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ABSTRACT

Recent progress in image recognition has stimulated the deployment of vision sys-
tems (e.g. image search engines) at an unprecedented scale. As a result, visual
data are now often consumed not only by humans but also by machines. Mean-
while, existing image processing methods only optimize for better human percep-
tion, whereas the resulting images may not be accurately recognized by machines.
This can be undesirable, e.g., the images can be improperly handled by search en-
gines or recommendation systems. In this work, we propose simple approaches to
improve machine interpretability of processed images: optimizing the recognition
loss directly on the image processing neural network or through an intermediate
transforming model, a process which we show can also be done in an unsupervised
manner. Interestingly, the processing model’s ability to enhance the recognition
performance can transfer when evaluated on different recognition models, even if
they are of different architectures, trained on different object categories or even
different recognition tasks. This makes the solutions applicable even when we do
not have the knowledge about future downstream recognition models, e.g., if we
are to upload the processed images to the Internet. We conduct comprehensive
experiments on three image processing tasks with two downstream recognition
tasks, and confirm our method brings substantial accuracy improvement on both
the same recognition model and when transferring to a different one, with minimal
or no loss in the image processing quality.

1 INTRODUCTION

Human: It's a bird ✔

Machine: It's a kite ✘      
Image Processing 

Model

...

Input Image Output Image

Figure 1: Image processing has been used to generate im-
ages that look good for human, but not machines. In this
work we study the problem of making processed images
more recognizable by machines.

Unlike in image recognition where a neu-
ral network maps an image to a semantic la-
bel, a neural network used for image process-
ing maps an input image to an output im-
age with some desired properties. Examples
include image super-resolution (Dong et al.,
2014), denoising (Xie et al., 2012), deblur-
ring (Eigen et al., 2013), colorization (Zhang
et al., 2016) and style transfer (Gatys et al.,
2015). The goal of such systems is to produce
images of high perceptual quality to a human
observer. For example, in image denoising, we aim to remove noise in the signal that is not useful to
an observer and restore the image to its original “clean” form. Metrics like PSNR and SSIM (Wang
et al., 2004) are often used (Dong et al., 2014; Tong et al., 2017) to approximate human-perceived
similarity between the processed images with the original images, and direct human assessment on
the fidelity of the output is often considered the “gold-standard” assessment (Ledig et al., 2017;
Zhang et al., 2018b). Therefore, many techniques (Johnson et al., 2016; Ledig et al., 2017; Isola
et al., 2017) have been proposed for making the output images look perceptually pleasing to human.

However, image processing outputs may not be accurately recognized by image recognition sys-
tems. As shown in Fig. 1, the output image of an denoising model could easily be recognized by
a human as a bird, but a recognition model classifies it as a kite. One could specifically train a
recognition model only on these output images produced by the denoising model to achieve better
performance on such images, or could leverage some domain adaptation approaches to adapt the
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recognition model to this domain, but the performance on natural images can be harmed. This re-
training/adaptation scheme might also be impractical considering the significant overhead induced
by catering to various image processing tasks and models.

With the fast-growing size of image data, many images are often “viewed” and analyzed more by
machines than by humans. Nowadays, any image uploaded to the Internet is likely to be analyzed
by certain vision systems. For example, Facebook uses a system called Rosetta to extract texts
from over 1 billion user-uploaded images every day (Maria, 2018). It is of great importance that
the processed images be recognizable by not only humans, but also by machines. In other words,
recognition systems (e.g., image classifier or object detector), should be able to accurately explain
the underlying semantic meaning of the image content. In this way, we make them potentially
easier to search, recommended to more interested audience, and so on, as these procedures are
mostly executed by machines based on their understanding of the images. Therefore, we argue that
image processing systems should also aim at better machine recognizability. We call this problem
“Recognition-Aware Image Processing”.

It is also important that the enhanced recognizability is not specific to any concrete neural network-
based recognition model, i.e., the improvement on recognition performance is only achieved when
the output images are evaluated on that particular model. Instead, the improvement should ideally
be transferable when evaluated on different models, to support its usage without access to possible
future recognition systems, since we may not decide what model will be used for recognizing the
processed image, for example if we upload it to the Internet or share it on social media. We may
not know what network architectures (e.g. ResNet or VGG) will be used for inference, what object
categories the downstream model recognizes (e.g. animals or scenes), or even what task will be
performed on the processed image (e.g. classification or detection). Without these specifications, it
might be hard to enhance image’s machine semantics.

In this work, we propose simple and highly effective approaches to make image processing out-
puts more accurately recognized by downstream recognition systems, transferable among different
recognition architectures, categories and tasks. The approaches we investigate add a recognition
loss optimized jointly with the image processing loss. The recognition loss is computed using a
fixed recognition model that is pretrained on natural images, and can be done in an unsupervised
manner, e.g., without semantic labels of the image. It can be optimized either directly by the orig-
inal image processing network, or through an intermediate transforming network. We conduct ex-
tensive experiments, on multiple image enhancement/restoration (super-resolution, denoising, and
JPEG-deblocking) and recognition (classification and detection) tasks, and demonstrate that our ap-
proaches can substantially boost the recognition accuracy on the downstream systems, with minimal
or no loss in the image processing quality measured by conventional metrics. Also, the accuracy im-
provement transfers favorably among different recognition model architectures, object categories,
and recognition tasks, which renders our simple solution effective even when we do not have access
to the downstream recognition models. Our contributions can be summarized as follows:

• We propose to study the problem of enhancing the machine interpretability of image processing
outputs, a desired property considering the amount of images analyzed by machines nowadays.

• We propose simple and effective methods towards this goal, suitable for different use cases, e.g.,
without ground truth semantic labels. Extensive experiments are conducted on multiple image
processing and recognition tasks, demonstrating the wide applicability of the proposed methods.

• We show that using our simple approaches, the recognition accuracy improvement could transfer
among recognition architectures, categories and tasks, a desirable behavior making the proposed
methods applicable without access to the downstream recognition model.

2 RELATED WORK

Image processing/enhancement problems such as super-resolution and denoising have a long history
(Tsai, 1984; Park et al., 2003; Rudin et al., 1992; Candès et al., 2006). Since the initial success of
deep neural networks on these problems (Dong et al., 2014; Xie et al., 2012; Wang et al., 2016b),
a large body of works try to investigate better model architecture design and training techniques
(Dong et al., 2016; Kim et al., 2016b; Shi et al., 2016; Kim et al., 2016a; Mao et al., 2016; Lai et al.,
2017; Tai et al., 2017a; Tong et al., 2017; Tai et al., 2017b; Lim et al., 2017; Zhang et al., 2018d; Ahn
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et al., 2018; Lefkimmiatis, 2018; Chen et al., 2018; Haris et al., 2018b), mostly on the image super-
resolution task. These works focus on generating high visual quality images under conventional
metrics or human evaluation, without considering recognition performance on the output.

