learning problems, such as few-shot classification (Finn et al., 2017;
Santoro et al., 2016; Snell et al., 2017), reinforcement learning (Gupta et al., 2018; Rakelly et al.,
2019), and domain generalization (Balaji et al., 2018; Li et al., 2018).

Despite the demonstrated success, meta-learning frameworks are prone to overfitting (Kim et al.,
2018) when there do not exist sufficient training tasks for the meta-learners to generalize. For
instance, few-shot classification on the mini-ImageNet (Vinyals et al., 2016) dataset contains only
64 training categories. Since the training tasks can be only sampled from this small set of classes,
meta-learning models may overfit and fail to generalize to new testing tasks.

Significant efforts have been made to address the overfitting issue in the supervised learning frame-
work, where the model is developed to learn a single task (e.g., recognize the same set of cate-
gories in both training and testing phase). The Dropout (Srivastava et al., 2014) method randomly
drops (zeros) intermediate activations in deep neural networks during the training stage. Relaxing
the limitation of binary dropout, the Gaussian dropout (Wang & Manning, 2013) scheme augments
activations with noise sampled from a Gaussian distribution. Numerous methods (Ghiasi et al., 2018;
Larsson et al., 2017; Tompson et al., 2015; Wan et al., 2013; Zoph et al., 2018) further improve the
Dropout method by injecting structural noise or scheduling the dropout process to facilitate the train-
ing procedure. Nevertheless, these methods are developed to regularize the models to learn a single
task, which may not be effective for meta-learning frameworks.

In this paper, we address the overfitting issue (Kim et al., 2018) in gradient-based meta-learning.
As shown in Figure 1(a), given a new task, the meta-learning framework aims to adapt model pa-
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rameters θ to be θ′ via the gradients computed according to the few examples (support data X s).
This gradient-based adaptation process is also known as the inner-loop optimization. To alleviate
the overfitting issue, one straightforward approach is to apply the existing dropout method to the
model weights directly. However, there are two sets of model parameters θ and θ′ in the inner-loop
optimization. As such, during the meta-training stage, applying normal dropout would cause incon-
sistent randomness, i.e., dropped neurons, between these two sets of model parameters. To tackle
this issue, we propose a dropout method on the gradients in the inner-loop optimization, denoted
as DropGrad, to regularize the training procedure. This approach naturally bridges θ and θ′, and
thereby involves only one randomness for the dropout regularization. We also note that our method
is model-agnostic and generalized to various gradient-based meta-learning frameworks such as (An-
toniou et al., 2019; Finn et al., 2017; Li et al., 2017). In addition, we demonstrate that the proposed
dropout term can be formulated in a general form, where either the binary or Gaussian distribution
can be utilized to sample the noise, as demonstrated in Figure 1(b).

To evaluate the proposed DropGrad method, we conduct experiments on numerous learning tasks,
including few-shot classification on the mini-ImageNet (Vinyals et al., 2016), reinforcement learn-
ing (Finn et al., 2017), and online object tracking (Park & Berg, 2018), showing that DropGrad can
be applied to and improve different tasks. In addition, we present comprehensive analysis by using
various meta-learning frameworks, adopting different dropout probabilities, and explaining which
layers to apply gradient dropout. To further demonstrate the generalization ability of DropGrad,
we perform a challenging cross-domain few-shot classification task, in which the meta-training and
meta-testing sets are from two different distributions, i.e., mini-ImageNet and CUB (Welinder et al.,
2010). We show that with the proposed method, the performance is significantly improved under
the cross-domain setting.

In this paper, we make the following contributions:

• We propose a simple yet effective gradient dropout approach to improve the generalization
ability of gradient-based meta-learning frameworks.

• We present a general form for gradient dropout and show that both binary and Gaussian
sampling schemes mitigate the overfitting issue.

• We demonstrate the effectiveness and generalizability of the proposed method via extensive
experiments on numerous tasks.

