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ABSTRACT

We investigated how the visual representations learned by CNNs is affected
by training using different linguistic labels (e.g., basic-level labels only,
superordinate-level only, or both at the same time), and how these differently-
trained models compare in their ability to predict the behavior of humans tasked
with selecting the object that is most different from two others in a triplet. CNNs
used identical architectures and inputs, differing only with respect to the labels
used to supervise the training. In the absence of labels, we found that models
learned very little categorical structure, suggesting that this structure cannot be
extracted purely from the visual input. Surprisingly, models trained with superor-
dinate labels (vehicle, tool, etc.) were most predictive of the behavioral similarity
judgments. We conclude that the representations used in an odd-one-out task are
highly modulated by semantic information, especially at the superordinate level.

1 INTRODUCTION

A critical distinction between human category learning and machine category learning is that only
humans have a language. A language means that human learning is not limited to a one-to-one
correspondence between a visual input and a category label. Indeed, the users of a language are
known to actively seek out categorical relationships between objects and use these relationships in
making perceptual similarity judgments and in controlling behavior (Hays, 2000; Lupyan & Lewis,
2017). A premise of our work is that a language provides a semantic structure to labels, and that
this structure contributes to the superior efficiency and flexibility of human vision compared to any
artificial systems (Pinto et al., 2010). Of course, the computer vision literature on zero-shot and few-
shot learning has also made good progress in leveraging semantic information (e.g., image captions,
attribute labels, relational information) to increase the generalizability of a model’s performance
(Lampert et al., 2013; Sung et al., 2018; Lei Ba et al., 2015).

Still, this performance pales in comparison to the human ability for classification, where zero-shot
and few-shot learning is the norm, and efficiently-acquired category knowledge is easily generalized
to new exemplars (Ashby & Maddox, 2005; Ashby & Ell, 2001). One reason why machine learning
lags behind human performance may be because of a failure to fully consider the semantic structure
of the ground-truth labels used for training, which can be heavily biased by basic or subordinate-
level categories. This might result in models learning visual feature representations that may not be
best for generalization to new, higher-level categories. For example, ImageNet (Deng et al., 2009)
contains 120 different dog categories, making the models that are trained using these labels dog
experts, creating an interesting but highly atypical semantic structure.

Here we study how the linguistic structure of labels influences what is learned by models trained
on the same visual inputs. Specifically, we manipulated the labels used to supervise the training
of CNN models, each having the same architecture and given identical visual inputs. For example,
some of these models were trained with basic-level labels only, some with only superordinate-level
labels, and some with both. We then compare visual representations learned by these models, and
predict human similarity judgement that we collected using an Odd-one-out task where people had
to select which of three object images was the most different. With this dataset, and using categorical
representations extracted from our trained models, we could predict human similarity decisions with
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up to 74% accuracy, which gives us some understanding of the labels needed to produce human-like
representations. Our study also broadly benefits both computer vision and behavioral science (e.g.,
psychology, neuroscience) by suggesting that the semantic structure of labels and datasets should be
carefully constructed if the goal is to build vision models that learn visual features representations
having the potential for human-like generalization. For behavioral science, this research provides a
useful computational framework for understanding the effect of training labels on the human learn-
ing of category relationships in the context of thousands of naturalistic images of objects.

2 RELATED WORK
NEW

2.1 SEMANTIC LABEL EMBEDDING

Although many computer vision models perform well in image classification, generalization tasks
such as zero-shot and few-show learning remain challenging. Several studies have attempted to
address this problem by embedding semantic information into a model’s representations using text
description (Lei Ba et al., 2015), attribute properties (Lampert et al., 2013; Akata et al., 2015; Chen
et al., 2018), and relationships between objects (Sung et al., 2018; Annadani & Biswas, 2018). More
related to our work, some studies even directly leveraged the linguistic structure of labels. For ex-
ample, Lei et al. (2017) and Wang & Cottrell (2015) found that training CNNs with coarse-grained
labels (e.g., basic-level categories) improve classification accuracy for finer-grained labels (e.g.,
subordinate-level labels). Also, Frome et al. (2013) re-trained a CNN to predict the word vectors
learned by a word embedding model, instead of using one-hot labels, and found improved zero-
shot predictions; the model was able to predict thousands of novel categories that were never seen
with 18% accuracy. These results suggest that different semantic structures of labels, such as word
hierarchy, an order of learning, or semantic similarity between words, affect learned visual repre-
sentations in CNNs to differing degrees. The current study provides a more systematic investigation
of this question.