There are also a number of works that relate image recognition with processing. Some works (Zhang
et al., 2016; Larsson et al., 2016; Zhang et al., 2018c; Sajjadi et al., 2017) use image classification
accuracy as an evaluation metric for image colorization/super-resolution, but without optimizing
for it during training. Wang et al. (2016a) incorporates super-resolution and domain adaptation
techniques for better recognition on very low resolution images. Bai et al. (2018) train a super-
resolution and refinement network simultaneously to better detect faces in the wild. Zhang et al.
(2018a) train networks for face hallucination and recognition jointly to achieve better recover the
face identity from low-resolution images. Liu et al. (2018) considers 3D face reconstruction and
trains the recognition model jointly with the reconstructor. Sharma et al. (2018) trains a classification
model together with an enhancement module. Our problem setting is different from these works, in
that we assume we do not have the control on the recognition model, as it might be on the cloud
or decided in the future, thus we advocate adapting the image processing model only. This also
ensures the recognition model is not harmed on natural images. Haris et al. (2018a) investigate
how super-resolution could help object detection in low-resolution images. VidalMata et al. (2019)
and Banerjee et al. (2019) also aims to enhance machine accuracy on poor-conditioned images but
mostly focus on better image processing techniques without using recognition models. Wang et al.
(2019) propose a method to make denoised images more accurately segmented, also presenting some
interesting findings in transferability. Most existing works only consider one image processing task
or image domain, and develop specific techniques, while our simpler approach is task-agnostic and
potentially more widely applicable. Our work is also related but different from those which aims for
robustness of the recognition model (Hendrycks & Dietterich, 2019; Li et al., 2019; Shankar et al.,
2018), since we focus on the training of the processing models and assume the recognition model is
given.

3 METHOD

In this section we first introduce the problem setting of “recognition-aware” image processing, and
then we develop various approaches to address it, each suited for different use cases.

3.1 PROBLEM SETTING

In a typical image processing problem, given a set of training input images {Ikin} and corresponding
target images {Iktarget} (k = 1, · · ·N ), we aim to train a neural network that maps an input image
to its corresponding target. For example, in image denoising, Ikin is a noisy image and Iktarget is the
corresponding clean image. Denoting this mapping network as P (for processing), parameterized
by WP , during training our optimization objective is:

min
WP

Lproc =
1

N

N∑
k=1

lproc
(
P
(
Ikin

)
, Iktarget

)
, (1)

where P
(
Ikin

)
is simply the output of the processing model Iout, and lproc is the loss function

for each sample. The pixel-wise mean-squared-error (MSE, or L2) loss is one of the most popu-
lar choices. During evaluation, the performance is typically measured by average similarity (e.g.,
PSNR, SSIM) between Iktarget and Ikout = P

(
Ikin

)
, or through human assessment.

In our problem setting of recognition-aware processing, we are interested in a recognition task,
with a trained recognition model R (R for recognition), parameterized by WR. We assume each
input/target image pair Ikin/I

k
target is associated with a ground truth semantic label Sk for the recog-

nition task. Our goal is to train a image processing model P such that the recognition performance
on the output images {Ikout = P

(
Ikin

)
} is high, when evaluated using R with the semantic labels

{Sk}. In practice, the recognition model R might not be available (e.g., on the cloud), in which case
we could resort to other models if the performance improvement transfers among models.
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Figure 2: Left: RA (Recognition-Aware) processing. In addition to the image processing loss, we add a recog-
nition loss using a fixed recognition model R, for the processing model P to optimize. Right: RA with trans-
former. “Recognition Loss” stands for the dashed box in the left figure. A Transformer T is introduced between
the output of P and input of R, to optimize recognition loss. We cut the gradient from recognition loss flowing
to P , such that P only optimizes the image processing loss and the image quality is guaranteed not affected.

3.2 OPTIMIZING RECOGNITION LOSS

Given our goal is to make the output images by P more recognizable by R, it is natural to add a
recognition loss on top of the objective of the image processing task (Eqn. 1) during training:

min
WP

Lrecog =
1

N

N∑
k=1

lrecog
(
R
(
P
(
Ikin

))
, Sk

)
(2)

lrecog is the per-example recognition loss defined by the downstream recognition task. For example,
for image classification, lrecog could be the cross-entropy (CE) loss. Adding the image processing
loss (Eqn. 1) and recognition loss (Eqn. 2) together, our total training objective becomes

min
WP

Lproc + λLrecog (3)

where λ is the coefficient controlling the weights of Lrecog relative to Lproc. We denote this simple
solution as “RA (Recognition-Aware) processing”, which is visualized in Fig. 2 left. Note that
once the training is finished, the recognition model used as loss is not needed anymore, and during
inference, we only need the processing model P, thus no additional overhead is introduced when the
model is actually put to deployment.

A potential shortcoming of directly optimizing Lrecog is that it might deviate P from optimizing
the original loss Lproc, and the trained P will generate images that are not as good as if we only
optimize Lproc. We will show that in experiments, however, with proper choice of λ, we could
substantially boost the recognition performance with minimal or no sacrifice on image quality.

If using R as a fixed loss function can only boost the recognition accuracy on R itself, the use of
the method could be restricted. Sometimes we do not have the knowledge about the downstream
recognition model or even task, but we still would like to improve future recognition performance.
Interestingly, we find that image processing models trained with the loss of one recognition model
R1, can also boost the performance when evaluated using recognition model R2, even if model R2

has a different architecture, recognizes a different set of categories or even is trained for a different
task. This makes our method effective even when we cannot access the target downstream model,
in which case we could use another trained model we do have access to as the loss function. This
phenomenon also implies that the “recognizability” of a processed image can be a more general
notion than just the extent it fits to a specific model. More details on how the improvement is
transferable among different recognition models will be presented in the experiments.

