
Published as a conference paper at ICLR 2019

A GENERATIVE MODEL FOR ELECTRON PATHS

John Bradshaw
University of Cambridge
Max Planck Institute, Tübingen
jab255@cam.ac.uk

Matt J. Kusner
University of Oxford
Alan Turing Institute
mkusner@turing.ac.uk

Brooks Paige
Alan Turing Institute
University of Cambridge
bpaige@turing.ac.uk

Marwin H. S. Segler
BenevolentAI
marwin.segler@benevolent.ai

José Miguel Hernández-Lobato
University of Cambridge
Microsoft Research Cambridge
Alan Turing Institute
jmh233@cam.ac.uk

ABSTRACT

Chemical reactions can be described as the stepwise redistribution of electrons in
molecules. As such, reactions are often depicted using “arrow-pushing” diagrams
which show this movement as a sequence of arrows. We propose an electron path
prediction model (ELECTRO) to learn these sequences directly from raw reaction
data. Instead of predicting product molecules directly from reactant molecules
in one shot, learning a model of electron movement has the benefits of (a) being
easy for chemists to interpret, (b) incorporating constraints of chemistry, such as
balanced atom counts before and after the reaction, and (c) naturally encoding
the sparsity of chemical reactions, which usually involve changes in only a small
number of atoms in the reactants. We design a method to extract approximate
reaction paths from any dataset of atom-mapped reaction SMILES strings. Our
model achieves excellent performance on an important subset of the USPTO
reaction dataset, comparing favorably to the strongest baselines. Furthermore,
we show that our model recovers a basic knowledge of chemistry without being
explicitly trained to do so.

1 INTRODUCTION

The ability to reliably predict the products of chemical reactions is of central importance to the
manufacture of medicines and materials, and to understand many processes in molecular biology.
Theoretically, all chemical reactions can be described by the stepwise rearrangement of electrons in
molecules (Herges, 1994b). This sequence of bond-making and breaking is known as the reaction
mechanism. Understanding the reaction mechanism is crucial because it not only determines the
products (formed at the last step of the mechanism), but it also provides insight into why the products
are formed on an atomistic level. Mechanisms can be treated at different levels of abstraction. On the
lowest level, quantum-mechanical simulations of the electronic structure can be performed, which
are prohibitively computationally expensive for most systems of interest. On the other end, chemical
reactions can be treated as rules that “rewrite” reactant molecules to products, which abstracts away
the individual electron redistribution steps into a single, global transformation step. To combine the
advantages of both approaches, chemists use a powerful qualitative model of quantum chemistry
colloquially called “arrow pushing”, which simplifies the stepwise electron shifts using sequences of
arrows which indicate the path of electrons throughout molecular graphs (Herges, 1994b).

Recently, there have been a number of machine learning models proposed for directly predicting the
products of chemical reactions (Coley et al., 2017; Jin et al., 2017; Schwaller et al., 2018; Segler and
Waller, 2017a; Segler et al., 2018; Wei et al., 2016), largely using graph-based or machine translation
models. The task of reaction product prediction is shown on the left-hand side of Figure 1.

In this paper we propose a machine learning model to predict the reaction mechanism, as shown on the
right-hand side of Figure 1, for a particularly important subset of organic reactions. We argue that our

1

Published as a conference paper at ICLR 2019

product 1 product 2

+

reactant 1 reactant 2 reagent

target

product prediction

product 1 product 2

+

reactant 1 reactant 2 reagent

mechanism prediction
target target

1

2

3

Figure 1: (Left) The reaction product prediction problem: Given the reactants and reagents, predict
the structure of the product. (Right) The reaction mechanism prediction problem: Given the reactants
and reagents, predict how the reaction occurred to form the products.

model is not only more interpretable than product prediction models, but also allows easier encoding
of constraints imposed by chemistry. Proposed approaches to predicting reaction mechanisms have
often been based on combining hand-coded heuristics and quantum mechanics (Bergeler et al., 2015;
Kim et al., 2018; Nandi et al., 2017; Segler and Waller, 2017b; Rappoport et al., 2014; Simm and
Reiher, 2017; Zimmerman, 2013), rather than using machine learning. We call our model ELECTRO,
as it directly predicts the path of electrons through molecules (i.e., the reaction mechanism). To train
the model we devise a general technique to obtain approximate reaction mechanisms purely from
data about the reactants and products. This allows one to train our a model on large, unannotated
reaction datasets such as USPTO (Lowe, 2012). We demonstrate that not only does our model achieve
impressive results, surprisingly it also learns chemical properties it was not explicitly trained on.

2 BACKGROUND

We begin with a brief background from chemistry on molecules and chemical reactions, and then
review related work in machine learning on predicting reaction outcomes. We then describe a
particularly important subclass of chemical reactions, called linear electron flow (LEF) reactions, and
summarize the contributions of this work.

2.1 MOLECULES AND CHEMICAL REACTIONS

Organic (carbon-based) molecules can be represented via a graph structure, where each node is
an atom and each edge is a covalent bond (see example molecules in Figure 1). Each edge (bond)
represents two electrons that are shared between the atoms that the bond connects.

Electrons are particularly important for describing how molecules react with other molecules to
produce new ones. All chemical reactions involve the stepwise movement of electrons along the
atoms in a set of reactant molecules. This movement causes the formation and breaking of chemical
bonds that changes the reactants into a new set of product molecules (Herges, 1994a). For example,
Figure 1 (Right) shows how electron movement can break bonds (red arrows) and make new bonds
(green arrows) to produce a new set of product molecules.

2.2 RELATED WORK

In general, work in machine learning on reaction prediction can be divided into two categories: (1)
Product prediction, where the goal is to predict the reaction products, given a set of reactants and
reagents, shown in the left half of Figure 1; and (2) Mechanism prediction, where the goal is to
determine how the reactants react, i.e., the movement of electrons, shown in the right of Figure 1.

Product prediction. Recently, methods combining machine learning and template-based molecular
rewriting rules have been proposed (Coley et al., 2017; Segler and Waller, 2017a; Segler et al., 2018;
Wei et al., 2016; Zhang and Aires-de Sousa, 2005). Here, a learned model is used to predict
which rewrite rule to apply to convert one molecule into another. While these models are readily
interpretable, they tend be brittle. Another approach, introduced by Jin et al. (2017), constructs a
neural network based on the Weisfeiler-Lehman algorithm for testing graph isomorphism. They
use this algorithm (called WLDN) to select atoms that will be involved in a reaction. They then
enumerate all chemically-valid bond changes involving these atoms and learn a separate network to

2

Published as a conference paper at ICLR 2019

Prior Work end-to-end mechanistic
Templates+ML − −
WLDN [Jin et al. (2017)] − −
Seq2Seq [Schwaller et al. (2018)] X −
Source/Sink (expert-curated data) − X

This work X X

Table 1: Work on machine learning for reaction prediction, and whether they are (a) end-to-end
trainable, and (b) predict the reaction mechanism.

rank the resulting potential products. This method, while leveraging new techniques for deep learning
on graphs, cannot be trained end-to-end because of the enumeration steps for ensuring chemical
validity. Schwaller et al. (2018) represents reactants as SMILES (Weininger, 1988) strings and then
uses a sequence to sequence network (specifically, the work of Zhao et al. (2017)) to predict product
SMILES. While this method (called Seq2Seq) is end-to-end trainable, the SMILES representation is
quite brittle as often single character changes will not correspond to a valid molecule.