2 RELATED WORK

Meta-Learning. Meta-learning aims to adapt the past knowledge learned from previous tasks
to new tasks with few training instances. Most meta-learning algorithms can be categorized into
three groups: 1) Memory-based approaches (Rezende et al., 2016; Santoro et al., 2016) utilize
recurrent networks to process few training examples of new tasks sequentially; 2) Metric-based
frameworks (Oreshkin et al., 2018; Snell et al., 2017; Sung et al., 2018; Vinyals et al., 2016) make
predictions by referring to the features encoded from the input data and training instances in a
generic metric space; 3) Gradient-based methods (Antoniou et al., 2019; Finn et al., 2017; 2018;
Kim et al., 2018; Li et al., 2017; Rusu et al., 2019; Ravi & Beatson, 2019) learn to optimize the
model via gradient descent with few examples, which is the focus of this work. In the third group,
MAML (Finn et al., 2017) learns model initialization (i.e., initial parameters) that is amenable to
fast fine-tuning with few instances. In addition to model initialization, MetaSGD (Li et al., 2017)
learns a set of learning rates for different model parameters. Furthermore, MAML++ (Antoniou
et al., 2019) makes several improvements based on MAML to facilitate the training process with
additional performance gain. However, these methods are still prone to overfitting as the dataset
for the training tasks is insufficient for the model to adapt well. Recently, Kim et al. (Kim et al.,
2018) and Rusu et al. (Rusu et al., 2019) address this issue via the Bayesian approach and latent
embeddings. Nevertheless, these methods employ additional parameters or networks which entail
significant computational overhead and may not be applicable to arbitrary frameworks. In contrast,
the proposed gradient dropout regularization does not impose any overhead and thus can be readily
integrated into the gradient-based models mentioned above.

Dropout Regularization. Built upon the Dropout (Srivastava et al., 2014) method, various
schemes (Ghiasi et al., 2018; Goodfellow et al., 2013; Larsson et al., 2017; Tompson et al., 2015;
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Figure 1: Illustration of the proposed method. (a) The proposed DropGrad method imposes a
noise term n to augment the gradient in the inner-loop optimization during the meta-training stage.
(b) The DropGrad method samples the noise term n from either the Bernoulli or Gaussian distribu-
tion, in which the Gaussian distribution provides a better way to account for uncertainty.

Wan et al., 2013) have been proposed to regularize the training process of deep neural networks for
supervised learning. The core idea is to inject noise into intermediate activations when training deep
neural networks. Several recent studies improve the regularization on convolutional neural networks
by making the injected structural noise. For instance, the SpatialDropout (Tompson et al., 2015)
method drops the entire channel from an activation map, the DropPath (Larsson et al., 2017; Zoph
et al., 2018) scheme chooses to discard an entire layer, and the DropBlock (Ghiasi et al., 2018) al-
gorithm zeros multiple continuous regions in an activation map. Nevertheless, these approaches are
designed for deep neural networks that aim to learn a single task, e.g., learning to recognize a fixed
set of categories. In contrast, our algorithm aims to regularize the gradient-based meta-learning
frameworks that suffer from the overfitting issue on the task-level, e.g., introducing new tasks.

3 GRADIENT DROPOUT REGULARIZATION

Before introducing details of our proposed dropout regularization on gradients, we first review the
gradient-based meta-learning framework.

3.1 PRELIMINARIES FOR META-LEARNING

In meta-learning, multiple tasks T = {T1, T2, ..., Tn} are divided into meta-training T train, meta-
validation T val, and meta-testing T test sets. Each task Ti consists of a support set Ds = (X s,Ys)
and a query set Dq = (X q,Yq), where X and Y are a set of input data and the corresponding
ground-truth. The support set Ds represents the set of few labeled data for learning, while the query
set Dq indicates the set of data to be predicted.

