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Abstract

Natural Language Processing is now dominated by deep learning models. Baseline1

is a library to facilitate reproducible research and fast model development for NLP
with deep learning. It provides easily extensible implementations and abstractions
for data loading, model development, training, hyper-parameter tuning, deployment
to production, and a leaderboard to track experimental results.

1 Introduction

In the past few years, deep learning models have become common in NLP literature, and comparing
new models against deep baselines has become standard practice. The quality of baseline implemen-
tation varies drastically, leaving some uncertainty about the importance of results. In some cases,
researchers compare against weak baselines which may yield large relative gains [1]. Deep learning
implementations frequently provide their own from-scratch replication, including their own training
pipeline, error metrics and models, which can introduce errors and cause variation in performance.
Also, deep learning models have inherent randomness – models with the same hyper-parameters will
have different performance across multiple runs and it is often unclear if reported performance is the
mean or the max of all the models trained. Careful hyper-parameter tuning is critical for baselines
to accurately represent the performance improvement of a new method [2]. Our software, Baseline
[3], is designed to make it easy for researchers to create new deep models for common NLP tasks in
a way that is reproducible and built on strong baselines. A short demonstration of the software is
provided 2.

2 Baseline

Baseline provides the following benefits to researchers:

1. Offers a comprehensive pipeline from pre-processing to training and evaluation in an “a la
carte” format that allows for easy swapping of datasets, models, and other aspects of the
process

2. Makes it easy for users to test new techniques against strong baselines to get an accurate
impression of their improvements

3. Encourages reproducible research using the experimental control module (XPCTL) which
saves model results and experimental details and makes access easy through a simple
leaderboard interface

4. Allows the user to choose between the three most popular deep learning frameworks for
NLP – Tensorflow [4], PyTorch [5] and DyNet [6]

1https://github.com/dpressel/baseline
2https://www.youtube.com/watch?v=AwTjp1RihvU
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5. Provides a tool to automatically tune the hyper-parameters for an experiment

6. Represents embeddings as arbitrary sub-graphs, providing an easy way to leverage complex
embedding strategies such as contextual word embeddings

7. Provides tools to easily export the models to production environments such as
Tensorflow Serving

The Baseline software (see figure 1 a) is comprised of a core API, a module for Modeling, Experi-
mentation And Development (MEAD), Experiment Control (XPCTL), and Hyper-parameter Control
(HPCTL).

Baseline’s components offer support for all aspects of the deep learning process. At its core, Baseline
makes it possible to extend every part of the training process, allowing the researcher to provide
custom readers, vectorizers, embeddings, models and trainers with simple extension points. These
components are designed to maximize reuse and minimize the amount of code required to create new
models and architectures. MEAD automatically downloads datasets and embeddings from the original
source on first use, backed by a configurable index and a local cache. It supports a generalized
training facility with a simple JSON or YAML configuration that allows users full control over each
component involved in training. Baseline has full Docker support which removes the possibility of
dependency version mismatches, and makes it easy to run and isolate results.

To facilitate reproducible research, Baseline has the ability to save models, datasets, hyper-parameters,
and other information required to repeat an experiment to a database. XPCTL creates a command line
interface to enable results tracking and comparisons and stores the models in a persistent location.
We currently support both Postgres and MongoDB backends. A user can retrieve the configuration
file for any previously recorded experiment. The results of experiments can be sorted by any metric or
filtered for particular users. XPCTL aggregates results from different instances of the same model and
reports the mean and standard deviation across runs to accurately represent the performance metrics
of an experimental model (see figure 1 b.). The reporting section within the settings file allows
training through MEAD and automatically pushes experimental results to the leaderboard database.

Baseline provides a set of strong baseline models for classification, sequence tagging, encoder-decoder
and language modeling, four of the most common tasks in NLP. It supports CNNs, LSTMs and
Neural Bag of Words (NBoW) models for classification [7, 8, 9, 10], CNN-BLSTM-CRFs for tagging
[11], LSTM word and character language modeling [12, 13, 14] and Seq2Seq encoder-decoders
with attention [15, 16]. Provided baselines have comparable performance and options across all
frameworks. In addition, extensions are also provided for State-of-the-Art models such as ELMo
[17]. The most up-to-date results are available in the repository.

At the core of Baseline is a “go to the user" philosophy – it supports the most popular deep learning
frameworks as backends (Tensorflow, PyTorch and DyNet), providing an implementation in each
framework for each task and model. All backends perform comparably in terms of accuracy.