3.3 UNSUPERVISED OPTIMIZATION OF RECOGNITION LOSS

The solution mentioned above requires semantic labels available for training images, which however,
may not be satisfied all the time. In this case, we could instead resort to regress the recognition
model’s output of the target image R(Iktarget), given the target images {Iktarget} at hand, and that
the recognition model R is pretrained and fixed. The recognition objective in Eqn. 2 changes to

min
WP

Lrecog =
1

N

N∑
k=1

ldis
(
R
(
P
(
Ikin

))
, R
(
Iktarget

))
(4)

4



Under review as a conference paper at ICLR 2020

where ldis is a distance metric between R’s output given input of processed image P
(
Ikin

)
and

ground truth target image Iktarget. For example, when R is a classification model and outputs a
probability distribution over classes, ldis could be the KL divergence or simply aL2 distance. During
evaluation, the output of R is still compared to the ground truth semantic label Sk. We call this
approach “unsupervised RA”. Note that it is only “unsupervised” for training model P , but not
necessarily for the model R. The (pre)training of the model R is not our concern since in our
problem setting (Sec. 3.1) R is a given trained model, and it can be trained in any manner, either
with or without full supervision, and it can even be trained with another dataset as we later show in
Sec. 4.4. This approach is to some extent related to the “knowledge distillation” paradigm (Hinton
et al., 2014) used for network model compression, where the output of a large model is used to guide
the output of a small model, given the same input images. Instead we use the same recognition model
R but guide the upstream processing model to generate input to R which produces similar output
with that of the target image.

3.4 USING AN INTERMEDIATE TRANSFORMER

Sometimes we do want to guarantee that the added recognition lossLrecog will not deviate the model
P from optimizing its original loss. We can achieve this by introducing another intermediate trans-
formation model T . After the input image going through the image processing model P , the output
image is first fed to the model T , and T ’s output image serves as the input for the recognition model
R (Fig. 2 right). In this case, T ’s parameters WT are optimized for minimizing the recognition loss:

min
WT

Lrecog =
1

N

N∑
k=1

lrecog
(
R
(
T
(
P
(
Ikin

)))
, Sk

)
(5)

In this way, with the help of T on optimizing the recognition loss, the model P can now “focus on”
its original image processing loss Lproc. The optimization objective becomes:

min
WP

Lproc +min
WT

λLrecog (6)

In Eqn. 6, P is still solely optimizing Lproc as in the original image processing problem (Eqn. 1). P
is learned as if there is no recognition loss, and therefore the image processing quality of its output
will not be affected. This could be achieved by “cutting” the gradient generated by Lrecog between
the model T and P (Fig. 2 right). The responsibility for a better recognition performance falls on
the model T . We term this solution as “RA with transformer”.

The downside of using a transformer compared with directly optimizing recognition loss using the
processing model, is that there are two instances for each image (the output of model P and T ), one
is “for human” and the other is “for machines”. Also, as we will show later, it can sometimes harm
the transferability of the performance improvement, possibly because there is no image processing
loss as a constraint on T ’s output. Therefore, the transformer is best suited for the case where we
want to guarantee the image processing quality not affected at all, at the expense of maintaining
another image and losing some transferability.

4 EXPERIMENTS

We evaluate our proposed methods on three image processing tasks, namely image super-resolution,
denoising, and JPEG-deblocking. More specifically, these are image enhancement or restoration
tasks, where usually the target image is an enhanced image or the original image. Other more
broader image processing tasks such as pattern detection, segmentation, object extraction are not
considered in this work. To obtain the input images, for super-resolution, we use a downsampling
scale factor of 4×; for denoising, we add Gaussian noise on the images with a standard deviation of
0.1 to obtain the noisy images; for JPEG deblocking, a quality factor of 10 is used to compress the
image to JPEG format. We pair these three tasks with two common visual recognition tasks, image
classification and object detection. We adopt the SRResNet (Ledig et al., 2017) as the architecture
of the image processing model P , due to its popularity and simplicity. For the transformer model T ,
we use the 6-block ResNet architecture in CycleGAN (Zhu et al., 2017), a general-purpose image
to image transformation network. For classification we use the ImageNet and for detection we use
PASCAL VOC as our benchmark. The recognition architectures are ResNet, VGG and DenseNet.
Training is performed with the training set and results on the validation set are reported. For more
details on the training settings and hyperparameters of each task, please refer to Appendix A.
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4.1 EVALUATION ON THE SAME RECOGNITION MODEL

Task Super-resolution Denoising JPEG-deblocking
Classification Model R18 R50 R101 D121 V16 R18 R50 R101 D121 V16 R18 R50 R101 D121 V16
No Processing 46.3 50.4 55.5 51.6 42.1 46.8 55.8 61.3 59.7 46.7 43.1 47.7 55.2 49.2 43.9
Plain Processing 52.6 58.8 61.9 57.7 50.2 61.9 68.0 69.1 66.4 60.9 48.2 53.8 56.0 52.9 42.4
RA Processing 61.8 67.3 69.6 66.0 61.9 65.1 71.2 72.7 69.8 66.5 57.7 63.6 65.8 62.3 56.7
Unsupervised RA 61.3 66.9 69.4 65.3 61.0 61.7 68.6 70.8 67.1 63.6 53.8 60.4 63.4 59.7 53.1
RA w/ Transformer 63.0 68.2 70.1 66.5 63.0 65.2 70.9 72.3 69.6 65.9 59.8 65.1 66.7 63.9 58.7

(a) Accuracy (%) on ImageNet classification. The five models achieve 69.8, 76.2, 77.4, 74.7, 73.4 on original
images.

Task Super-resolution Denoising JPEG-deblocking
Detection Model R18 R50 R101 V16 R18 R50 R101 V16 R18 R50 R101 V16
No Processing 67.9 70.3 72.1 63.6 51.8 56.5 61.8 38.9 49.3 54.5 64.1 38.4
Plain Processing 69.2 70.7 73.3 64.2 68.9 72.0 74.7 65.8 63.7 66.5 70.4 60.3
RA Processing 71.2 74.4 75.6 68.1 70.9 73.7 75.6 67.6 67.4 70.4 72.9 63.9
RA w/ Transformer 71.4 74.2 75.6 66.0 71.0 73.9 75.9 67.7 68.5 70.7 73.7 64.4

(b) mAP on PASCAL VOC object detection. The four models achieve 74.2, 76.8, 77.9, 72.2 on original images.
Table 1: Recognition-Aware (RA) processing techniques can substantially boost the recognition accuracy.

We first show our results when evaluating on the same recognition model, i.e., the R used for evalu-
ation is the same as the R we use as the recognition loss in training. Table 1a shows our results on
ImageNet classification. ImageNet-pretrained classification models ResNet-18/50/101, DenseNet-
121 and VGG-16 are denoted as R18/50/101, D121, V16 in Table 1a. The “No Processing” row de-
notes the recognition performance on the input of the image processing model: for denoising/JPEG-
deblocking, this corresponds to the noisy/JPEG-compressed images; for super-resolution, the low-
resolution images are bicubic interpolated to the original resolution. “Plain Processing” denotes
conventional image processing models trained without recognition loss as described in Eqn. 1. We
observe that a plainly trained processing model can boost the accuracy over unprocessed images.
These two are considered as baselines in our experiments.