Given a novel task and a parametric model fθ, the objective of a gradient-based approach during
the meta-training stage is to minimize the prediction loss Lq on the query set Dq according to the
signals provided from the support setDs, and thus the model fθ can be adapted. Figure 1(a) show an
overview of the MAML (Finn et al., 2017) method, which offers a general formulation of gradient-
based frameworks. For each iteration of the meta-training phase, we first randomly sample a task
T = {Ds, Dq} from the meta-training set T train. We then adapt the initial parameters θ to be
task-specific parameters θ′ via gradient descent:

θ′ = θ − α� g, (1)

where α is the learning rate for gradient-based adaptation and � is the operation of element-wise
product, i.e., Hadamard product. The term g in equation 1 is the set of gradients computed according
to the objectives of model fθ on the support set Ds = (X s,Ys):

g = 5θLs(fθ(X s),Ys). (2)

We call the step of equation 1 as the inner-loop optimization and typically, we can do multiple
gradient steps for equation 1, e.g., smaller than 10 in general. After the gradient-based adaptation,
the initial parameters θ are optimized according to the loss functions of the adapted model fθ′ on
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the query set Dq = (X q,Yq):

θ = θ − η5θ Lq(fθ′(X q),Yq), (3)

where η is the learning rate for meta-training. During the meta-testing stage, the model fθ is adapted
according to the support set Ds and the prediction on query data X q is made without accessing the
ground-truth Yq in the query set. We note that several methods are built upon the above formulation
introduced in MAML. For example, the learning rate α for gradient-adaptation is viewed as the
optimization objective (Antoniou et al., 2019; Li et al., 2017), and the initial parameters θ are not
generic but conditional on the support set Ds (Rusu et al., 2019).

3.2 GRADIENT DROPOUT

The main idea is to impose uncertainty to the core objective during the meta-training step, i.e., the
gradient g in the inner-loop optimization, such that θ′ receives gradients with noises to improve the
generalization of gradient-based models. As described in Section 3.1, adapting the model θ to θ′
involves the gradient update in the inner-loop optimization described in equation 2. Based on this
observation, we propose to randomly drop the gradient in equation 2, i.e., g, during the inner-loop
optimization, as illustrated in Figure 1. Specifically, we augment the gradient g as follows:

g′ = g � n, (4)

where n is a noise regularization term sampled from a pre-defined distribution. With the formulation
of equation 4, in the following we introduce two noise regularization strategies via sampling from
different distributions, i.e., Bernoulli and Gaussian distributions.

Binary DropGrad. We randomly zero the gradient with the probability p, in which the process
can be formulated as:

g′ = g � nb, nb ∼
Bernoulli(1− p)

1− p
, (5)

where the denominator 1− p is the normalization factor. Note that, different from the Dropout (Sri-
vastava et al., 2014) method which randomly drops the intermediate activations in a supervised
learning network under a single task setting, we perform the dropout on the gradient level.

Gaussian DropGrad. One limitation of the Binary DropGrad scheme is that the noise term nb is
only applied in a binary form, which is either 0 or 1 − p. To address this disadvantage and better
provide a better regularization with uncertainty, we extend the Bernoulli distribution to the Gaussian
formulation. Since the expectation and variance of the noise term nb in the Binary DropGrad method
are respectively E(nb) = 1 and σ2(nb) =

p
1−p , we can augment the gradient g with noise sampled

from the Gaussian distribution:

g′ = g � ng, ng ∼ Gaussian(1,
p

1− p
). (6)

As a result, two noise terms nb and ng are statistically comparable with the same dropout proba-
bility p. In Figure 1(b), we illustrate the difference between the Binary DropGrad and Gaussian
DropGrad approaches. We also show the process of applying the proposed regularization using the
MAML (Finn et al., 2017) method in Algorithm 1, while similar procedures can be applied to other
gradient-based meta-learning frameworks, such as MetaSGD (Li et al., 2017) and MAML++ (An-
toniou et al., 2019).

4 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of the proposed DropGrad method by conducting ex-
tensive experiments on three learning problems: few-shot classification, reinforcement learning, and
online object tracking. In addition, for the few-shot classification experiments, we analyze the ef-
fect of using binary and Gaussian noise, which layers to apply DropGrad, and performance in the
cross-domain setting. The source code and trained models will be made available to the public.
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Algorithm 1: Applying DropGrad on MAML (Finn et al., 2017)

1 Require: a set of training tasks T train, adaptation learning rate α, meta-learning rate η
2 randomly initialize θ
3 while training do
4 randomly sample a task T = {Ds(X s,Ys), Dq(X q,Yq)} from T train