These latter two methods, WLDN and Seq2Seq, are state-of-the-art on product prediction and have
been shown to outperform the above template-based techniques (Jin et al., 2017). Thus we compare
directly with these two methods in this work.

Mechanism prediction. The only other work we are aware of to use machine learning to predict
reaction mechanisms are Fooshee et al. (2018); Kayala and Baldi (2011; 2012); Kayala et al. (2011).
All of these model a chemical reaction as an interaction between atoms as electron donors and as
electron acceptors. They predict the reaction mechanisms via two independent models: one that
identifies these likely electron sources and sinks, and another that ranks all combinations of them.
These methods have been run on small expert-curated private datasets, which contain information
about the reaction conditions such as the temperature and anion/cation solvation potential (Kayala
and Baldi, 2011, §2). In contrast, in this work, we aim to learn reactions from noisy large-scale
public reaction datasets, which are missing the required reaction condition information required by
these previous works. As we cannot yet apply the above methods on the datasets we use, nor test
our models on the datasets they use (as the data are not yet publicly released), we cannot compare
directly against them; therefore, we leave a detailed investigation of the pros and cons of each method
for future work.

As a whole, this related work points to at least two main desirable characteristics for reaction
prediction models:

1. End-to-End: There are many complex chemical constraints that limit the space of all possible
reactions. How can we differentiate through a model subject to these constraints?

2. Mechanistic: Learning the mechanism offers a number of benefits over learning the products
directly including: interpretability (if the reaction failed, what electron step went wrong),
sparsity (electron steps only involve a handful of atoms), and generalization (unseen reactions
also follow a set of electron steps).

Table 1 describes how the current work on reaction prediction satisfies these characteristics. In this
work we propose to model a subset of mechanisms with linear electron flow, described below.

2.3 LINEAR ELECTRON FLOW REACTIONS

Reaction mechanisms can be classified by the topology of their “electron-pushing arrows” (the red
and green arrows in Figure 1). Here, the class of reactions with linear electron flow (LEF) topology
is by far the most common and fundamental, followed by those with cyclic topology (Herges, 1994a).
In this work, we will only consider LEF reactions that are heterolytic, i.e., they involve pairs of
electrons.1

1The treatment of radical reactions, which involve the movement of single electrons, will be the topic of
future work.

3

Published as a conference paper at ICLR 2019

If reactions fall into this class, then a chemical reaction can be modelled as pairs of electrons moving
in a single path through the reactant atoms. In arrow pushing diagrams representing LEF reactions,
this electron path can be represented by arrows that line up in sequence, differing from for example
pericyclic reactions in which the arrows would form a loop (Herges, 1994a).

Further for LEF reactions, the movement of the electrons along the linear path will alternately remove
existing bonds and form new ones. We show this alternating structure in the right of Figure 1. The
reaction formally starts by (step 1) taking the pair of electrons between the Li and C atoms and
moving them to the C atom; this is a remove bond step. Next (step 2) a bond is added when electrons
are moved from the C atom in reactant 1 to a C atom in reactant 2. Then (step 3) a pair of electrons are
removed between the C and O atoms and moved to the O atom, giving rise to the products. Predicting
the final product is thus a byproduct of predicting this series of electron steps.

Contributions. We propose a novel generative model for modeling the reaction mechanism of LEF
reactions. Our contributions are as follows:

• We propose an end-to-end generative model for predicting reaction mechanisms, ELECTRO,
that is fully differentiable. It can be used with any deep learning architecture on graphs.

• We design a technique to identify LEF reactions and mechanisms from purely atom-mapped
reactants and products, the primary format of large-scale reaction datasets.

• We show that ELECTRO learns chemical knowledge such as functional group selectivity
without explicit training.

3 THE GENERATIVE MODEL

In this section we define a probabilistic model for electron movement in linear electron flow (LEF)
reactions. As described above (§2.1) all molecules can be thought of as graphs where nodes
correspond to atoms and edges to bonds. All LEF reactions transform a set of reactant graphs,
M0 into a set of product graphsMT+1 via a series of electron actions P0:T = (a0, . . . , aT). As
described, these electron actions will alternately remove and add bonds (as shown in the right of
Figure 1). This reaction sometimes includes additional reagent graphs,Me, which help the reaction
proceed, but do not change themselves. We propose to learn a distribution pθ(P0:T | M0,Me) over
these electron movements. We first detail the generative process that specifies pθ, before describing
how to train the model parameters θ.

To define our generative model, we describe a factorization of pθ(P0:T | M0,Me) into three
components: 1. the starting location distribution pstartθ (a0 | M0,Me); 2. the electron movement
distribution pθ(at | Mt, at−1, t); and 3. the reaction continuation distribution pcont

θ (ct | Mt). We
define each of these in turn and then describe the factorization (we leave all architectural details of
the functions introduced to the appendix).

Starting Location. At the beginning the model needs to decide on which atom a0 starts the path.
As this is based on (i) the initial set of reactantsM0 and possibly (ii) a set of reagentsMe, we
propose to learn a distribution pstartθ (a0 | M0,Me).

To parameterize this distribution we propose to use any deep graph neural network, denoted hA(·), to
learn graph-isomorphic node features from the initial atom and bond features2 (Duvenaud et al., 2015;
Kipf and Welling, 2017; Li et al., 2016; Gilmer et al., 2017). We choose to use a 4 layer Gated Graph
Neural Network (GGNN) (Li et al., 2016), for which we include a short review in the appendix.

Given these atom embeddings we also compute graph embeddings (Li et al., 2018, §B.1) (also
called an aggregation graph transformation (Johnson, 2017, §3)), which is a vector that represents
the entire molecule setM that is invariant to any particular node ordering. Any such function g(·)
that computes this mapping can be used here, but the particular graph embedding function we use
is inspired by Li et al. (2018), and described in detail in Appendix B. We can now parameterize
pstartθ (a0 | M0,Me) as

pstartθ (a0 | M0,Me) = softmax
[
f start

(
hA(M0), g

reagent (Me)
)]
, (1)

2The molecular features we use are described in Table 4 in Appendix B.

4

Published as a conference paper at ICLR 2019

electron pair

bond to add

3

86

4

selected

probability of selection

previously
selected

masking

Yes

No
bond to remove

product 1

Yes

No

bond to
remove

Yes

No
product 2

reactant 1 reactant 21 2

5 9

probability
0 1

7

pstart
✓ premove

✓ pcont
✓

padd
✓ pcont

✓ premove
✓ pcont

✓

Figure 2: This figure shows the sequence of actions in transforming the reactants in box 1 to the
products in box 9. The sequence of actions will result in a sequence of pairs of atoms, between
which bonds will alternately be removed and created, creating a series of intermediate products. At
each step the model sees the current intermediate product graph (shown in the boxes) as well as the
previous action, if applicable, shown by the grey circle. It uses this to decide on the next action.
We represent the characteristic probabilities the model may have over these next actions as colored
circles over each atom. Some actions are disallowed on certain steps, for instance you cannot remove
a bond that does not exist; these blocked actions are shown as red crosses.

where f start is a feedforward neural network which computes logits x; the logits are then normalized
into probabilities by the softmax function, defined as softmax[x] = ex/

∑
i e
xi .