From Table 1a, using RA processing can significantly boost the accuracy of output images over
plainly processed ones, for all image processing tasks and recognition models. This is more promi-
nent when the accuracy of plain processing is lower, e.g., in super-resolution and JPEG-deblocking,
in which case we mostly obtain ∼10% accuracy improvement. Even without semantic labels, our
unsupervised RA can still in most cases outperform baseline methods, despite achieves lower ac-
curacy than its supervised counterpart. Also in super-resolution and JPEG-deblocking, using an
intermediate transformer T can bring additional improvement over RA processing.

The results for object detection are shown in Table 1b. We observe similar trend as in classification:
using recognition loss can consistently improve the mAP over plain image processing by a notable
margin. On super-resolution, RA processing mostly performs on par with RA with transformer,
but on the other two tasks using a transformer is slightly better. The model with transformer per-
forms better more often possibly because with this extra network in the middle, the capacity of the
whole system is increased: in RA Processing the processing model P optimizes both processing and
recognition loss, but now P optimizes processing loss while T optimizes recognition loss

4.2 TRANSFER BETWEEN RECOGNITION ARCHITECTURES

In reality, sometimes the recognition model R we want to eventually evaluate the output images
on might not be available for us to use as a loss for training, e.g., it could be on the cloud, kept
confidential or decided later. In this case, we could train an image processing model P using recog-
nition model RA that is accessible to us, and after we obtain the trained model P , evaluate its output
images’ recognition accuracy using another unseen recognition model RB . We evaluate all model
architecture pairs on ImageNet classification in Table 2 and Table 3, for RA Processing and RA with
Transformer respectively, where row corresponds to the model used as recognition loss (RA), and
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column corresponds to the evaluation model (RB). For RA with Transformer, we use the processing
model P and transformer T trained with RA together when evaluating on RB .

Task Super-resolution Denoising JPEG-deblocking
Evaluation on R18 R50 R101 D121 V16 R18 R50 R101 D121 V16 R18 R50 R101 D121 V16

Plain Processing 52.6 58.8 61.9 57.7 50.2 61.9 68.0 69.1 66.4 60.9 48.2 53.8 56.0 52.9 42.4
RA w/ R18 61.8 66.7 68.8 64.7 58.2 65.1 70.6 71.9 69.1 63.8 57.7 62.3 64.3 60.7 52.8
RA w/ R50 59.3 67.3 68.8 64.3 59.1 64.2 71.2 72.2 69.2 64.7 55.8 63.6 64.7 61.0 53.5

RA w/ R101 58.8 66.0 69.6 63.4 58.2 64.0 70.5 72.7 68.9 64.8 54.9 61.5 65.8 60.3 52.8
RA w/ D121 59.0 65.6 67.8 66.0 57.4 64.2 70.6 72.0 69.8 64.3 54.8 61.8 64.4 62.3 52.9
RA w/ V16 57.9 64.8 67.0 63.0 61.9 63.9 70.4 72.0 68.8 66.5 54.5 60.9 63.1 59.7 56.7

Table 2: Transfer between recognition architectures using RA processing, on ImageNet classification. A image
processing model trained with model RA (row) as recognition loss can improve the recognition performance
on model RB (column) over plain processing.

In Table 2’s each column, training with any model RA produces substantially higher accuracy than
plainly processed images on RB . Thus, we conclude that the improvement on the recognition accu-
racy is transferable among different recognition architectures. A possible explanation for this is that
these models are all trained on the same ImageNet dataset, such that their mapping functions from
input to output are similar, and optimizing the loss of one would lead to the lower loss of another.
This phenomenon enables us to use RA processing without the knowledge of the downstream recog-
nition model architecture. However, among all rows, the RA that achieves the highest accuracy is
still the same model as RB , indicated by the diagonal boldface numbers in Table 2.

Task Super-resolution Denoising JPEG-deblocking
Evaluation on R18 R50 R101 D121 V16 R18 R50 R101 D121 V16 R18 R50 R101 D121 V16
Plain Processing 52.6 58.8 61.9 57.7 50.2 61.9 68.0 69.1 66.4 60.9 48.2 53.8 56.0 52.9 42.4
RA w/T w/ R18 63.0 59.2 67.0 63.9 27.0 65.2 69.4 71.6 68.4 40.3 59.8 58.7 62.6 60.3 19.9
RA w/T w/ R50 60.5 68.2 68.9 65.8 40.4 63.1 70.9 71.5 68.6 48.7 55.0 65.1 63.9 61.9 31.5
RA w/T w/ R101 59.6 66.2 70.1 65.1 35.6 62.4 68.8 72.3 67.6 52.3 54.8 61.3 66.7 24.8 60.5
RA w/T w/ D121 58.5 64.2 66.9 66.5 27.3 58.0 66.8 67.3 69.6 46.7 46.6 57.2 59.0 63.9 9.0
RA w/T w/ V16 59.2 64.7 67.8 65.0 63.0 57.6 64.0 67.1 55.7 63.1 56.1 61.2 63.4 58.7 60.1

Table 3: Transfer between architectures using RA with Transformer (T ), on ImageNet classification.

Meanwhile in Table 3, in most cases improvement is still transferable when we use a transformer
T , but there are a few exceptions. For example, when RA is ResNet or DenseNet and when RB is
VGG-16, in most cases the accuracy fall behind plain processing by a large margin. This weaker
transferability is possibly caused by the fact that there is no constraint imposed by the image pro-
cessing loss on T ’s output, thus it “overfits” more to the specificR it is trained with. For more results
on object detection and unsupervised RA, please refer to the Appendix B.1. This is intuitive since
the processing model optimizes the same recognition loss during training as that used in evaluation.

One of the reasons why our method attains transferability is possibly that these models learn many
common features that could be useful for general computer vision, especially in shallower layers.
More importantly, the reason could be similar to the reason why adversarial examples can transfer
among models: different models’ decision boundaries are similar. Liu et al. (2016) studies adversar-
ial examples’ transferability and shows decision boundaries of different models align well with each
other; Tramèr et al. (2017) quantitatively analyzes similarity of different models’ decision bound-
aries, and shows that the boundaries are close in arbitrary directions, whether adversarial or benign.

4.3 TRANSFER BETWEEN OBJECT CATEGORIES

What if the RA and RB recognize different categories of objects? Can RA processing still bring
transferable improvement? To answer this question, we divide the 1000 classes from ImageNet into
two splits (denoted as category A/B), each with 500 classes, and train two 500-way classification
models (ResNet-18) on both splits, obtaining RA and RB . Next, we train two image processing
models PA and PB with the RA and RB as recognition loss, using images from category A and
B respectively. Note that neither the image processing model P nor the recognition model R has
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seen any images from the other split of categories during training, and RA and RB learn completely
different mappings from input to output. The plain processing counterparts of PA and PB are also
trained with category A and B respectively, but without the recognition loss. We evaluate obtained
image processing models on both splits, and the results are shown in Table 4.