2.2 UNDERSTANDING HUMAN VISUAL REPRESENTATION

The human visual system is unparalleled in its ability to learn feature representations for objects that
are robust to large changes in appearance. This tolerance to variability, not only enables accurate
object recognition, but also facilitates generalization to new exemplars and categories(DiCarlo et al.,
2012). Understanding how humans learn these visual representations is, therefore, an enormously
important question, but one that is difficult to study because human learning in the real world is
affected and confounded by many factors that are difficult to control experimentally. Recently, work
has addressed this issue by computationally modeling and simulating human representation. For
example, Hebart et al. (2019) studied human visual representations by fitting probabilistic models to
human similarity judgement, and found that human visual representations are composed of semanti-
cally interpretable units, with each conveying categorical membership, functionality, and perceptual
attributes. Peterson et al. (2018), the study most similar to ours, trained CNNs with labels that
differed in hierarchy (e.g., subordinate-level vs. basic-level). They found that training on coarser-
grained labels (either as standalone or as coming after finer-grained) induces a more semantically
structured representation, and produces more human-like generalization performance. The current
study builds on this earlier work by 1) including CNNs trained with no labels (autoencoder) or very
fine-grained labels (word vector), 2) testing on a large-scale dataset of human similarity judgement,
and 3) comparing superordinate vs. basic levels.

3 MODEL TRAINING

Our goal is to study how linguistic labels change the visual representations learned by CNNs. To
do this, we trained equivalently designed CNNs for classification, but each with different linguistic
labels as ground-truth. In addition, we trained a Convolutional autoencoder, which encodes the
images using the same convolutional structure as the other models but, instead of being supervised
to predict the class of the image, the objective of this model is to generate an output image that is
the same as the input. This Conv. Autoencoder, therefore, represents a model that was not trained
with any linguistic label, in contrast to the other models that were each trained with some type of
linguistic labels. The description of each model and the labels used for training are provided below.
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• Conv. Autoencoder: Autoencoder with Convolutional encoder and decoder trained to
output the same image as input
• Basic labels: CNN model trained with one-hot encoding of basic-level categories, n=30
• Superordinate labels: CNN model trained with one-hot encoding of superordinate-level

categories, n=10
• Basic + Superordinate: CNN model trained with two-hot encoding of both basic and

superordinate-level categories, n=40(10+30)
• Basic then Superordinate: CNN model trained with one-hot encoding of basic-level cat-

egories first (n=30), and then finetuned with one-hot encoding of superordinate categories
(n=10)

• Superordinate then Basic: CNN model trained with one-hot encoding of superordinate-
level categories first (n=10), and then finetuned with one-hot encoding of basic categories
(n=30) NEW

• Basic FastText vectors: CNN model trained with basic-level word vectors extracted from
FastText word embedding model (Bojanowski et al., 2017), dimension=300

• Superordinate FastText vectors: CNN model trained with superordinate-level word vec-
tors extracted from FastText word embedding model (Bojanowski et al., 2017), dimen-
sion=300 NEW

The identical CNN architecture was used for each model in our labeling manipulation, except for
the output layer and its activation function. This general pipeline is described in Figure 1. Our
CNN models consist of five blocks of two Convolutional layers, each followed by Max pooling
and Batch normalization layers. For all Convolutional and Max pooling operations, zero padding
was used to produce output feature maps having the same size as the input. Rectified linear units
(ReLU) were used to obtain an activation function after each convolution. The flattened output of
the final Convolutional layer, the ”bottleneck” feature that we later extract and use as a model’s
visual representation (dim=1568), was then fed into one fully connected dense layer. For Conv.
Autoencoder, the same Convolutional architecture was used for encoding and decoding, with the
hidden layer in the model (dim=1568) serving as the bottleneck feature for analysis. The final
predicted output, ”label vector” is either one-hot or word embedding according to the model’s target
labels. Output activation functions differed depending on what label vector was used: a sigmoid
function for Basic + Superordinate CNN, a linear function for the Conv. Autoencoder and FastText
vectors CNNs, and a softmax for the rest of CNNs.