5 g = 5θLs(fθ(X s),Ys)
6 compute g′ according to equation 5 or equation 6 // Apply DropGrad
7 θ′ = θ − α× g′
8 θ = θ − η5θ Lq(fθ′(X q),Yq)
9 end
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Figure 2: Comparison between the proposed Binary and Gaussian DropGrad methods. We
compare the 1-shot (left) and 5-shot (right) performance of MAML (Finn et al., 2017) trained with
two different forms of DropGrad under various dropout rates on mini-ImageNet. The proposed
DropGrad method is particularly effective with the dropout rate in [0.1, 0.2]. Moreover, the Gaussian
DropGrad method consistently obtains better results compared to the Binary DropGrad scheme.

4.1 FEW-SHOT CLASSIFICATION

Few-shot classification aims to recognize a set of new categories, e.g., five categories (5-way clas-
sification), with few, e.g., one (1-shot) or five (5-shot), example images from each category. In this
setting, the support set Ds contains the few images X s of the new categories and the corresponding
categorical annotation Ys. We conduct experiments on the mini-ImageNet dataset (Vinyals et al.,
2016), which is widely used for evaluating few-shot classification approaches. As a subset of the
ImageNet (Deng et al., 2009), the mini-ImageNet dataset contains 100 categories and 600 images
for each category. We use the 5-way evaluation protocol in (Ravi & Larochelle, 2017) and split the
dataset into 64 training, 16 validating, and 20 testing categories.

Implementation Details. We apply the proposed DropGrad regularization method to train the
following gradient-based meta-learning frameworks: MAML (Finn et al., 2017), MetaSGD (Li et al.,
2017), and MAML++ (Antoniou et al., 2019). We use the implementation from Chen et al. (Chen
et al., 2019) for MAML and use our own implementation for MetaSGD.1 We use the ResNet-18 (He
et al., 2016) model as the backbone network for both MAML and MetaSGD. As for MAML++, we
use the original source code.2

Similar to recent studies, e.g., (Rusu et al., 2019), we also pre-train the feature extractor of ResNet-18
by minimizing the classification loss on the 64 training categories from the mini-ImageNet dataset
for the MetaSGD method, which is denoted by MetaSGD*. For all the experiments, we use the
default hyper-parameter settings provided by the original implementation and select the model ac-
cording to the validation performance for evaluation.

Comparison between Binary and Gaussian DropGrad. We first evaluate how the proposed Bi-
nary and Gaussian DropGrad methods perform on the MAML framework with different values of the
dropout probability p. Figure 2 shows that both methods are effective especially when the dropout

1https://github.com/wyharveychen/CloserLookFewShot
2https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
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Table 1: Few-shot classification results on mini-ImageNet. The Gaussian DropGrad method im-
proves the performance of gradient-based models on 1-shot and 5-shot classification tasks.

Model 1-shot 5-shot

MAML (Finn et al., 2017) 49.61± 0.92% 65.72± 0.77%
MAML w/ Gaussian DropGrad (p = 0.1) 52.35± 0.86% 69.42± 0.73%

MetaSGD (Li et al., 2017) 51.51± 0.87% 69.67± 0.75%
MetaSGD w/ Gaussian DropGrad (p = 0.1) 53.38± 0.93% 71.14± 0.72%

MetaSGD* 60.44± 0.87% 72.55± 0.54%
MetaSGD* w/ Gaussian DropGrad (p = 0.1) 61.69± 0.84% 73.33± 0.57%

MAML++ (Antoniou et al., 2019) 50.21± 0.50% 68.66± 0.46%
MAML++ w/ Gaussian DropGrad (p = 0.2) 51.13± 0.50% 69.80± 0.46%
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Figure 3: Validation loss over training epochs. We show the validation curves of the MAML (left)
and MetaSGD (right) frameworks trained on the 5-shot mini-ImageNet dataset. The curves validate
that the proposed DropGrad method alleviates the overfitting problem.

rate is in the range of [0.1, 0.2], while setting the dropout rate to 0 is to turn the proposed DropGrad
method off. Since the problem of learning from only one instance (1-shot) is more complicated,
the overfitting effect is less severe compared to the 5-shot setting. As a result, applying the Drop-
Grad method with a dropout rate larger than 0.3 degrades the performance. Moreover, the Gaussian
DropGrad method consistently outperforms the binary case on both 1-shot and 5-shot tasks, due to a
better regularization term ng with uncertainty. We then apply the Gaussian DropGrad method with
the dropout rate of 0.1 or 0.2 in the following experiments.