Task Super-resolution Denoising JPEG-deblocking
Train/Eval Category Cat A Cat B Cat A CatB Cat A Cat B
Cat A Plain 59.6 60.1 67.6 68.0 54.2 55.5
Cat A RA 67.2 66.5 69.7 69.4 63.0 62.3
Cat B Plain 59.6 60.2 67.0 67.5 54.7 56.0
Cat B RA 66.4 67.8 69.4 69.7 62.1 63.5

Table 4: Transfer between different object categories (500-way accuracy %). RA processing on one set of
categories can also improve the performance on another. “Cat” means category.

We observe that using RA processing still benefits the recognition accuracy even when transferring
across categories (e.g., in super-resolution, from 60.1% to 66.5% when transferring from categoryA
to categoryB, on super resolution). The improvement is only marginally lower than directly training
with recognition model of the same category (e.g., from 60.2% to 67.8% when trained and evaluated
both on category B). Such transferability between categories suggest the learned image processing
models do not improve accuracy by adding category-specific signals to the output images, instead
they generate more general signals that enable a wider set of classes to be better recognized.

4.4 TRANSFER BETWEEN RECOGNITION TASKS

What if we take a further step to the case when RA and RB not only recognize different categories,
but also perform different tasks? We evaluate such task transferability for when task A is classifica-
tion and task B is object detection in Table 5. For results on the opposite direction and results for
unsupervised RA, please refer to Appendix B.2.

Task Super-resolution Denoising JPEG-deblocking
Evaluation on R18 R50 R101 V16 R18 R50 R101 V16 R18 R50 R101 V16

Plain Processing 68.5 69.7 73.1 63.2 68.1 71.6 74.1 65.7 62.4 65.6 69.5 58.3
RA w/ R18 71.3 73.5 75.6 67.8 70.6 73.1 75.5 64.1 67.7 70.3 73.2 62.4
RA w/ R50 70.8 73.2 74.8 67.8 70.4 73.1 75.8 66.2 67.8 70.2 73.1 62.8
RA w/ R101 70.7 73.2 75.3 67.0 70.5 73.5 75.7 66.9 68.1 70.2 72.8 63.2
RA w/ D121 71.2 73.6 75.3 67.2 70.5 73.2 75.7 65.7 68.1 70.5 73.1 62.6
RA w/ V16 70.4 72.4 74.6 67.5 70.6 73.0 75.7 67.7 67.8 70.3 73.2 63.7

Table 5: Transfer from ImageNet classification to PASCAL VOC object detection (mAP). Processing model P
trained with classification model A (row) can improve the performance on detection model B (column).

In Table 5, note that rows indicate classification models used as loss and columns indicate detection
models, so even if they are of the same name (e.g., “R18”), they are still different models, and are
trained on different datasets for different tasks. We are transferring between architectures, categories
as well as tasks in this experiment. There is even a domain shift since the model P is trained with
ImageNet training set but fed with PASCAL VOC input images during evaluation. Here “Plain
Processing” models are trained on the ImageNet instead of PASCAL VOC dataset, thus the results
are different from those in Table 1b. We observe that except two cases on the “V16” column in
denoising, using classification loss on model A (row) can boost the detection accuracy on model B
notably upon plain processing. This improvement is even comparable with directly training using
the detection loss, as in Table 1b. Such task transferability suggests the “machine semantics” of the
image could even be a task-agnostic property, and makes our method even more broadly applicable.

4.5 IMAGE PROCESSING QUALITY COMPARISON

We have analyzed the recognition accuracy of the output images, now we compare the output image
quality using conventional metrics PSNR and SSIM. When using RA with transformer, the output
quality of P is guaranteed unaffected, therefore here we evaluate RA processing. We use ResNet-18
on ImageNet as R, and report results with different λs (Eqn. 3) in Table 6.
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λ Super-resolution Denoising JPE-deblocking
0 26.29/0.795/52.6 31.24/0.895/61.9 27.50/0.825/48.2
10−4 26.33/0.803/59.2 31.18/0.894/64.4 27.50/0.823/56.0
10−3 26.31/0.792/61.8 30.78/0.884/65.1 27.17/0.810/57.7
10−2 25.47/0.760/61.3 29.71/0.855/64.3 26.32/0.776/56.6

Table 6: PSNR/SSIM/Accuracy when using different
λs, on ImageNet dataset.

λ = 0 corresponds to plain processing. When
λ = 10−4, in super-resolution, the PSNR/SSIM
metrics are even slightly higher, and in de-
noising and JPEG-deblocking they are only
marginally worse. However, the accuracy ob-
tained is significantly higher. This suggests that
the added recognition loss is not harmful when
λ is chosen properly. When λ is excessively
large (10−2), the image quality is hurt more, and interestingly even the recognition accuracy start to
decrease. A proper balance between image processing loss and recognition loss is needed for both
image quality and performance on downstream recognition tasks.

Target Image Input Image Plain Processing RA λ = 10−4 RA λ = 10−3 RA λ = 10−2

Label: bear Low-resolution 19.24/0.603/lion 19.25/0.602/bear 19.20/0.600/bear 19.03/0.585/bear

Label: finch Noisy 30.45/0.909/kite 30.45/0.908/finch 30.18/0.899/finch 29.41/0.871/finch

Label: crab JPEG-compressed 27.26/0.859/goldfish 27.18/0.857/crab 26.87/0.845/crab 26.19/0.823/crab

Figure 3: Examples where outputs of RA processing models can be correctly classified but those from plain
processing models cannot. PSNR/SSIM/class prediction is shown below each output image. Slight differences
between images from plain processing and RA processing models could be noticed when zoomed in.

In Fig. 3, we visualize some examples where the output image is incorrectly classified with a plain
image processing model, and correctly recognized with RA processing. With smaller λ (10−2 and
10−3), the image is nearly the same as the plainly processed images. When λ is too large (10−2),
we could see some extra textures when zooming in. For more results please refer to Appendix C.

5 ANALYSIS

In this section we analyze some alternatives to our approaches. All experiments in this section are
conducted using RA processing on super-resolution, with ResNet-18 trained on ImageNet as the
recognition model, and λ= 10−3 if used.