Electron Movement. Observe that since LEF reactions are a single path of electrons (§2.3), at any
step t, the next step at in the path depends only on (i) the intermediate molecules formed by the
action path up to that pointMt, (ii) the previous action taken at−1 (indicating where the free pair of
electrons are), and (iii) the point of time t through the path, indicating whether we are on an add or
remove bond step. Thus we will also learn the electron movement distribution pθ(at | Mt, at−1, t).

Similar to the starting location distribution we again make use of a graph-isomorphic node embedding
function hA(M). In contrast, the above distribution can be split into two distributions depending on
the parity of t: the remove bond step distribution premove

θ (at | Mt, at−1) when t is odd, and the add
bond step distribution padd

θ (at | Mt, at−1) when t is even. We parameterize the distributions as

premove
θ (at | Mt, at−1) ∝ βremove � softmax

[
f remove(hA(Mt), at−1

)]
, (2)

padd
θ (at | Mt, at−1) ∝ βadd � softmax

[
f add(hA(Mt), at−1

)]
(3)

pθ(at | Mt, at−1, t) =

{
premove
θ (at | Mt, at−1) if t is odd
padd
θ (at | Mt, at−1) otherwise

(4)

The vectors βremove,βadd are masks that zero-out the probability of certain atoms being selected.
Specifically, βremove sets the probability of any atoms at to 0 if there is not a bond between it and the
previous atom at−13. The other mask vector βadd masks out the previous action, preventing the model
from stalling in the same state for multiple time-steps. The feedforward networks fadd(·), f remove(·)
and other architectural details are described in Appendix C.

Reaction Continuation / Termination. Additionally, as we do not know the length of the reaction
T , we introduce a latent variable ct ∈ {0, 1} at each step t, which describes whether the reaction
continues (ct=1) or terminates (ct=0) 4. We also define an upper bound Tmax on the number of
reaction steps.

3One subtle point is if a reaction begins with a lone-pair of electrons then we say that this reaction starts
by removing a self-bond. Thus, in the first remove step βremove it is possible to select a1=a0. But this is not
allowed via the mask vector in later steps.

4An additional subtle point is that we do not allow the reaction to stop until until it has picked up an entire
pair (ie c1 = 1).

5

Published as a conference paper at ICLR 2019

Algorithm 1 The generative steps of ELECTRO (given that the model chooses to react, ie c0 = 1).
Input: Reactant molecules M0 (consisting of atoms A), reagents Me, atom embedding
function hA(·), graph embedding functions greagent(·) and gcont(·), additional logit functions
f start(·), f remove(·), fadd(·), time steps Tmax

1: pstartθ (a | M0,Me) , softmax
[
f start

(
hA(M0), g

reagent(Me)
)]

.a starts reaction

2: a0 ∼ pstartθ (a | M0,Me)
3: M1 ←M0 .The molecule does not change until complete pair picked up
4: c1 , 1 .You cannot stop until picked up complete pair
5: for t = 1, . . . , Tmax do
6: if t is odd then
7: premove

θ (at|Mt, at−1) ∝ βremovesoftmax
[
f remove

(
hA(Mt), at−1

)]

8: at ∼ premove
θ (at|Mt, at−1) .electrons remove bond between at and at−1

9: else
10: paddθ (at|Mt, at−1) ∝ βaddsoftmax

[
fadd

(
hA(Mt), at−1

)]

11: at ∼ paddθ (at|Mt, at−1) .electrons add bond between at and at−1
12: end if
13: Pt = P0:t−1 ∪ at
14: Mt+1 ←Mt, at .modify molecules based on previous molecule and action
15: pcont

θ (ct+1 | Mt+1) , σ(gcont(Mt+1))
16: ct+1 ∼ pcont

θ (ct+1 | Mt+1) .whether to continue reaction
17: if ct+1 = 0 then
18: break
19: end if
20: end for
Output: Electron path P0:t

The final distribution we learn is the continuation distribution pcont
θ (ct | Mt). For this distribution we

learn a different graph embedding function gcont(·) to decide whether to continue or not:
pcont
θ (ct | Mt) = σ(gcont(Mt)). (5)

where σ is the sigmoid function σ(a) = 1/(1 + e−a).

Path Distribution Factorization. Given these distributions we can define the probability of a path
P0:T with the distribution pθ(P0:T | M0,Me), which factorizes as

pθ(P0:T | M0,Me) = pcont
θ (c0 | M0)p

start
θ (a0 | M0,Me) (6)

×
[
T∏

t=1

pcontθ (ct | Mt)pθ(at | Mt, at−1, t)

]
(
1− pcontθ (cT+1 | MT+1)

)
,

Figure 2 gives a graphical depiction of the generative process on a simple example reaction. Algo-
rithm 1 gives a more detailed description.

Training We can learn the parameters θ of all the parameterized functions, including those pro-
ducing node embeddings, by maximizing the log likelihood of a full path log pθ(P0:T | M0,Me).
This is evaluated by using a known electron path a?t and intermediate productsM?

t extracted from
training data, rather than on simulated values. This allows us to train on all stages of the reaction
at once, given electron path data. We train our models using Adam (Kingma and Ba, 2015) and an
initial learning rate of 10−4, with minibatches consisting of a single reaction, where each reaction
often consists of multiple intermediate graphs.

Prediction Once trained, we can use our model to sample chemically-valid paths given an input
set of reactantsM0 and reagentsMe, simply by simulating from the conditional distributions until
sampling a continue value equal to zero. We instead would like to find a ranked list of the top-K
predicted paths, and do so using a modified beam search, in which we roll out a beam of width K
until a maximum path length Tmax, while recording all paths which have terminated. This search
procedure is described in detail in Algorithm 2 in the appendix.

6

Published as a conference paper at ICLR 2019

4 REACTION MECHANISM IDENTIFICATION

To evaluate our model, we use a collection of chemical reactions extracted from the US patent
database (Lowe, 2017). We take as our starting point the 479,035 reactions, along with the training,
validation, and testing splits, which were used by Jin et al. (2017), referred to as the USPTO dataset.
This data consists of a list of reactions. Each reaction is a reaction SMILES string (Weininger,
1988) and a list of bond changes. SMILES is a text format for molecules that lists the molecule as
a sequence of atoms and bonds. The bond change list tells us which pairs of atoms have different
bonds in the the reactants versus the products (note that this can be directly determined from the
SMILES string). Below, we describe two data processing techniques that allow us to identify reagents,
reactions with LEF topology, and extract an underlying electron path. Each of these steps can be
easily implemented with the open-source chemo-informatics software RDKit (RDKit, online).