Comparison with existing dropout methods. To show that the proposed DropGrad method is
effective for gradient-based meta-learning frameworks, we compare it with two existing dropout
schemes applied on the network activations in both fθ and f ′θ. We choose the Dropout (Srivastava
et al., 2014) and SpatialDropout (Tompson et al., 2015) methods, since the former is a commonly-
used approach while the latter is shown to be effective for applying to 2D convolutional maps. The
performance of MAML on 5-shot classification on the mini-ImageNet dataset is: DropGrad 69.42±
0.73%, SpatialDropout 68.09± 0.56%, and Vanilla Dropout 67.44± 0.57%. This demonstrates the
benefit of using the proposed DropGrad method, which effectively tackles the issue of inconsistent
randomness between two different models fθ and f ′θ in the inner-loop optimization of gradient-based
meta-learning frameworks.

Overall performance on the mini-ImageNet dataset. Table 1 shows the results of applying the
proposed Gaussian DropGrad method to different frameworks. The results validate that the pro-
posed regularization scheme consistently improves the performance of various gradient-based meta-
learning approaches. In addition, we present the curve of validation loss over training episodes from
MAML and MetaSGD on the 5-shot classification task in Figure 3. We observe that the overfitting
problem is more severe in training the MetaSGD method since it consists of more parameters to be
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Table 2: Performance of applying DropGrad to different layers. We conduct experiments on
the 5-shot classification task using MAML on mini-ImageNet. It is more helpful in improving the
performance by dropping the gradients closer to the output layers (e.g., FC and Block4+FC).

Origin FC Block4 + FC Full Block1 + Conv Conv

65.72± 0.77% 68.93± 0.55% 69.02± 0.57% 69.42± 0.73% 64.96± 0.80% 65.53± 0.75%

Table 3: Cross-domain performance for few-shot classification. We use the mini-ImageNet and
CUB datasets for the meta-training and meta-testing steps, respectively. The improvement of ap-
plying the proposed DropGrad method is more significant in the cross-domain cases than the intra-
domain ones.

Model 1-Shot 5-Shot

MAML (Finn et al., 2017) 31.52± 0.52% 45.56± 0.51%
MAML w/ DropGrad (p = 0.1) 33.20± 0.67% 51.05± 0.56%

MetaSGD (Li et al., 2017) 34.52± 0.63% 49.22± 0.58%
MetaSGD w/ DropGrad (p = 0.1) 36.77± 0.72% 55.13± 0.72%

MetaSGD* 43.98± 0.77% 57.95± 0.81%
MetaSGD* w/ Gaussian DropGrad (p = 0.1) 45.33± 0.81% 59.94± 0.82%

MAML++ (Antoniou et al., 2019) 40.73± 0.49% 60.57± 0.49%
MAML++ w/ DropGrad (p = 0.2) 44.27± 0.50% 63.79± 0.48%

optimized. The DropGrad regularization method mitigates the overfitting issue and facilitates the
training procedure.

Layers to apply DropGrad. We study which layers in the network to apply the DropGrad regu-
larization in this experiment. The backbone ResNet-18 model contains a convolutional layer (Conv)
followed by 4 residual blocks (Block1, Block2, Block3, Block4) and a fully-connected layer (FC)
as the classifier. We perform the Gaussian DropGrad method on different parts of the ResNet-18
model for MAML on the 5-shot classification task. The results are presented in Table 2. We find
that it is more critical to drop the gradients closer to the output layers (e.g., FC and Block4+FC).
Applying the DropGrad method to the input side (e.g., Block1+Conv and Conv), however, may even
negatively affect the training and degrade the performance. This can be explained by the fact that
features closer to the output side are more abstract and thus tend to overfit. As using the DropGrad
regularization term only increases a negligible overhead, we use the Full model, where our method
is applied to all the layers in the experiments unless otherwise mentioned.