Training without the Image Processing Loss. It is possible to train the processing model on the
recognition loss Lrecog, without even keeping the original image processing loss Lproc (Eqn. 3).
This may presumably lead to better recognition performance since the model P can now “focus
on” optimizing the recognition loss. However, we found removing the original image processing
loss hurts the recognition performance: the accuracy drops from 61.8% to 60.9%; even worse, the
SSIM/PSNR metrics drop from 26.33/0.792 to 16.92/0.263, which is reasonable since the image
processing loss is not optimized during training. This suggests the original image processing loss is
helpful for the recognition accuracy, since it helps the corrupted image to restore to its original form.

Fine-tuning the Recognition Model. Instead of fixing the recognition model R, we could fine-
tune it together with the training of image processing model P , to optimize the recognition loss.
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Many prior works (Sharma et al., 2018; Bai et al., 2018; Zhang et al., 2018a) do train/fine-tune the
recognition model jointly with the image processing model. We use SGD with momentum as R’s
optimizer, and the final accuracy reaches 63.0%. However, since we do not fix R, it becomes a
model that specifically recognizes super-resolved images, and we found its performance on original
target images drops from 69.8% to 60.5%. Moreover, when transferring the trained P on ResNet-
56, the accuracy is 62.4 %, worse than 66.7% when we train with a fixed ResNet-18. We lose some
transferability if we do not fix the recognition model R.

Training Recognition Models from Scratch. Other than fine-tuning a pretrained recognition model
R, we could first train a super-resolution model, and then train R from scratch on the output images.
We achieve 66.1% accuracy on the output images in the validation set, higher than 61.8% in RA
processing. However, the accuracy on original clean images drops from 69.8% to 66.1%. Alterna-
tively, we could even train R from scratch on the interpolated low-resolution images, in which case
we achieve 66.0% on interpolated validation data but only 50.2% on the original validation data. In
summary, training or fine-tuning R to cater the need of super-resolved or interpolated images can
harm its performance on the original clean images, and causes additional overhead in storing mod-
els. In contrast, using our RA processing technique could boost the accuracy of output images with
the performance on original images intact.

6 CONCLUSION

We investigated the problem of enhancing the machine interpretability of image processing outputs.
We find our simple approach – optimizing with the additional recognition loss during training can
significantly boost the recognition accuracy with minimal or no loss in image processing quality.
Moreover, such improvement can transfer to recognition architectures, object categories, and vision
tasks unseen during training, indicating the enhanced interpretability is not specific to one particular
model but generalizable to others. This makes the proposed approach feasible even when the future
downstream recognition models are unknown.
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Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The space
of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

R Tsai. Multiframe image restoration and registration. Advance Computer Visual and Image Pro-
cessing, 1:317–339, 1984.

Rosaura G VidalMata, Sreya Banerjee, Brandon RichardWebster, Michael Albright, Pedro Dava-
los, Scott McCloskey, Ben Miller, Asong Tambo, Sushobhan Ghosh, Sudarshan Nagesh, et al.
Bridging the gap between computational photography and visual recognition. arXiv preprint
arXiv:1901.09482, 2019.

12

https://siliconangle.com/2018/09/11/facebook-built-ai-called-rosetta-analyze-1b-user-images-day/
https://siliconangle.com/2018/09/11/facebook-built-ai-called-rosetta-analyze-1b-user-images-day/


Under review as a conference paper at ICLR 2020

Sicheng Wang, Bihan Wen, Junru Wu, Dacheng Tao, and Zhangyang Wang. Segmentation-aware
image denoising without knowing true segmentation. arXiv preprint arXiv:1905.08965, 2019.

Zhangyang Wang, Shiyu Chang, Yingzhen Yang, Ding Liu, and Thomas S Huang. Studying very
low resolution recognition using deep networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4792–4800, 2016a.

Zhangyang Wang, Ding Liu, Shiyu Chang, Qing Ling, Yingzhen Yang, and Thomas S Huang. D3:
Deep dual-domain based fast restoration of jpeg-compressed images. In CVPR, 2016b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 2004.

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep neural net-
works. In NIPS, 2012.

Jianwei Yang, Jiasen Lu, Dhruv Batra, and Devi Parikh. A faster pytorch implementation of faster
r-cnn. https://github.com/jwyang/faster-rcnn.pytorch, 2017.

Kaipeng Zhang, Zhanpeng Zhang, Chia-Wen Cheng, Winston H Hsu, Yu Qiao, Wei Liu, and Tong
Zhang. Super-identity convolutional neural network for face hallucination. In ECCV, 2018a.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018b.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
resolution using very deep residual channel attention networks. In ECCV, 2018c.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image
super-resolution. In CVPR, 2018d.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, 2017.

APPENDIX

A EXPERIMENTAL DETAILS

General Setup. We evaluate our proposed methods on three image processing tasks: image super-
resolution, denoising, and JPEG-deblocking. In those tasks, the target images are all the original
images from the datasets. To obtain the input images, for super-resolution, we use a downsampling
scale factor of 4×; for denoising, we add Gaussian noise on the images with a standard deviation
of 0.1 to obtain the noisy images; for JPEG deblocking, a quality factor of 10 is used to compress
the image to JPEG format. The image processing loss used is the mean squared error (MSE, or L2)
loss. For the recognition tasks, we consider image classification and object detection, two common
tasks in computer vision. In total, we have 6 (3 × 2) task pairs to evaluate.

We adopt the SRResNet (Ledig et al., 2017) as the architecture of the image processing model P ,
which is simple yet effective in optimizing the MSE loss. Even though SRResNet is originally
designed for super-resolution, we find it also performs well on denoising and JPEG deblocking
when its upscale parameter set to 1 for the same input-output sizes. Throughout the experiments, on
both the image processing network and the transformer, we use the Adam optimizer (Kingma & Ba,
2014) with an initial learning rate of 10−4, following the original SRResNet (Ledig et al., 2017).
Our implementation is in PyTorch (Paszke et al., 2017).
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Image Classification. For image classification, we evaluate our method on the large-scale Ima-
geNet benchmark (Deng et al., 2009). We use five pre-trained image classification models, ResNet-
18/50/101 (He et al., 2016), DenseNet-121 (Huang et al., 2017) and VGG-16 (Simonyan & Zisser-
man, 2015) with BN (Ioffe & Szegedy, 2015) (denoted as R18/50/101, D121, V16 in Table 1a), on
which the top-1 accuracy (%) of the original validation images is 69.8, 76.2, 77.4, 74.7, and 73.4
respectively. We train the processing models for 6 epochs on the training set, with a learning rate
decay of 10× at epoch 5 and 6, and a batch size of 20. In evaluation, we feed unprocessed validation
images to the image processing model, and report the accuracy of the output images evaluated on the
pre-trained classification networks. For unsupervised RA, we use L2 distance as the function ldis
in Eqn. 4. The hyperparameter λ is chosen using super-resolution with the ResNet-18 recognition
model, on two small subsets for training/validation from the original large training set. The λ chosen
for RA processing, RA with transformer, and unsupervised RA is 10−3, 10−2 and 10 respectively.

