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1. Introduction

Deep learning and Convolutional Neural Networks (ConvNets) (Krizhevsky et al., 2012;
Durand et al., 2015) recently show outstanding performances for visual recognition. The
representation learning capacity of ConvNets has also been successfully applied to medical
image analysis and recognition in mammography (Huynh et al., 2016; Lévy and Jain, 2016;
Geras et al., 2017; Kooi et al., 2017; Nikulin; Lotter et al., 2017).

A major challenge in the medical domain relates to the collection of a large amount of
data with clean annotations, which is especially difficult due to the strong level of expertise
required to perform data labelling. Regarding mammography image analysis for Computer-
Aided Diagnosis (CAD), annotations can be very diverse, from global binary image labels
(presence / absence of a cancer), e.g. DDSM (Heath et al., 2000), to finer-grained and
pixel-level annotations (mass, calcification, both benign or malignant labels), to BI-RADS
labeling, e.g. INbreast (Moreira et al., 2012).

In this work, we propose to leverage these heterogeneous but correlated forms of anno-
tations to improve performances of deep ConvNets. To this end, we introduce a Multi-Task
learning (MTL) scheme, which combines pixel-level segmentation and global image-level
classification annotations. The proposed architecture is based on a Fully Convolutional
Networks (FCN) Long et al. (2015), which enables efficient feature sharing between image
regions and fast prediction. We evaluate our model on the DDSM database (Heath et al.,
2000), with cancer classification and pixel segmentation with five classes. We show that
the joint training is able to learn shared representations that are beneficial for both tasks.
Our method can be seen as a generalization of approaches relying on detection annotations
to pre-train deep model for a classification purpose, e.g. Nikulin; Lotter et al. (2017). We
show that our joint training of classification and segmentation enables a better cooperation
between tasks.
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2. Proposed Multi-Task Classification and Segmentation Architecture

As shown in Figure 1, the proposed network is based on a FCN with a ResNet backbone (He
et al., 2016) to extract local features. The FCN enables efficient feature computation in
each region but also sharing computation from all regions in the whole image in a single
forward pass. In addition, we can still process input images with high spatial resolution
(e.g. 1152 × 832 in our experiments). We combine segmentation and classification, thus
heterogeneous annotations can be leveraged to jointly optimize both tasks:

Ltotal = λ · Lcls + (1− λ) · Lseg (1)

Figure 1: Overall architecture. It is based on a FCN to extract local features from the
whole input images. Local features are then encoded by S-Net to yield lesion segmentation,
and aggregated by C-Net to yield cancer classification.

Segmentation Network (S-Net) The segmentation network aims at classifying each
pixel in the input image into a set of K pre-defined classes. More precisely, from the
output tensor Tf of the backbone FCN, S-Net first consists in adding a transfer layer of
1 × 1 convolution to transform the output of the feature extraction network from large
scale dataset to our K-class target dataset. Then, we perform an upsampling to create the
semantic segmentation. On top of that, we define a weighted cross-entropy loss Lseg to
address the class-imbalance issue (’healthy’ regions are dominant compared to other lesion
classes).

Classification Network (C-Net) The classification branch takes as input the shared
tensor Tf and outputs a single class label assessing the presence or absence of cancer in the
input image. C-Net is composed of two steps. Firstly, local features are aggregated with a
global average pooling (Lin et al., 2013) (GAP) to yield a single score per modality, over all
regions in the input image. The second step consists in the last fully connected layer to get
the final probability of cancer. We define the classification loss Lcls as a standard binary
cross entropy as is common in classification tasks.
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3. Results and Discussion

Quantitative results To highlight the relevance of our method, we perform classification
and segmentation in three ways with the labeling scheme depicted in Figure 1: (1) train
individually classification and segmentation models to get baseline performances on each
task, (2) sequentially train the segmentation model and finetune local features for the clas-
sification task, and (3) jointly train both tasks. We evaluate segmentation and classification
performances using respectively the mean Dice score over five classes and the Area Under
Curve (AUC) of Receiver Operating Characteristic (ROC). As shown in Table 1, by pre-
training the model on segmentation, our classification performance is slightly improved by
∼ 1 pt to AUC(2) = 81.37%, compared to the pure classification with AUC(1) = 80.54%.
As for our joint method, we achieved a significant gain both in segmentation and classifica-
tion of ∼ 3.5 pts (meanDice(3) = 38.28%) and ∼ 2.5 pts (AUC(3) = 84.02%) respectively,
compared to its sequential counterpart.

Table 1: Segmentation and classification performances on DDSM (Heath et al., 2000).

Training strategy Cls baseline(1) Seg baseline(1) Seg-cls sequential(2) Seg-cls joint(3)
Seg perf (mean Dice) - 34.98 34.98 38.28
Cls perf (AUC) 80.54 - 81.37 84.02

Qualitative results Figure 2 illustrates classification and segmentation predictions for
two images from DDSM, one normal and one cancer. In both cases, our joint method
outperforms the sequential one for both classification and segmentation, and succeeds to
capture lesions with highly precise localisation capability.

Figure 2: Segmentation and classification examples on DDSM (Heath et al., 2000). From
left to right, the first three images show a normal case with ground-truth annotations and
results from the segmentation-classification sequential and the segmentation-classification
joint methods. The next three images show the same things for a cancer case.

Conclusion

In this work, we proposed a multitask learning scheme which combines segmentation and
classification for cancer diagnosis in mammography. The achieved performances have shown
the effectiveness of our method on both recognition tasks, lesion segmentation and cancer
classification. Future works include investigating more powerful models and leveraging
heterogeneous datasets to improve predictive performances.

3



Multitask Learning for Cancer Diagnosis in Mammography

References

Thibaut Durand, Nicolas Thome, and Matthieu Cord. Mantra: Minimum maximum la-
tent structural svm for image classification and ranking. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2713–2721, 2015.

Krzysztof J Geras, Stacey Wolfson, S Kim, Linda Moy, and Kyunghyun Cho. High-
resolution breast cancer screening with multi-view deep convolutional neural networks.
arXiv preprint arXiv:1703.07047, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

M Heath, K Bowyer, D Kopans, R Moore, and P Kegelmeyer. The digital database for
screening mammography. Digital mammography, pages 431–434, 2000.

Benjamin Q Huynh, Hui Li, and Maryellen L Giger. Digital mammographic tumor clas-
sification using transfer learning from deep convolutional neural networks. Journal of
Medical Imaging, 3(3):034501, 2016.

Thijs Kooi, Geert Litjens, Bram van Ginneken, Albert Gubern-Mérida, Clara I Sánchez,
Ritse Mann, Ard den Heeten, and Nico Karssemeijer. Large scale deep learning for
computer aided detection of mammographic lesions. Medical image analysis, 35:303–312,
2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.
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