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Abstract

In many medical image analysis applications, often only a limited amount of training data
is available, which makes training of convolutional neural networks (CNNs) challenging.
In this work on anatomical landmark localization, we propose a CNN architecture that
learns to split the localization task into two simpler sub-problems, reducing the need for
large training datasets. Our fully convolutional SpatialConfiguration-Net (SCN) dedicates
one component to locally accurate but ambiguous candidate predictions, while the other
component improves robustness to ambiguities by incorporating the spatial configuration
of landmarks. In our experimental evaluation, we show that the proposed SCN outperforms
related methods in terms of landmark localization error on size-limited datasets.
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1. Introduction

Localization of anatomical landmarks is an important step in medical image analysis, e.g.,
in segmentation (Beichel et al., 2005), or registration (Johnson and Christensen, 2002).
Unfortunately, locally similar structures often introduce difficulties due to ambiguity into
landmark localization. To deal with these difficulties, machine learning based approaches
often combine local landmark predictions with explicit handcrafted graphical models, aiming
to restrict predictions to feasible spatial configurations. Thus, the landmark localization
problem is simplified by separating the task into two successive steps. The first step is
dedicated to locally accurate but potentially ambiguous predictions, while in the second
step graphical models (Cootes et al., 1995; Felzenszwalb and Huttenlocher, 2005) eliminate
ambiguities.

Recent advances in computer vision and medical imaging have mainly been driven by
convolutional neural networks (CNNs) due to their superior capabilities to automatically
learn important image features (LeCun et al., 2015). Unfortunately, CNNs typically need
large amounts of training data. Especially in medical imaging, this requirement is hard to
fulfill, due to ethical and financial concerns as well as time consuming expert annotations.

In this work, we show that the amount of required training data can be reduced with
our proposed two-component SpatialConfiguration-Net (SCN), which follows the idea of
handcrafted graphical models to split landmark localization into two successive steps. This
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Figure 1: Landmark localization by regressing heatmaps for each landmark in our end-to-
end trained fully convolutional SpatialConfiguration-Net (SCN).

extended abstract gives a short overview of the key concepts of our journal paper pub-
lished in (Payer et al., 2019), while we refer the reader to the full paper for more detailed
descriptions and more extensive evaluations on a variety of datasets.

2. Method

Our method for landmark localization is based on regressing heatmap images (Tompson
et al., 2014), which encode the pseudo-probability of a landmark being located at a cer-
tain pixel position. With N being the total number of landmarks, we define the target
heatmap image of a landmark Li, i = {1, ..., N} as the d-dimensional Gaussian function

gi(x) : Rd → R centered at the target landmark’s groundtruth coordinate
∗
xi ∈ Rd.

The network is set up to regress N heatmaps simultaneously by minimizing the differ-
ences between predicted heatmaps hi(x) and the corresponding target heatmaps gi(x) in an
end-to-end manner (Ronneberger et al., 2015; Shelhamer et al., 2017). In network inference,
we obtain the predicted coordinate x̂i ∈ Rd of each landmark Li by taking the coordinate,
where the heatmap has its highest value.

2.1. SpatialConfiguration-Net

The fundamental concept of the SpatialConfiguration-Net (SCN) is the interaction between
its two components (see Fig. 1). The first component takes the image as input to generate
locally accurate but potentially ambiguous local appearance heatmaps hLA

i (x). Motivated
by handcrafted graphical models for eliminating these potential ambiguities, the second
component takes the predicted candidate heatmaps hLA

i (x) as input to generate inaccurate
but unambiguous spatial configuration heatmaps hSC

i (x).
For N landmarks, the set of predicted heatmaps H = {hi(x) | i = 1 . . . N} is obtained

by element-wise multiplication � of the corresponding heatmap outputs hLA
i (x) and hSC

i (x)
of the two components:

hi(x) = hLA
i (x)� hSC

i (x). (1)

This multiplication is crucial for the SCN, as it forces both of its components to generate

a response on the location of the target landmark
∗
xi, i.e., both hLA

i (x) and hSC
i (x) deliver
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(a) all training images
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Figure 2: Cumulative distributions of the point-to-point error for 895 radiographs.
(a) shows results compared with other state-of-the-art methods. (b) shows results
of SCN and localization U-Net for reduced numbers of training images.

responses for x close to
∗
xi, while on all other locations one component may have a response

as long as the other one does not have one.

3. Experiments and Results

We evaluate our proposed SCN on a dataset of 895 radiographs of left hands with 37
annotated characteristic landmarks on finger tips and bone joints. We compare our SCN
to state-of-the-art random regression forests (Ebner et al., 2014; Lindner et al., 2015; Štern
et al., 2016; Urschler et al., 2018), our previous CNN-based method of (Payer et al., 2016),
and our implementation of a localization U-Net for heatmap regression. Results of the
image-specific point-to-point errors for three-fold cross validation of the 895 radiographs are
shown in Fig. 2. When using all training images, our SCN outperforms all other compared
methods. Additionally, when drastically reducing the number of training images to 100, 50,
and 10, respectively, our SCN greatly outperforms the localization U-Net. This confirms
that splitting the localization task into predicting accurate but potentially ambiguous local
appearance heatmaps and inaccurate but unambiguous spatial configuration heatmaps is
especially useful when dealing with only limited amounts of training data.

4. Conclusion

In conclusion, we have shown how to combine information of local appearance and spa-
tial configuration into a single end-to-end trained network for landmark localization. Our
generic architecture achieves state-of-the-art results in terms of localization error, even when
only limited amounts of training images are available. We are currently looking into extend-
ing our SCN regarding occluded structures and multi-object localization, and into adapting
our SCN for semantic segmentation problems (see (Payer et al., 2018) for preliminary re-
sults), where structural constraints may be used in a similar manner.
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