When using deep learning models, both baselines and proposed models require extensive hyper-
parameter tuning to achieve optimal results [2]. An automatic approach to finding and validating good
hyper-parameters is necessary to maintain high velocity during research. Using a MEAD configuration
with sampling directives, our new module Hyper-parameter Control (HPCTL) launches and manages
parallel jobs to perform the hyper-parameter search and allows culling of low performing jobs. While
random search is often superior to grid search [18] HPCTL can also perform a grid search over any
combination of parameters. HPCTL has access to previous results to allow for cascading sampling
procedures and allows users to supply their own sampling functions, in keeping with our goals to
allow users to adapt our tools to their needs while maintaining high performance.

Another important feature of Baseline is the support for contextual embeddings. Until recently,
DNN models for NLP have focused primarily on pre-trained word embeddings trained on large
unsupervised datasets [19, 20] to map a word to a continuous dense representation. However, recent
work in NLP has focused heavily on transfer learning and contextual embeddings, where a language
model is pre-trained on external data and used within a deep model to provide a better context
representation [17, 21, 22, 23, 24]. These pre-trained contextual embeddings can yield large gains
in performance, making their use appealing, but they represent a more complex sub-graph than the
single look-up table layer which previously dominated deep models. Often these representations
are concatenated with pre-trained word embeddings and treated as model inputs. A challenge for
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$ xpctl results classify SST2 --metric acc --metric f1 --sort acc
                                              f1                                              acc                                        
                                         num_exps      mean       std       min       max num_exps      mean       std       min       max
sha1                                                                                                                                      
ff37ce73365a152a9a652b60ef8036ce23bd608c      2.0  0.879907  0.004127  0.876988  0.882825      2.0  0.876167  0.005048  0.872597  0.879736
8ab6ab6ee8fdf14b111223e2edf48750c30c7e51      5.0  0.876028  0.006098  0.871570  0.886752      5.0  0.875892  0.004545  0.871499  0.883580
6b562530e75cff4053452a3d9a6359b773873234      5.0  0.867758  0.002137  0.865438  0.870021      5.0  0.866227  0.003354  0.861614  0.869303

(a)

(b)

Figure 1: a. Architecture of Baseline. b. Results from a sample XPCTL query.

effective software is to represent such arbitrary embeddings sub-graphs, and use them in a way that
makes the network easy to extend, generalize, and augment for research experiments.

Baseline supports common formats for word embeddings, such as those used by Word2Vec and
GloVe, which yield a framework-specific look-up table sub-graph in the model. It also supports
extensions such as LSTMs, transformers or convolutions on the input sub-graph, making contextual
embeddings straightforward and idiomatic. The feature section of the MEAD configuration describes
how the text tokens are converted to inputs necessary for the underlying backend framework. First, a
vectorizer is used to build initial dictionaries over tokens and ultimately do the feature extraction,
using a vocabulary provided to them. These vectorizers can be serialized during training and
reused for test. The vocabularies are automatically saved by MEAD. For tagging, dictionary-based
vectorizers are also supported, allowing features to be composed from multiple columns of a
CoNLL format file.

In addition to its value in a research environment, Baseline also provides functionality for easy deploy-
ment of DNN models. In production, DNNs are often deployed within a model serving framework
such as TensorFlow Serving. Baseline provides exporter utilities for all implementations. Some
customization may be required for user-defined models, for which we provide interfaces.

The design patterns used in Baseline make it easy to reuse components and simplify the process of
new model development. This makes it simple for a researcher to build custom models and complex
training regimes. The readers can re-use the same vectorizers for reading files for different
tasks. The embeddings sub-graph concept allows models to delegate complex word representations,
simplifying model inputs and data feeding. The base models provide a set of virtual functions that
can be individually overridden, minimizing the amount of code needed to develop new models.

3 Conclusion and Future Work

Deep learning has changed the landscape of NLP research, and is still evolving quickly. The goal
of Baseline is to provide strong baselines, facilitate reproducible research, and allow fast model
development and deployment. It follows recent best practices in deep learning for NLP and makes it
easier to iterate new ideas.

Future efforts on Baseline will focus on solidifying the infrastructure developed to make publishing
models and results simpler across the community as well as unifying the flow of model development
with push-button tooling. We will continually update the baselines and underlying building blocks to
reflect the community direction over time. We also anticipate addition of more tasks, metrics, and
hope to support more frameworks.
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