4.2 CROSS-DOMAIN FEW-SHOT CLASSIFICATION

To further evaluate how the proposed DropGrad method improves the generalization ability
of gradient-based meta-learning models, we conduct a cross-domain experiment, in which the
meta-testing set is from an unseen domain. We use the cross-domain scenario introduced by
Chen et al. (Chen et al., 2019), where the meta-training step is performed on the mini-ImageNet
dataset while the meta-testing evaluation is conducted on the CUB dataset (Hilliard et al., 2018).
Note that, different from Chen et al. (Chen et al., 2019) who select the model according to the val-
idation performance on the CUB dataset, we pick the model via the validation performance on the
mini-ImageNet dataset for evaluation. The reason is that we target at analyzing the generalization
ability to the unseen domain, and thus we do not utilize any information provided from the CUB
dataset.

Table 3 shows the results using the Gaussian DropGrad method. Since the domain shift in the cross-
domain scenario is larger than that in the intra-domain case (i.e., both training and testing tasks are
sampled from the mini-ImageNet dataset), the performance gains of applying the proposed Drop-
Grad method reported in Table 3 are more significant than those in Table 1. The results demonstrate
that the DropGrad scheme is able to effectively regularize the gradients and transfer them for learn-
ing new tasks in an unseen domain.
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Figure 4: Few-shot reinforcement learning results. Two settings, HalfCheetah-Dir (left) and Ant-
Dir (right), are considered in our experiments using the MAML-TPRO framework. We show the
reward curves after the model is updated with the few trajectories and both rewards converge favor-
ably against the original training.

Table 4: Precision and success rate on the OTB2015 dataset. The DropGrad method can be
applied to visual tracking and improve the tracking performance.

Model Precision Success rate

MetaCREST (Park & Berg, 2018) 0.7994 0.6029
MetaCREST w/ DropGrad (p = 0.2) 0.8172 0.6145

MetaSDNet (Park & Berg, 2018) 0.8673 0.6434
MetaSDNet w/ DropGrad (p = 0.2) 0.8746 0.6520

4.3 REINFORCEMENT LEARNING

We adopt the few-shot reinforcement learning (RL) setting as in (Finn et al., 2017), which aims to
make the system adapt to new experiences and learn the corresponding policy quickly with limited
prior experience (i.e., trajectories). In this setting, the support set Ds contains few trajectories and
the corresponding rewards, while the query set Dq is formed by a set of new trajectories sampled
from the running policy. We conduct the experiment with the locomotion tasks simulated by the
MuJoCo (Todorov et al., 2012) simulator. Two environments are considered in this experiment:
HalfCheetah robot and Ant robot with forward/backward movement, i.e., HalfCheetah-Dir and Ant-
Dir.

Implementation Details. We adopt the MAML-TPRO (Finn et al., 2017) framework as the base-
line method. Since the rewards are usually not differentiable, policy gradients are calculated for
adapting the RL models to new experiences in both inner- and outer-loop optimization. For applying
the proposed DropGrad scheme in the RL framework, we augment the policy gradients calculated
according to rewards in the support set during the inner-loop optimization. We use a public Pytorch
implementation with the default hyper-parameter setting in the experiments.3

Reinforcement Learning Results. In Figure 4, we present the rewards after the model is opti-
mized with the few trajectories, i.e., in each iteration we perform one-step policy gradient update for
the inner-loop optimization. In both environments, the training process with the proposed DropGrad
regularization method converges to favorable rewards compared to the original training without the
proposed regularization. This improvement could be attributed by the uncertainty on gradients that
provide a better exploration of the policy.

3https://github.com/tristandeleu/pytorch-maml-rl
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4.4 ONLINE OBJECT TRACKING

Visual object tracking targets at localizing one particular object in a video sequence given the bound-
ing box annotation in the first frame. To adapt the model to the subsequent frames, one approach
is to apply online adaptation during tracking. The Meta-Tracker (Park & Berg, 2018) method
uses meta-learning to improve two state-of-the-art online trackers, including the correlation-based
CREST (Song et al., 2017) and the detection-based MDNet (Nam & Han, 2016), which are denoted
as MetaCREST and MetaSDNet. Based on the error signals from future frames, the Meta-Tracker
updates the model during offline meta-training, and obtains a robust initial network that generalizes
well over future frames. We apply the proposed DropGrad method to train the MetaCREST and
MetaSDNet models with evaluation on the OTB2015 (Wu et al., 2015) dataset.