All models were trained and validated on the images of 30 categories from the IMAGENET 2012
dataset (Deng et al., 2009), and tested on images of the same 30 categories from the THINGS
dataset (Hebart et al., 2019). These 30 basic-level categories were grouped into 10 higher-level,
superordinate categories, which included: ’mammal’, ’bird’, ’insect’, ’fruit’, ’vegetable’, ’vehicle’,
’container’, ’kitchen appliance’, ’musical instrument’, and ’tool’. A list of all 30 categories, with
their superordinates, are provided in the Supplementary 7.1. All input images were converted from
RGB to BGR and each channel was zero-centered with respect to the ImageNet images. Different
loss functions were used for training different models: Binary Crossentropy loss for Basic + Su-
perordinate CNN, and Mean Squared Error loss for both Conv. Autoencoder and FastText vectors
CNNs, and Categorical Crossentropy loss was used for the rest of the CNNs. All models were
trained using Adam optimization (Kingma & Ba, 2014), with a mini-batch size of 64. During train-
ing, early stopping was implemented and the model with the lowest validation loss was used for the
following analysis.

4 BEHAVIORAL DATA

To compare the visual representations learned by our trained models with those of humans, we
collected human similarity judgments in an Odd-one-out task, as in Zheng et al. (2019). Participants
were shown three images of objects per trial, a triplet, and were asked to choose which object was
most different from the other two. Each triplet consisted of three exemplar objects from the 30
categories used for our model training. All exemplar objects came from Zheng et al. (2019), except
for ’crate’, ’hammer’, ’harmonica’, and ’screwdriver’, which were replaced with new exemplars to
increase image quality and category representativeness. There are 4060 possible triplets that can be
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Figure 1: Pipeline for the CNNs used for the study. The bottleneck features (the flattened out-
put of the final Convolutional layer) are later extracted and used as a model’s visual representation
(dim=1568). The final predicted output, ”Label Vector” is either one-hot or word embedding ac-
cording to the model’s target labels.

generated from all 30 categories, but we collected behavioral data on only a subset of these to reduce
the time and cost of data collection. This subset includes 1) the ten triplets having objects coming
from the same superordinate category, e.g., ’orangutan’, ’lion’, ’gazelle’ 2) all 435 triplets where
two objects came from the same superordinate category, e.g., ’orangutan’, ’lion’, ’minivan’, and 3)
1375 triplets where all objects came from different categories, e.g., ’orangutan’, ’minivan’, ’lemon’,
yielding 1820 unique triplets in total. 51 Amazon Mechanical Turk (AMT) workers participated in
this task, each making responses on ∼200 triplets. After removing responses with reaction times
below 500ms, we collected 9697 similarity judgments where each triplet was viewed by 5.6 workers,
on average (min=4, max=51).

Table 1: Classification accuracy for trained models. Exact match accuracy is the same as top@2
accuracy from Basic + Superordinate CNN and the same as top@1 accuracy for the other models.
Detailed architecture of models are described in Section 3 and Figure 1. Average precision and
average recall scores are reported in Supplementary 7.3

Model # of
classes

Output
dimension

Accuracy
exact match top@3 top@5

Basic labels 30 30 0.90 0.98 0.99
Superordinate labels 10 10 0.95 0.99 0.99
Basic + Superordinate 40 40 0.91 0.95 0.97
Basic then Superordinate 10 10 0.95 0.99 0.99
Superordinate then Basic 30 30 0.88 0.97 0.99
Basic FastText vectors 30 300 0.52 0.74 0.82
Superordinate FastText vectors 10 300 0.77 0.94 0.96