Object Detection. For object detection, we evaluate on PASCAL VOC 2007 and 2012 dataset,
using Faster-RCNN (Ren et al., 2015) as the recognition model. Our implementation is based on the
code from (Yang et al., 2017). Following common practice (Redmon et al., 2016; Ren et al., 2015;
Dai et al., 2016), we use VOC 07 and 12 trainval data as the training set, and evaluate on VOC 07
test data. The Faster-RCNN training uses the same hyperparameters in (Yang et al., 2017). For the
recognition model’s backbone architecture, we evaluate ResNet-18/50/101 and VGG-16 (without
BN (Ioffe & Szegedy, 2015)), obtaining mAP of 74.2, 76.8, 77.9, 72.2 on the test set respectively.
Given those trained detectors as recognition loss functions, we train the models on the training set
for 7 epochs, with a learning rate decay of 10 × at epoch 6 and 7, and a batch size of 1. We report
the mean Average Precision (mAP) of processed images in the test set. As in image classification,
we use λ = 10−3 for RA processing, and λ = 10−2 for RA with transformer.

B MORE RESULTS ON TRANSFERABILITY

We present some additional results on transferability here.

B.1 TRANSFERRING BETWEEN ARCHITECTURES

Task Super-resolution Denoising JPEG-deblocking
Evaluation on R18 R50 R101 V16 R18 R50 R101 V16 R18 R50 R101 V16

Plain Processing 69.2 70.7 73.3 64.2 68.9 72.0 74.7 65.8 63.7 66.5 70.4 60.3
RA w/ R18 71.2 73.8 75.2 66.9 70.9 74.0 75.5 67.2 67.4 70.0 72.3 63.5
RA w/ R50 70.6 74.4 75.4 66.4 70.6 73.7 75.5 67.2 67.0 70.4 72.4 63.2

RA w/ R101 71.1 73.8 75.6 65.8 70.3 73.6 75.6 66.2 65.9 69.3 72.9 61.3
RA w/ V16 70.4 72.8 74.9 68.1 69.9 73.4 75.6 67.6 66.1 69.3 72.1 63.9

Table 7: Transfer between recognition architectures, evaluated on PASCAL VOC object detection (mAP).

We provide the model transferability results of RA processing on object detection in Table 7. Rows
indicate the models trained as recognition loss and columns indicate the evaluation models. We
see similar trend as in classification (Table 1a): using other architectures as loss can also improve
recognition performance over plain processing; the loss model that achieves the highest performance
is mostly the model itself, as can be seen from the fact that most boldface numbers are on the
diagonals.

As a complement in Section 4.2, we present the results when transferring between recognition archi-
tectures, using unsupervised RA, in Table 8. We note that for super-resolution and JPEG-deblocking,
similar trend holds as in (supervised) RA processing, as using any architecture in training will im-
prove over plain processing. But for denoising, this is not always the case. Some models P trained
with unsupervised RA are slightly worse than the plain processing counterpart. A possible reason
for this is the noise level in our experiments is not large enough and plain processing achieve very
high accuracy already.
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Task Super-resolution Denoising JPEG-deblocking
Evaluation on R18 R50 R101 D121 V16 R18 R50 R101 D121 V16 R18 R50 R101 D121 V16

Plain Processing 52.6 58.8 61.9 57.7 50.2 61.9 68.0 69.1 66.4 60.9 48.2 53.8 56.0 52.9 42.4
Unsup. RA w/ R18 61.3 66.3 68.6 64.5 57.3 61.7 67.9 69.7 66.4 60.5 53.8 59.1 62.0 57.5 50.0
Unsup. RA w/ R50 58.9 66.9 68.6 64.1 58.2 61.2 68.6 70.3 66.6 61.3 52.8 60.4 62.5 58.3 50.3
Unsup. RA w/ R101 57.8 64.9 69.0 62.9 56.9 60.6 68.0 70.7 66.3 60.7 52.3 58.7 63.4 57.9 49.0
Unsup. RA w/ D121 58.0 64.7 67.2 65.3 56.0 60.7 67.8 69.7 67.1 60.3 52.2 59.2 62.2 59.7 49.9
Unsup. RA w/ V16 57.7 64.6 67.3 63.2 61.0 60.4 67.1 69.6 65.9 63.6 52.0 58.4 61.5 57.4 53.1

Table 8: Transfer between recognition architectures using unsupervised RA, on ImageNet classification.

B.2 TRANSFERRING BETWEEN RECOGNITION TASKS

In Section 4.4, we investigated the transferability of improvement from classification to detection.
Here we evaluate the opposite direction, from detection to classification. The results are shown in
Table 9. Here, using RA processing can still consistently improve over plain processing for any
pair of models, but we note that the improvement is not as significant as directly training using
classification models as loss (Table 1a and Table 2).

Task Super-resolution Denoising JPEG-deblocking
Evaluation on R18 R50 R101 D121 V16 R18 R50 R101 D121 V16 R18 R50 R101 D121 V16

Plain Processing 53.0 58.9 62.0 57.3 50.9 59.7 65.1 67.3 63.9 59.2 48.8 54.6 56.8 53.1 44.7
RA w/ R18 54.6 60.2 63.4 58.8 52.7 60.8 66.7 68.8 65.2 61.1 50.8 57.2 59.6 55.4 48.5
RA w/ R50 54.0 59.7 63.0 58.7 52.0 60.5 66.6 68.5 64.9 60.8 50.7 56.9 59.2 55.3 48.3

RA w/ R101 54.1 59.8 63.3 58.7 52.5 60.2 66.1 68.3 64.6 60.6 51.3 57.2 59.5 55.5 48.3
RA w/ V16 54.5 60.4 63.6 59.1 52.7 60.4 66.6 68.4 64.7 60.6 50.6 56.5 58.7 54.9 47.9

Table 9: Transfer from PASCAL VOC object detection to ImageNet classification (accuracy %). A image
processing model P trained with detection model A (row) as recognition loss can improve the performance on
classification model B (column) over plain processing.

Additionally, the results when we transfer the model P trained with unsupervised RA with image
classification to object detection are shown in Table 10. In most cases, it improves over plain pro-
cessing, but for image denoising, this is not always the case. Similar to results in Table 8, this could
be because the noise level is relatively low in our experiments.