Reactant and Reagent Seperation Reaction SMILES strings can be split into three parts — re-
actants, reagents, and products. The reactant molecules are those which are consumed during the
course of the chemical reaction to form the product, while the reagents are any additional molecules
which provide context under which the reaction occurs (for example, catalysts), but do not explicitly
take part in the reaction itself; an example of a reagent is shown in Figure 1.

Unfortunately, the USPTO dataset as extracted does not differentiate between reagents and reactants.
We elect to preprocess the entire USPTO dataset by separating out the reagents from the reactants
using the process outlined in Schwaller et al. (2018), where we classify as a reagent any molecule for
which either (i) none of its constituent atoms appear in the product, or (ii) the molecule appears in the
product SMILES completely unchanged from the pre-reaction SMILES. This allows us to properly
model molecules which are included in the dataset but do not materially contribute to the reaction.

Identifying Reactions with Linear Electron Flow Topology To train our model, we need to (i)
identify reactions in the USPTO dataset with LEF topology, and (ii) have access to an electron path
for each reaction. Figure 3 shows the steps necessary to identify and extract the electron paths from
reactions exhibiting LEF topology. We provide further details in Appendix D.

Applying these steps, we discover that 73% of the USPTO dataset consists of LEF reactions (349,898
total reactions, of which 29,360 form the held-out test set).

5 EXPERIMENTS AND EVALUATION

1st Choice

2nd Choice
3rd Choice

O Cl

N

N

O

N

N

N

O

O

O

p(path 3) =0.01

p(path 2) = 0.01

p(path 1) = 0.98

Figure 4: An example of the paths sug-
gested by ELECTRO-LITE on one of the
USPTO test examples. Its first choice in
this instance is correct.

Accuracies (%)

Model Name Top-1 Top-2 Top-3 Top-5

ELECTRO-LITE 70.3 82.8 87.7 92.2
ELECTRO 77.8 89.2 92.4 94.7

Table 2: Results when using ELECTRO for mech-
anism prediction. Here a prediction is correct if
the atom mapped action sequences predicted by our
model match exactly those extracted from the USPTO
dataset.

We now evaluate ELECTRO on the task of (i) mechanism prediction and (ii) product prediction (as
described in Figure 1). While generally, it is necessary to know the reagents Me of a reaction
to faithfully predict the mechanism and product, it is often possible to make inferences from the
reactants alone. Therefore, we trained a second version of our model that we call ELECTRO-LITE,
which ignores reagent information. This allows us to gauge the importance of reagents in determining
the mechanism of the reaction.

7

Published as a conference paper at ICLR 2019

1 Identify 2 Join

{4-14, 17-14, 5-4}

3

O OHCl Cl?
17 175 5

5 4 14 17

4 Apply

Remove RemoveAdd

[CH3:10][N:11]1[CH2:12][CH2:13][C:14](=[O:17])[CH2:15][CH2:16]1.[F:1][c:2]1[c:3]([CH2:4][Cl:5])[cH:6][cH:7][cH:8][cH:9]1>>
[F:1][c:2]1[c:3]([CH2:4][C:14]2([OH:17])[CH2:13][CH2:12][N:11]([CH3:10])[CH2:16][CH2:15]2)[cH:6][cH:7][cH:8][cH:9]1Input

Remove Add Remove

Add
Remove
Remove Order

17-14-4-5

10

N11
12

13
14

O
17

15

16

F
1

2

3

4
Cl5

6

7

8

9

10

N11
12

13
14

O
17

15

16

F
1

2

3

4

6

7

8

9

Cl

10
N
11

1213

C14

O
17

15 16F
1

2

3

4

6

7

8

9

Cl

10
N
11

1213

14

O
17

15 16F
1

2

3

4

6

7

8

9

Cl

10

N11
12

13
14

O
17

15

16

F
1

2

3

4

Cl5

6

7

8

9

F
1

2

3

4

14

HO
17

13 12

N
11

10

16
156

7

8

9

+

O C
CCl CCl

O C

CCCC
Before After

4-14
5-4

17-14

Before AfterC ClOC C C

Figure 3: Example of how we turn a SMILES reaction string into an ordered electron path, for which
we can train ELECTRO on. This consists of a series of steps: (1) Identify bonds that change by
comparing bond triples (source node, end node, bond type) between the reactants and products. (2)
Join up the bond changes so that one of the atoms in consecutive bond changes overlap (for reactions
which do not have linear electron flow topology, such as multi-step reactions, this will not be possible
and so we discard these reactions). (3) Order the path (ie assign a direction). A gain of charge (or
analogously the gain of hydrogen as H+ ions without changing charge, such as in the example shown)
indicates that the electrons have arrived at this atom; and vice-versa for the start of the path. When
details about both ends of the path are missing from the SMILES string we fall back to using an
element’s electronegativity to estimate the direction of our path, with more electronegative atoms
attracting electrons towards them and so being at the end of the path. (4) The extracted electron
path deterministically determines a series of intermediate molecules which can be used for training
ELECTRO. Paths that do not consist of alternative add and removal steps and do not result in the final
recorded product do not exhibit LEF topology and so can be discarded. An interesting observation
is that our approximate reaction mechanism extraction scheme implicitly fills in missing reagents,
which are caused by noisy training data — in this example, which is a Grignard- or Barbier-type
reaction, the test example is missing a metal reagent (e.g. Mg or Zn). Nevertheless, our model is
robust enough to predict the intended product correctly (Effland et al., 1981).

5.1 REACTION MECHANISM PREDICTION

For mechanism prediction we are interested in ensuring we obtain the exact sequence of electron
steps correctly. We evaluate accuracy by checking whether the sequence of integers extracted from
the raw data as described in Section 4 is an exact match with the sequence of integers output by
ELECTRO. We compute the top-1, top-2, top-3, and top-5 accuracies and show them in Table 2, with
an example prediction shown in Figure 4.

5.2 REACTION PRODUCT PREDICTION

Reaction mechanism prediction is useful to ensure we form the correct product in the correct way.
However, it underestimates the model’s actual predictive accuracy: although a single atom mapping is
provided as part of the USPTO dataset, in general atom mappings are not unique (e.g., if a molecule
contains symmetries). Specifically, multiple different sequences of integers could correspond to
chemically-identical electron paths. The first figure in the appendix shows an example of a reaction
with symmetries, where different electron paths produce the exact same product.

Recent approaches to product prediction (Jin et al., 2017; Schwaller et al., 2018) have evaluated
whether the major product reported in the test dataset matches predicted candidate products generated
by their system, independent of mechanism. In our case, the top-5 accuracy for a particular reaction
may include multiple different electron paths that ultimately yield the same product molecule.