5 EXPERIMENTS

5.1 EVALUATING MODEL PERFORMANCE

Although our goal was not to compete with state-of-the-art vision models in classification, we eval-
uated classification accuracy to see the effects of different labels on learning, thereby confirming
that the visual features learned by our models represented category knowledge. To evaluate clas-
sification accuracy, we report top@k, the percentage of accurately classified test images where the
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true class was in the model’s the top K predictions in Table 1. Average precision and average re-
call over all categories are also reported in the Supplementary 7.3. All metrics were computed on
the THINGS test dataset (Hebart et al., 2019). Because the FastText vectors CNN predicts a word
vector, not a class, we approximated its classification performance by calculating cosine similarity
between predicted and true word vectors and choosing the corresponding class from top@k similar-
ities. Classification results cannot be generated from Conv. Autoencoder, but we include examples
of images generated from this model in the Supplementary 7.2 to show that the model worked. As
can be seen in Table 1, the top@5 classification accuracy for all trained models was good (all >.82),
although there is room for improved classification for FastText vectors CNN.

5.2 EXPLORING VISUAL REPRESENTATIONS

To explore how the different linguistic labeling schemes affected the learned visual representations,
we extracted and analyzed the bottleneck features from each model (i.e., the 1568-dimensional out-
put of the last Convolutional layer; see Figure 1). We first measured the representational similarity
of all objects in the training dataset (IMAGENET 2012; Deng et al., 2009) both between and within
each category. These representational distributions were visualized using t-SNE (Maaten & Hinton,
2008) and are attached in Supplementary 7.5. We also analyzed the similarity between categorical FIX
representations by plotting a similarity matrix in Figure 2. To create categorical representations, we
simply averaged the obtained bottleneck features from all training images per category, creating in
a sense ”prototypical” representation for each class.

Clustering Quality

To investigate how model’s category representations are dense and well separated, we computed the
ratio of between-category dispersion and within-category dispersion using cosine distance (1-cosine
angle of two feature vectors). Between-category dispersion is the average cosine distance between
the center(mean) of different categories. Within-category dispersion is the average cosine distance
between every exemplar and the center of each category. Comparing the models in Table 2 revealed
that using distributed word vectors as targets, especially Superordinate FastText vectors, produced
the highest between-to-within ratio, suggesting the most tightly clustered representations. Interest-
ingly, the Basic + Superordinate CNN model, which was trained with both basic and superordinate
labels at the same time, learned more scattered and less distinguishable categorical representations
compared to other label-trained models. Lastly, Conv. Autoencoder produced the lowest between-to-
within ratio, suggesting that even if a model learns visual features that are good enough to generate
input-like images, these visual representations may still be poorly discriminable not only in basic
level categories, but also in superordinate level categories. Widely distributed features of Conv. Au-
toencoder from T-SNE plots in Supplementary 7.5 further supported that the visual input alone is
not sufficient to produce any clusterable structure or category representations. A similar trend was
observed in the other clustering quality measures as reported in the Supplementary 7.4.

Table 2: Comparison of clustering quality. between: between-category dispersion in cosine dis-
tance; within: within-category dispersion in cosine distance; ratio: between-to-within dispersion
ratio. Larger values indicate model’s visual representations having dense and well separated cate-
gory clusters

Model By superordinate category By basic category
between within ratio↑ between within ratio↑

Conv. Autoencoder 0.02 0.19 0.11 0.03 0.19 0.15
Basic labels 0.36 0.55 0.64 0.43 0.52 0.84
Superordinate labels 0.33 0.47 0.71 0.36 0.46 0.80
Basic + Superordinate 0.29 0.48 0.61 0.35 0.45 0.78
Basic then Superordinate 0.40 0.53 0.76 0.46 0.51 0.90
Superordinate then Basic 0.42 0.56 0.75 0.49 0.53 0.93
Basic FastText vectors 0.36 0.37 0.95 0.40 0.35 1.14
Superordinate FastText vectors 0.42 0.38 1.11 0.44 0.37 1.18
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Visualization of Categorical Representations