Super-resolution Denoising JPEG-deblocking
Evaluation on R18 R50 R101 V16 R18 R50 R101 V16 R18 R50 R101 V16

Plain Processing 68.5 69.7 73.1 63.2 68.1 71.6 74.1 65.7 62.4 65.6 69.5 58.3
Unsup. RA w/ R18 71.3 73.4 75.3 66.8 69.0 71.3 74.3 61.1 65.2 68.1 71.3 59.8
Unsup. RA w/ R50 70.7 73.3 75.0 66.6 68.9 71.7 74.4 63.1 65.4 68.5 71.2 60.0

Unsup. RA w/ R101 70.7 73.2 75.0 66.2 68.9 71.3 73.9 63.3 65.2 67.9 71.1 59.6
Unsup. RA w/ D121 71.0 73.2 75.1 66.6 68.7 70.3 73.0 63.8 65.9 68.6 71.4 61.1
Unsup. RA w/ V16 70.3 72.3 74.3 67.0 68.5 70.7 74.0 63.6 65.9 68.2 71.5 61.1

Table 10: Transfer from ImageNet classification to PASCAL VOC object detection, using unsupervised RA.

C MORE VISUALIZATIONS

We provide more visualizations in Fig. 4 where the output image is incorrectly classified by ResNet-
18 with a plain image processing model, and correctly recognized with RA processing, as in Fig. 3
at Section 4.5.
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Target Image Input Image Plain Processing RA λ = 10−4 RA λ = 10−3 RA λ = 10−2

Label: beer bottle Low-resolution 21.06/0.725/shoe shop 21.16/0.731/beer bottle 21.05/0.727/beer bottle 20.46/0.687/beer bottle

Label: dam Low-resolution 29.71/0.780/cliff 29.76/0.783/dam 29.60/0.778/dam 28.92/0.755/dam

Label: tiger shark Low-resolution 36.58/0.915/hammerhead36.17/0.917/tiger shark 36.00/0.911/tiger shark 33.59/0.834/tiger shark

Label: pill bottle Noisy 33.69/0.935/lotion 33.56/0.932/pill bottle 33.09/0.920/pill bottle 32.14/0.904/pill bottle

Label: tabby cat Noisy 30.77/0.830/plastic bag 30.74/0.830/tabby cat 30.51/0.825/tabby cat 29.93/0.811/tabby cat

Label: tricycle Noisy 30.50/0.918/barber chair 30.46/0.917/tricycle 30.05/0.911/tricycle 29.06/0.895/tricycle

Label: mushroom JPEG-compressed 25.78/0.746/folding chair25.78/0.747/mushroom 21.55/0.730/mushroom 24.96/0.696/mushroom

Label: pier JPEG-compressed 27.41/0.818/mobile home 27.41/0.816/pier 27.04/0.803/pier 26.18/0.772/pier

Figure 4: Examples where output images from RA processing models can be correctly classified but those
from plain processing models cannot. PSNR/SSIM/class prediction is shown below each output image. Slight
differences between images from plain processing and RA processing models (especially with large λs) could
be noticed when zoomed in.
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D RESULTS ON IMAGENET-C

We evaluate our methods on the ImageNet-C benchmark (Hendrycks & Dietterich, 2019). It im-
poses 17 different types of corruptions on the ImageNet (Deng et al., 2009) validation set. Despite
ImageNet-C benchmark is designed for more robust recognition models, but not for testing image
processing models, it is a good testbed to test our methods in a broader range of processing tasks.
Since only corrupted images from the validation set are released, we divide it evenly for each class
into two halves and train/test on its first/second half. The corrupted image is the input image to the
processing model and the original clean image is the target image. The recognition model used in
this experiment is an ImageNet-pretrained ResNet-18.

In Table 11, we evaluate RA Processing on all 17 types of corruptions, with corruption level 5 as
in (Hendrycks & Dietterich, 2019). We observe that RA Processing brings consistent improvement
over plain processing, sometimes by an even larger margin than the tasks considered in Sec. 4.

Type orig brit contr defoc elast gau b gau n glass impul jpeg motn pixel shot satr snow spat speck zoom
No Processing 69.9 51.3 3.3 11.3 17.1 9.3 1.2 8.7 1.0 29.4 11.1 23.1 1.8 39.5 10.7 19.1 7.7 17.6

Plain Processing N/A 59.9 18.3 25.3 18.9 21.5 21.8 20.1 24.1 43.0 42.4 50.1 24.9 54.4 34.5 60.8 36.6 17.0
RA Processing N/A 61.4 30.7 33.8 35.4 27.0 32.8 25.3 35.1 46.1 48.2 54.0 35.2 57.1 43.7 63.0 45.2 31.9

Table 11: ImageNet-C results (top-1 accuracy %) under different types of corruptions with corruption level 5.

In Table 12, we experiment with different levels of corruptions with corruption type “speckle noise”
and “snow”. We also evaluate with our variants – Unsupervised RA and RA with Transformer.
We observe that when the corruption level is higher, our methods tend to bring more recognition
accuracy gain.

Corruption Type Snow Speckle noise
Corruption Level 1 2 3 4 5 1 2 3 4 5

No Processing 46.7 23.6 28.0 17.6 10.7 50.5 42.8 22.9 14.5 7.7
Plain Processing 57.1 45.1 46.0 37.1 34.5 60.3 57.0 48.4 43.2 36.6
RA Processing 60.3 51.7 51.7 45.7 43.7 62.7 60.8 54.2 50.3 45.2

Unsupervised RA 60.2 51.3 50.6 43.6 41.5 62.9 60.5 53.8 49.4 43.9
RA w/ Transformer 55.7 46.7 48.1 42.7 40.9 59.0 57.7 52.2 49.2 44.7

Table 12: ImageNet-C results (top-1 accuracy %) under different levels of corruptions, with corruption level
“snow” and “speckle noise”.

In Table 13, we examine the transferability of RA Processing between recognition architectures,
using the same two tasks “speckle noise” and “snow”, with corruption level 5. Note the recognition
loss used during training is from a ResNet-18, and we evaluate the improvement over plain process-
ing on ResNet-50/101, DenseNet-121 and VGG-16. We observe that the improvement over plain
processing is transferable among different architectures.

Corruption Type Snow Speckle noise
Evaluation on R18 R50 R101 D121 V16 R18 R50 R101 D121 V16
No Processing 10.7 16.6 20.9 21.7 10.5 7.7 11.7 14.5 18.6 7.1

Plain Processing 34.5 39.1 44.6 41.1 27.4 36.6 42.4 47.7 43.0 31.3
RA w/ R18 43.7 47.9 51.7 47.9 37.4 45.2 50.3 53.3 49.1 39.0

Table 13: ImageNet-C results (top-1 accuracy %) under different levels of corruptions, with corruption level
“snow” and “speckle noise”.
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