To evaluate if our model predicts the same major product as the one in the test data, we need to
solve a graph isomorphism problem. To approximate this we (a) take the predicted electron path, (b)
apply these edits to the reactants to produce a product graph (balancing charge to satisfy valence

8

Published as a conference paper at ICLR 2019

Accuracies (%)

Model Name Top-1 Top-2 Top-3 Top-5

WLDN FTS (Jin et al., 2017) 84.0 89.2 91.1 92.3
WLDN (Jin et al., 2017) 83.1 89.3 91.5 92.7
Seq2Seq FTS (Schwaller et al., 2018) 81.7 86.8 88.4 89.8
Seq2Seq (Schwaller et al., 2018) 82.6 87.3 88.8 90.1

ELECTRO-LITE 78.2 87.7 91.5 94.4
ELECTRO 87.0 92.6 94.5 95.9

Table 3: Results for product prediction, following the product matching procedure in Section 5.2. For
the baselines we compare against models trained (a) on the full USPTO training set (marked FTS)
and only tested on our subset of LEF reactions, and (b) those that are also trained on the same subset
as our model. We make use of the code and pre-trained models provided by Jin et al. (2017). For
the Seq2Seq approach, as neither code nor more fine grained results are available, we train up the
required models from scratch using the OpenNMT library (Klein et al., 2017).

CH3HO

Cl Br

Cl

Br

I

OH

B

OH

1st Choice
2nd Choice
3rd Choice

Figure 5: (Left) Nucleophilic substitutions SN2-reactions, (right) Suzuki-coupling (note that in
the “real” mechanism of the Suzuki coupling, the reaction would proceed via oxidative insertion,
transmetallation and reductive elimination at a Palladium catalyst. As these details are not contained
in training data, we treat Palladium implicitly as a reagent). In both cases, our model has correctly
picked up the trend that halides lower in the period table usually react preferably (I > Br > Cl).

constraints), (c) remove atom mappings, and (d) convert the product graph to a canonical SMILES
string representation in Kekulé form (aromatic bonds are explicitly represented as double-bonds). We
can then evaluate whether a predicted electron path matches the ground truth by a string comparison.
This procedure is inspired by the evaluation of Schwaller et al. (2018). To obtain a ranked list of
products for our model, we compute this canonicalized product SMILES for each of the predictions
found by beam search over electron paths, removing duplicates along the way. These product-level
accuracies are reported in Table 3.

We compare with the state-of-the-art graph-based method Jin et al. (2017); we use their evaluation
code and pre-trained model5, re-evaluated on our extracted test set. We also use their code and
re-train a model on our extracted training set, to ensure that any differences between our method
and theirs is not due to a specialized training task. We also compare against the Seq2Seq model
proposed by (Schwaller et al., 2018); however, as no code is provided by Schwaller et al. (2018),
we run our own implementation of this method based on the OpenNMT library (Klein et al., 2017).
Overall, ELECTRO outperforms all other approaches on this task, with 87% top-1 accuracy and 95.9%
top-5 accuracy. Omitting the reagents in ELECTRO degrades top-1 accuracy slightly, but maintains a
high top-3 and top-5 accuracy, suggesting that reagent information is necessary to provide context in
disambiguating plausible reaction paths.

5.3 QUALITATIVE ANALYSIS

Complex molecules often feature several potentially reactive functional groups, which compete for
reaction partners. To predict the selectivity, that is which functional group will predominantly react
in the presence of other groups, students of chemistry learn heuristics and trends, which have been
established over the course of three centuries of experimental observation. To qualitatively study

5https://github.com/wengong-jin/nips17-rexgen

9

https://github.com/wengong-jin/nips17-rexgen

Published as a conference paper at ICLR 2019

whether the model has learned such trends from data we queried the model with several typical text
book examples from the chemical curriculum (see Figure 5 and the appendix). We found that the
model predicts most examples correctly. In the few incorrect cases, interpreting the model’s output
reveals that the model made chemically plausible predictions.

6 LIMITATIONS AND FUTURE DIRECTIONS

In this section we briefly list a couple of limitations of our approach and discuss any pointers towards
their resolution in future work.

LEF Topology ELECTRO can currently only predict reactions with LEF topology (§2.3). These
are the most common form of reactions (Herges, 1994b), but in future work we would like to extend
ELECTRO’s action repertoire to work with other classes of electron shift topologies such as those
found in pericyclic reactions. This could be done by allowing ELECTRO to sequentially output a series
of paths, or by allowing multiple electron movements at a single step. Also, since the approximate
mechanisms we produce for our dataset are extracted only from the reactants and products, they
may not include all observable intermediates. This could be solved by using labelled mechanism
paths, obtainable from finer grained datasets containing also the mechanistic intermediates. These
mechanistic intermediates could also perhaps be created using quantum mechanical calculations
following the approach in Sadowski et al. (2016).

Graph Representation of Molecules Although this shortcoming is not just restricted to our work,
by modeling molecules and reactions as graphs and operations thereon, we ignore details about
the electronic structure and conformational information, ie information about how the atoms in the
molecule are oriented in 3D. This information is crucial in some important cases. Having said this,
there is probably some balance to be struck here, as representing molecules and reactions as graphs
is an extremely powerful abstraction, and one that is commonly used by chemists, allowing models
working with such graph representations to be more easily interpreted.

7 CONCLUSION

In this paper we proposed ELECTRO, a model for predicting electron paths for reactions with linear
electron flow. These electron paths, or reaction mechanisms, describe how molecules react together.
Our model (i) produces output that is easy for chemists to interpret, and (ii) exploits the sparsity and
compositionality involved in chemical reactions. As a byproduct of predicting reaction mechanisms
we are also able to perform reaction product prediction, comparing favorably to the strongest baselines
on this task.

ACKNOWLEDGEMENTS

We would like to thank Jennifer Wei, Dennis Sheberla, and David Duvenaud for their very help-
ful discussions. This work was supported by The Alan Turing Institute under the EPSRC grant
EP/N510129/1. JB also acknowledges support from an EPSRC studentship.

REFERENCES

Maike Bergeler, Gregor N Simm, Jonny Proppe, and Markus Reiher. Heuristics-guided exploration
of reaction mechanisms. Journal of chemical theory and computation, 11(12):5712–5722, 2015.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN Encoder–Decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–1734, 2014.

Connor W Coley, Regina Barzilay, Tommi S Jaakkola, William H Green, and Klavs F Jensen.
Prediction of organic reaction outcomes using machine learning. ACS central science, 3(5):
434–443, 2017.

10

Published as a conference paper at ICLR 2019

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in Neural Information Processing Systems 28, pages 2224–2232, 2015.

Richard Effland, Beth Ann Gardner, and Joseph Strupczewski. Synthesis of 2,3-
dihydrospiro[benzofuran-2,4’-piperidines] and 2,3-dihydrospiro[benzofuran-2,3’-pyrrolidines]. J.
Heterocyclic Chem., 18(4):811–814, 1981.

David Fooshee, Aaron Mood, Eugene Gutman, Mohammadamin Tavakoli, Gregor Urban, Frances
Liu, Nancy Huynh, David Van Vranken, and Pierre Baldi. Deep learning for chemical reaction
prediction. Molecular Systems Design & Engineering, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, 2017.

Rainer Herges. Coarctate transition states: The discovery of a reaction principle. Journal of chemical
information and computer sciences, 34(1):91–102, 1994a.