Implementation Details. We train the models using the original source code.4 For meta-
training, we use a subset of a large-scale video detection dataset (Russakovsky et al., 2015), and
the 58 sequences from the VOT2013 (Kristan et al., 2013), VOT2014 (Kristan et al., 2014) and
VOT2015 (Kristan et al., 2015) datasets, excluding the sequences in the OTB2015 database, based
on the same settings in the Meta-Tracker (Park & Berg, 2018). We use the default hyper-parameter
settings and evaluate the performance with the models at the last training iteration.

Object Tracking Results. The results of online object tracking on the OTB2015 dataset are pre-
sented in Table 4. The one-pass evaluation (OPE) protocol without restarts at failures is used in
the experiments. We measure the precision and success rate based on the center location error and
the bounding-box overlap ratio, respectively. The precision is calculated with a threshold 20, and
the success rate is the averaged value with the threshold ranging from 0 to 1 with a step of 0.05.
We show that applying the proposed DropGrad method consistently improves the performance in
precision and success rate on both MetaCREST and MetaSDNet trackers.

5 CONCLUSIONS

In this work, we propose a simple yet effective gradient dropout approach for regularizing the train-
ing of gradient-based meta-learning frameworks. The core idea is to impose uncertainty by aug-
menting the gradient in the adaptation step during meta-training. We propose two forms of noise
regularization terms, including Bernoulli and Gaussian distributions, and demonstrate that the pro-
posed DropGrad improves the model performance in three learning tasks. In addition, extensive
analysis and studies are provided to further understand the benefit of our method. One study on
cross-domain few-shot classification is also conducted to show that the DropGrad method is able to
mitigate the overfitting issue under a larger domain gap.
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A APPENDIX

In this appendix, we first supplement the implementation details. We then present additional experi-
mental results of few-shot viewpoint estimation, few-shot classification, and object online tracking.
Finally, we compare the proposed DropGrad regularization algorithm with the simulated annealing
methods.

A.1 SUPPLEMENTARY IMPLEMENTATION DETAILS

Few-shot classification. We use the implementation from Chen et al. (2019) to train and evaluate
MAML (Finn et al., 2017) on few-shot classification tasks.5 In the meanwhile, we modify the
same implementation for MetaSGD (Li et al., 2017) by ourselves. We verify our implementation
by evaluating the MetaSGD model using Conv4, which is the same backbone network adopted in
the original paper. The 5-way 5-shot classification results on the mini-ImageNet dataset (Ravi &
Larochelle, 2017) reported by our implementation and the original paper are 65.31 ± 0.66% and
64.03± 0.94%, respectively.

To train both the MAML and MetaSGD models, we keep the default settings in the original imple-
mentation by Chen et al. (2019). We apply the Adam (Kinga & Adam, 2015) optimizer with the
learning rate of 0.001. The mini-batch size is set to be 4. We train the model with 400 epochs and
do not apply the learning rate decay strategy.

Online object tracking. We conduct experiments of online object tracking based on the PyTorch
implementation by Park & Berg (2018). For MetaSDNet, the first three Convolutional layers of
VGG-16 are used as the feature extractor. During meta-training, the last three fully-connected lay-
ers are randomly initialized. We only update the last three fully-connected layers in the first 5,000
iterations, and then train the entire network for the remaining iterations. We adopt Adam opti-
mizer (Kinga & Adam, 2015) with an initial learning rate of 10−4, and decrease the learning rate to
10−5 after 10, 000 iterations. In total, we train the network for 15, 000 iterations. For MetaCREST,
we use Adam optimizer with a learning rate of 10−6, and train the model for 10, 000 iterations.