Rainer Herges. Organizing principle of complex reactions and theory of coarctate transition states.
Angewandte Chemie Int. Ed., 33(3):255–276, 1994b.

Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction
outcomes with Weisfeiler-Lehman network. In Advances in Neural Information Processing Systems
30, pages 2604–2613, 2017.

Daniel D Johnson. Learning graphical state transitions. In International Conference on Learning
Representations, 2017.

Matthew A Kayala and Pierre Baldi. ReactionPredictor: Prediction of complex chemical reactions at
the mechanistic level using machine learning. J. Chem. Inf. Mod., 52(10):2526–2540, 2012.

Matthew A. Kayala and Pierre F. Baldi. A machine learning approach to predict chemical reactions.
In Advances in Neural Information Processing Systems 24, 2011.

Matthew A Kayala, Chloé-Agathe Azencott, Jonathan H Chen, and Pierre Baldi. Learning to predict
chemical reactions. J. Chem. Inf. Mod., 51(9):2209–2222, 2011.

Yeonjoon Kim, Jin Woo Kim, Zeehyo Kim, and Woo Youn Kim. Efficient prediction of reaction
paths through molecular graph and reaction network analysis. Chemical Science, 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-source toolkit for neural
machine translation. arXiv preprint arXiv:1701.02810, 2017.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2016.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Daniel Lowe. Chemical reactions from US patents (1976-Sep2016). 6 2017. doi: 10.
6084/m9.figshare.5104873.v1. URL https://figshare.com/articles/Chemical_
reactions_from_US_patents_1976-Sep2016_/5104873.

Daniel Mark Lowe. Extraction of chemical structures and reactions from the literature. PhD thesis,
University of Cambridge, 2012.

11

https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873

Published as a conference paper at ICLR 2019

Surajit Nandi, Suzanne R McAnanama-Brereton, Mark P Waller, and Anakuthil Anoop. A tabu-
search based strategy for modeling molecular aggregates and binary reactions. Computational and
Theoretical Chemistry, 1111:69–81, 2017.

Dmitrij Rappoport, Cooper J Galvin, Dmitry Yu Zubarev, and Alán Aspuru-Guzik. Complex
chemical reaction networks from heuristics-aided quantum chemistry. Journal of chemical theory
and computation, 10(3):897–907, 2014.

RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit.org. [Online;
accessed 01-February-2018].

Peter Sadowski, David Fooshee, Niranjan Subrahmanya, and Pierre Baldi. Synergies between
quantum mechanics and machine learning in reaction prediction. J. Chem. Inf. Model., 56(11):
2125–2128, November 2016.

Philippe Schwaller, Théophile Gaudin, Dávid Lányi, Costas Bekas, and Teodoro Laino. “Found in
Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-
to-sequence models. Chem. Sci., 9:6091–6098, 2018. doi: 10.1039/C8SC02339E. URL http:
//dx.doi.org/10.1039/C8SC02339E.

Marwin HS Segler and Mark P Waller. Neural-symbolic machine learning for retrosynthesis and
reaction prediction. Chem. Eur. J., 23(25):5966–5971, 2017a.

Marwin HS Segler and Mark P Waller. Modelling chemical reasoning to predict and invent reactions.
Chem. Eur. J., 23(25):6118–6128, 2017b.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
networks and symbolic AI. Nature, 555(7698):604, 2018.

Gregor N Simm and Markus Reiher. Context-driven exploration of complex chemical reaction
networks. Journal of chemical theory and computation, 13(12):6108–6119, 2017.

Jennifer N Wei, David Duvenaud, and Alán Aspuru-Guzik. Neural networks for the prediction of
organic chemistry reactions. ACS central science, 2(10):725–732, 2016.

David Weininger. SMILES, a chemical language and information system. 1. Introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Qing-You Zhang and João Aires-de Sousa. Structure-based classification of chemical reactions
without assignment of reaction centers. J. Chem. Inf. Mod., 45(6):1775–1783, 2005.

R. Zhao, T. Luong, and E. Brevdo. Neural machine translation (seq2seq) tutorial, 2017. URL
https://github.com/tensorflow/nmt.

Paul M Zimmerman. Automated discovery of chemically reasonable elementary reaction steps.
Journal of computational chemistry, 34(16):1385–1392, 2013.

12

http://www.rdkit.org
http://dx.doi.org/10.1039/C8SC02339E
http://dx.doi.org/10.1039/C8SC02339E
https://github.com/tensorflow/nmt

Published as a conference paper at ICLR 2019

A EXAMPLE OF SYMMETRY AFFECTING EVALUATION OF ELECTRON PATHS

In the main text we described the challenges of how to evaluate our model, as different electron paths
can form the same products, for instance due to symmetry. Figure 6 is an example of this.

10

11

NH
12

13

14

HN
15

H
3
C 18

O
19

20

21

O
22

23

24

O
25

CH
3

26

Cl
17

Cl
1

2

N3

4

CH
3

9

5

6

H
3
C
8

7

Na
16

H
2
O
27

2

N12
11

10
N
H15

14

13

N3

4
H

3
C9

5

6

CH
3

8

7

+ + + + +

(a) Reaction as defined by USPTO SMILES

HN
15

14

13

NH
12

11

10

7

H
3
C
8

6

5
CH

3

9
4

N3
2

Cl
1

HN
15

14

13

NH
12

11

10

7

H
3
C
8

6

5
CH

3

9
4

N3
2

Cl
1

(b) Possible action sequences that all result in same major product.

Figure 6: This example shows how symmetry can affect the evaluation of electron paths. In this
example, although one electron path is given in the USPTO dataset, the initial N that reacts could be
either 15 or 12, with no difference in the final product. This is why judging purely based on electron
path accuracy can sometimes be misleading.

B FORMING NODE AND GRAPH EMBEDDINGS

In this section we briefly review existing work for forming node and graph embeddings, as well as
describing more specific details relating to our particular implementation of these methods. Figure 7
provides a visualization of these techniques. We follow the main text by denoting a set of molecules
asM, and refer to the atoms in these molecules (which are represented as nodes in a graph) as A.

We start with Gated Graph Neural Networks (GGNNs) (Li et al., 2016; Gilmer et al., 2017), which we
use for finding node embeddings. We denote these functions as hA :M→ R|A|×d, where we will
refer to the output as the node embedding matrix, HM ∈ R|A|×d. Each row of this node embedding
matrix represents the embedding of a particular atom; the rows are ordered by atom-mapped number,
a unique number assigned to each atom in a SMILES string. The GGNN form these node embeddings
through a recurrent operation on messages, mv , with v ∈ A, so that there is one message associated
with each node. At the first time step these messages, m(0)

v , are initialized with the respective atom
features shown in Table 4. GGNNs then update these messages in a recursive nature:

m(s)
v = GRU

m(s−1)

v ,
∑

i∈Ne1(v)

fsingle

(
m

(s−1)
i

)
+

∑

j∈Ne2(v)

fdouble

(
m

(s−1)
j

)
+

∑

k∈Ne3(v)

ftriple

(
m

(s−1)
k

)

(7)

Where GRU is a Gated Recurrent Unit (Cho et al., 2014), the functions Ne1(v), Ne2(v), Ne3(v)
index the nodes connected by single, double and triple bonds to node v respectively and fsingle(·),
fdouble(·) and ftriple(·) are linear transformations with learnable parameters. This process continues
for S steps (where we choose S = 4). In our implementation, messages and the hidden layer of the
GRU have a dimensionality of 101, which is the same as the dimension of the raw atom features. The
node embeddings are set as the final message belonging to a node, so that indexing a row of the node
embeddings matrix, HM, gives a transpose of the final message vector, ie [HM]v = m

(S)t
v .

13

Published as a conference paper at ICLR 2019

1 2 3

⇥

2 3

⇥

= RNN(

1

,

1

)

=

Apply update in to
non-H atoms

2

atom embedding

atom messageinitial atom features

+ Adouble
bond

= Asingle
bond

= fdown

 X

v2A0

�(fgate())fup()

!graph embedding

Repeat
2 3
many
times

v vall atoms

Figure 7: Visualization of how node embeddings and graph embeddings are formed. Node embed-
dings are d-dimensional vectors, one for each node. They are obtained using Gated Graph Neural
Networks (Li et al., 2016). These networks consist of a series of iterative steps where the embeddings
for each node are updated using the node’s previous embedding and a message from its neighbors.
Graph embeddings are q-dimensional vectors, representing a set of nodes, which could for instance
be all the nodes in a particular graph (Li et al., 2018). They are formed using a function on the
weighted sum of node embeddings.

Table 4: Atom features we use as input to the GGNN. These are calculated using RDKit.

Feature Description

Atom type 72 possible elements in total, one hot
Degree One hot (0, 1, 2, 3, 4, 5, 6, 7, 10)
Explicit Valence One hot (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14)
Hybridization One hot (SP, SP2, SP3, Other)
H count integer
Electronegativity float
Atomic number integer
Part of an aromatic ring boolean

14

Published as a conference paper at ICLR 2019

One can represent entire graphs with graph embeddings (Li et al., 2018; Johnson, 2017), which
are q-dimensional vectors representing a set of nodes; i.e. an entire molecule or set of molecules.
These are computed by the function g :M→ Rq. In practice the function we use consists of the
composition of two functions: g(·) = (r ◦ hA)(·).
Having already introduced the function hA(·), we now introduce the function r(·). This function, that
maps a set of node features to graph embeddings, r : R|A|×d → Rq , is similar to the readout functions
used for regressing on graphs detailed in (Gilmer et al., 2017, Eq. 3) and the graph embeddings
described in Li et al. (2018, §B.1). Specifically, r(·) consists of three functions, fgate(·), fup(·) and
fdown(·), which could be any multi-layer perceptron (MLP) but in practice we find that linear functions
suffice. These three functions are used to form the graph embedding as so:

r(HMt
) = fdown

(∑

v∈A′

σ (fgate([HM]v)) fup([HM]v)

)
. (8)

Where σ(·) is a sigmoid function. We can break this equation down into two stages. In stage (i),
similar to Li et al. (2018, §B.1), we form an embedding of one or more molecules (with vertices A′
and with A′ ⊆ A) by performing a gated sum over the node features. In this manner the function
fgate(·) is used to decide how much that node should contribute towards the embedding, and fup(·)
projects the node embedding up to a higher dimensional space; following Li et al. (2018, §B.1),
we choose this to be double the dimension of the node features. Having formed this embedding of
the graphs, we project this down to a lower q-dimensional space in stage (ii), which is done by the
function fdown(·).

C MORE TRAINING DETAILS

In this section we go through more specific model architecture and training details omitted from the
main text.

C.1 MODEL ARCHITECTURES

In this section we provide further details of our model architectures.

Section 3 of the main paper discusses our model. In particular we are interested in computing three
conditional probability terms: (1) pstartθ (a0 | M0,Me), the probability of the initial state a0 given
the reactants and reagents; (2) the conditional probability pθ(at | Mt, at−1, t) of the next state at
given the intermediate productsMt for t > 0; and (3) the probability pcontθ (ct | Mt) that the reaction
continues at step t.

Each of these is parametrized by NNs. We can split up the components of these NNs into a series of
modules: rcont(·), rreagent(·), f add(·), f remove(·) and f start(·). All of these operate on node embeddings
created by the same GGNN. In this section we shall go through each of these modules in turn.

As mentioned above (Eq. 8) both rcont(·) and rreagent(·) (which following the explanation in the
previous section, make up part of gcont(·) and greagent(·) respectively) consist of three linear functions.
For both, the function fgate(·) is used to decide how much each node should contribute towards
the embedding and so projects down to a scalar value. Again for both, fup(·) projects the node
embedding up to a higher dimensional space, which we choose to be 202 dimensions. This is double
the dimension of the node features, and similar to the approach taken by Li et al. (2018, §B.1).
Finally, fdown(·) differs between the two modules, as for rcont(·) it projects down to one dimension (ie
q = 1) (to later go through a sigmoid function and compute a stop probability), whereas for rreagent(·),
fdown(·) projects to a dimensionality of 100 (ie q = 100) to form the reagent embedding.

The modules for f add(·) and f remove(·), that operate on each node to produce an action logit, are both
NNs consisting of one hidden layer of 100 units. Concatenated onto the node features going into
these networks are the node features belonging to the previous atom on the path.

The final function, f start(·), is represented by an NN with hidden layers of 100 units. When condition-
ing on reagents (ie for ELECTRO) the reagent embeddings calculated by rreagent(·) are concatenated
onto the node embeddings and we use two hidden layers for our NN. When ignoring reagents (ie

15

Published as a conference paper at ICLR 2019

for ELECTRO-LITE) we use one hidden layer for this network. In total ELECTRO has approximately
250,000 parameters and ELECTRO-LITE has approximately 190,000.

Although we found choosing the first entry in the electron path is often the most challenging decision,
and greatly benefits from reagent information, we also considered a version of ELECTRO where we
fed in the reagent information at every step. In other words, the modules for f add(·) and f remove(·)
also received the reagent embeddings calculated by rreagent(·) concatenated onto their inputs. On the
mechanism prediction task (Table 2) this gets a slightly improved top-1 accuracy of 78.4% (77.8%
before) but a similar top-5 accuracy of 94.6% (94.7% before). On the reaction product prediction
task (Table 3) we get 87.5%, 94.4% and 96.0% top-1, 3 and 5 accuracies (87.0%, 94.5% and 95.9%
before). The tradeoff is this model is somewhat more complicated and requires a greater number of
parameters.

C.2 TRAINING

We train everything using Adam (Kingma and Ba, 2015) and an initial learning rate of 0.0001, which
we decay after 5 and 9 epochs by a factor of 0.1. We train for a total of 10 epochs. For training we
use reaction minibatch sizes of one, although these can consist of multiple intermediate graphs.