A.2 FEW-SHOT VIEWPOINT ESTIMATION

Viewpoint estimation aims to estimate the viewpoint (i.e., 3D rotation), denoted as R ∈ SO(3),
between the camera and the object of a specific category in the image. Given a few examples (i.e., 10
images in this work) of a novel category with viewpoint annotations, few-shot viewpoint estimation
attempts to predict the viewpoint of arbitrary objects of the same category. In this problem, the
support set Ds contains few images xs of a new class and the corresponding viewpoint annotations
ys. We conduct experiments on the ObjectNet3D dataset (Xiang et al., 2016), a viewpoint estimation
benchmark dataset which contains 100 categories. Using the same evaluation protocol in (Tseng
et al., 2019), we extract 76 and 17 categories for training and testing, respectively.

Implementation Details. We apply the proposed DropGrad on the MetaView (Tseng et al., 2019)
method, which is a meta-Siamese viewpoint estimator that applies gradient-based adaptation for
novel categories. We obtain the source code from the authors, and keep all the default setting for
training. Since there is no validation set available, we pick the model trained in the last epoch for
evaluation.

Viewpoint Estimation Results. We show the viewpoint estimation results in Table 5. The evalua-
tion metrics include Acc30 and MedErr which represent the percentage of viewpoints with rotation
error under 30◦ and the median rotation error, respectively. The overall performance is improved by
applying the proposed DropGrad method to the MetaView model during training.

A.3 FEW-SHOT CLASSIFICATION

In all experiments shown in Section 4, we use the default hyper-parameter values from the original
implementation of the adopted methods. In this experiment, we explore the hyper-parameter choices

5https://github.com/wyharveychen/CloserLookFewShot
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Table 5: Viewpoint estimation results. The DropGrad method can be applied to few-shot viewpoint
estimation frameworks to mitigate the overfitting problem.

Model Acc30 (↑) MedErr (↓)
MetaView (Tseng et al., 2019) 45.00± 0.45% 33.60± 0.94◦

MetaView w/ DropGrad (p = 0.1) 46.16± 0.55% 33.10± 0.82◦

Frame #0 Frame #15 Frame #30 Frame #45 Frame #60

Figure 5: Qualitative results of object online tracking on the OTB2015 dataset. Top and bottom
rows show the sample results of MetaCREST and MetaSDNet, respectively. Red boxes are the
ground truth, yellow boxes represent the original results, and green boxes stand for the results where
the DropGrad method is applied.

for MAML (Finn et al., 2017). Specifically, we conduct an ablation study on the learning rate α
and the number of inner-loop optimizations ninner in MAML. As shown in Table 6, the proposed
DropGrad method improves the performance consistently under different sets of hyper-parameters.

Table 6: 5-shot classification results of MAML under various hyper-parameter settings. We
study the learning rate α and number of iterations ninnerin the inner-loop optimization of MAML
using mini-ImageNet dataset.

α, ninner 0.01, 5 (original) 0.1, 5 0.001, 5 0.01, 3 0.01, 7

MAML (Finn et al., 2017) 65.72 ± 0.77% 65.98 ± 0.79% 58.55 ± 0.80% 64.84 ± 0.80% 68.11 ± 0.74%
MAML w/ DropGrad (p = 0.1) 69.42 ± 0.73% 67.78 ± 0.73% 64.05 ± 0.79% 65.42 ± 0.80% 69.65 ± 0.70%

A.4 OBJECT ONLINE TRACKING

We present sample results of object online tracking in Figure 5. We apply the proposed DropGrad
method on the MetaCREST and MetaSDNet methods and evaluate these models on the OTB2015
dataset. Compared with the original MetaCREST and MetaSDNet, models trained with the Drop-
Grad method track objects more accurately.

A.5 COMPARISON TO SIMULATED ANNEALING

The proposed DropGrad algorithm is also related to simulated annealing (SA) (Kirkpatrick et al.,
1983). While conceptually similar to a certain extent, the goals and formulations are significantly
different. SA modulates gradients by exploring uncertain solutions with the goal to escape from
the local minimum during the training stage. On the other hand, our DropGrad method, drops
the inner gradient to introduce uncertainty in the forward pass of the gradient-based meta-learning
framework.
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