D FURTHER DETAILS ON IDENTIFYING REACTIONS WITH LINEAR FLOW
TOPOLOGY

This section provides further details on how we extract reactions with linear electron flow topology,
complementing Figure 3 in the main text. We start from the USPTO SMILES reaction string and
bond changes and from this wish to find the electron path.

The first step is to look at the bond changes present in a reaction. Each atom on the ends of the path
will be involved in exactly one bond change; the atoms in the middle will be involved in two. We
can then line up bond change pairs so that neighboring pairs have one atom in common, with this
ordering forming a path. For instance, given the pairs "11-13, 14-10, 10-13" we form the
unordered path "14-10, 10-13, 13-11". If we are unable to form such a path, for instance due
to two paths being present as a result of multiple reaction stages, then we discard the reaction.

For training our model we want to find the ordering of our path, so that we know in which direction
the electrons flow. To do this we examine the changes of the properties of the atoms at the two ends
of our path. In particular, we look at changes in charge and attached implicit hydrogen counts. The
gain of negative charge (or analogously the gain of hydrogen as H+ ions without changing charge)
indicates that electrons have arrived at this atom, implying that this is the end of the path; vice-versa
for the start of the path. However, sometimes the difference is not available in the USPTO data, as
unfortunately only major products are recorded, and so details of what happens to some of the reactant
molecules’ atoms may be missing. In these cases we fall back to using an element’s electronegativity
to estimate the direction of our path, with more electronegative atoms attracting electrons towards
them and so being at the end of the path.

The next step of filtering checks that the path alternates between add steps (+1) and remove steps (-1).
This is done by analyzing and comparing the bond changes on the path in the reactant and product
molecules. Reactions that involve greater than one change (for instance going from no bond between
two atoms in the reactants to a double bond between the two in the products) can indicate multi-step
reactions with identical paths, and so are discarded. Finally, as a last sanity check, we use RDKit
to produce all the intermediate and final products induced by our path acting on the reactants, to
confirm that the final product that is produced by our extracted electron path is consistent with the
major product SMILES in the USPTO dataset.

E PREDICTION USING OUR MODEL

At predict time, as discussed in the main text, we use beam search to find high probable chemically-
valid paths from our model. Further details are given in Algorithm 2. For ELECTRO this operation
takes 0.337s per reaction, although we do not parallelize the molecule manipulation across the
different beams, and so the majority of this time (0.193s) is used within RDKit to make intermediate

16

Published as a conference paper at ICLR 2019

Algorithm 2 Predicting electron paths at test time.
Input: MoleculeM0 (consisting of atoms A), reagentsMe , beam width K, time steps Tmax

1: P̂ = {(∅, log(1− calc_prob_continue(M0)))} .This set will store all completed paths.

2: Fremove=1 .Remove flag
3:
4: B̂ = ∅. .This set will store all possible open paths. Cleared at start of each timestep.
5: for all v ∈ A do
6: ρ = (v)
7: ppath = log calc_prob_continue(M0) + log calc_prob_initial(v,M0,Me)

8: B̂ = B̂ ∪ {(ρ, ppath)}
9: end for

10: B0 = pick_topK_actions(B̂) .We filter down to the top K most promising actions.
11:
12: for t in (1, . . . , Tmax) do
13: B̂ = ∅
14: for all (ρ, ppath) ∈ Bt−1 do
15: Mρ = calc_intermediate_mol(M0, ρ)
16: pc = calc_prob_continue(Mρ)

17: P̂ = P̂ ∪ {(ρ, ppath + log(1− pc))}
18: for all v ∈ A do
19: ρ′ = ρ_(v) .New proposed path is concatenation of old path with new node.
20: vt−1 = last element of ρ
21: B̂ = B̂ ∪ {(ρ′, ppath + log pc + log calc_prob_action(v,Mρ, vt−1, Fremove))}
22: end for
23: end for
24: Bt = pick_topK_actions(B̂)
25: Fremove = Fremove + 1 mod 2. .If on add step change to remove and vice versa.
26: end for
27:
28: P̂ = sort_on_prob(P̂)
Output: Valid completed paths and their respective probabilities, sorted by the latter, P̂

molecules and extract their features. At test time we take advantage of the embarrassingly parallel
nature of the task to parallelize across test inputs. To compute the log likelihood of a reaction (with
access to intermediate steps) it takes ELECTRO 0.007s.

F FURTHER EXAMPLE OF ACTIONS PROPOSED BY OUR MODEL

This section provides further examples of the paths predicted by our model. In Figures 8 and 9, we
wish to show how the model has learnt chemical trends by testing it on textbook reactions. In Figure
10 we show further examples taken from the USPTO dataset.

17

Published as a conference paper at ICLR 2019

H3C Mg

Br

CH3

O

N

CH3

O

O

Figure 8: Predicted mechanism of our model on reactant molecules. Green arrow shows preferred
mechanism, whereas pink shows the model’s second preferred choice. Here, the first-choice prediction
is incorrect, but chemically reasonable, as the Weinreb amide is typically used together in reactions
with Magnesium species. The second-choice prediction is correct.

O

O
S

O

OSH
+

NO2

Cl

O

O

NO2

+

Cl

O

O

+

O
O

a)

b)

c)

O

O

+

Figure 9: Additional typical selectivity examples: Here, the expected product is shown on the right.
The blue arrows indicate the top ranked paths from our model, the red arrows indicate other possibly
competing but incorrect steps, which the model does not predict to be of high probability. In all
cases, our model predicted the correct products. In b) and c), our model correctly recovers the
regioselectivity expected in electrophilic aromatic substitutions.

18

Published as a conference paper at ICLR 2019

O

O

NO

O

N

S

O

F
F

F
O

prob(path 1) = 0.13

prob(path 2) = 0.08 prob(path 3) = 0.05

first choice correct

1st Choice

2nd Choice

3rd Choice

Br

O O

O

O

F

OO

FF

3rd choice correct

p(path 1) =0.24

p(path 2) = 0.15

p(path 3) = 0.12

O

O

O

N
O

N

N

I
Na

p(path 1) =0.58 p(path 2) =0.06

p(path 3) =0.021st choice correct

O

N

O

O

N

F

N

N N

ClN

N N

F
F

F

F

F

O

N

prob(path 1) =0.17

prob(path 2) =0.02

prob(path 3) =0.01

3rd choice correct

(not shown here but follows path
1 then goes back to
Cl before back to C again)

A

B

C D

Figure 10: Four examples of the paths predicted by the ELECTRO-LITE. (These reactions have been
taken from the USPTO dataset and have not been seen by the model in training).

19

	Introduction
	Background
	Molecules and Chemical Reactions
	Related Work
	Linear Electron Flow Reactions

	The Generative Model
	Reaction Mechanism Identification
	Experiments and Evaluation
	Reaction Mechanism Prediction
	Reaction Product Prediction
	Qualitative Analysis

	Limitations and Future Directions
	Conclusion
	Example of symmetry affecting evaluation of electron paths
	Forming node and graph embeddings
	More training details
	Model architectures
	Training

	Further details on identifying reactions with linear flow topology
	Prediction using our model
	Further example of actions proposed by our model