Figure 2 visualizes cosine similarity matrices for the category representations learned by the models
to explore whether the hierarchical semantic structure of the 30 categories is captured (e.g., every
basic-level category belongs to one of ten superordinate categories). For a complete comparison, we
also analyzed categorical representations extracted from SPoSE (Zheng et al., 2019), FastText (Bo-
janowski et al., 2017), and VGG16 early layer (i.e., the output from the first max-pooling layer;
Simonyan & Zisserman, 2014). SPoSE model’s category representations were trained on human
similarity judgments. This serves as an approximation of human perceived similarity, which can be
a combination of semantic and visual similarities. While FastText similarity represents the semantic
similarity between categories in basic-level terms, VGG16 early layer similarity represents lower-
level visual similarity. Whereas little effect of category hierarchy can be seen in VGG16 early layer
or Conv. Autoencoder features, the various semantic structure can be observed in the other models
(e.g., the emergent bright yellow squares in the figure). Upon closer analysis, these categorical divi-
sions seemed to occur for 1) nature vs. non-nature, 2) edible vs non-edible, and 3) the superordinate
categories. Surprisingly, basic-level structures are still observed in Figure 2f (e.g., fine-grained lines
in the diagonal), where the model is trained only on the superordinate-level labels. This suggests
that guidance from superordinate labels was often as good or better as guidance from much finer-
grained basic-level labels, which is consistent with the previous finding that training with coarser
labels induce more hierarchical structure in visual representations (Peterson et al., 2018)

5.3 PREDICTING HUMAN VISUAL BEHAVIOR

Finally, we evaluated how well the visual representations learned by the models could predict human
similarity judgement in an Odd-one-out task (See Section 4). For each triplet, responses were gener-
ated from the models by comparing the cosine similarities between the three visual object representa-
tions and selecting the one most dissimilar from the other two. Three kinds of visual representations
were computed and compared: 1) IMAGENET categorical representations, where features were av-
eraged over ∼1000 images per category from the IMAGENET training dataset (Deng et al., 2009),
2) THINGS categorical representations, where features were averaged over ∼10 images per cate-
gory from the THINGS dataset (Hebart et al., 2019), and 3) Single Exemplar representation, where
only one feature per category was generated for the 30 exemplar images used in the behavioral data
collection. Together with accuracy from SPoSE (Zheng et al., 2019), FastText (Bojanowski et al.,
2017), and VGG16 early layer (Simonyan & Zisserman, 2014), three baseline models of accuracy
are reported below, which constitute upper and lower bounds.

• Null Acc: Accuracy achieved by predicting that every sample is the most frequent class in
the dataset (lower bound, 36%).

• Bayes Acc: Accuracy achieved by predicting that every sample is the most frequent class
in each unique triplet set (upper bound, 84%).

• SPoSE Acc: Accuracy achieved using the SPoSE model (Zheng et al., 2019), a probabilis-
tic model that is directly trained on human responses on all triplets from 1854 THINGS
objects (80%).

As shown in Figure 3, triplet prediction accuracy was highest when models used IMAGENET cate-
gory representations and lowest when single exemplar representations were used, even if exemplar
image is the one that participant actually saw during the experiment. This shows that when humans
do visual similarity ratings, they not only evaluate visual inputs but also use rich and abstract seman-
tic information learned from viewing myriad exemplars. Comparing individual model performance,
the highest accuracy (74%) was obtained by the model trained with superordinate labels. This per-
formance is particularly impressive, considering 1) how coarsely grained superordinate labels are
(dim=10) compared to Basic labels (dim=30), Basic + Superordinate labels (dim=40), or FastText
vectors (dim=300), and 2) that this model is not trained on the actual human triplet data, as was the
case for the SPoSE model whose performance was about 80%.

These results suggest that the representations used by humans in an Odd-one-out task are highly
semantic, reflecting category structure, especially at the superordinate level. However, this may be
only because the setting of odd-one-out task has caused people to use superordinate label informa-
tion. For example, when the participants are given a triplet like (’orangutan’, ’lion’, and ’lemon’),
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(a) SPoSE
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(b) FastText
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(c) VGG16 early layer
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(d) Conv. Autoencoder
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(e) Basic labels

or
an

gu
ta

n
lio

n
ga

ze
lle

hu
m

m
in

gb
ird

vu
ltu

re
go

os
e

an
t

be
e

gr
as

sh
op

pe
r

ba
na

na
or

an
ge

le
m

on
zu

cc
hi

ni
ar

tic
ho

ke
cu

cu
m

be
r

tro
lle

y
m

in
iv

an ta
xi

cr
at

e
m

ai
lb

ox
bu

ck
et

co
ffe

e_
po

t
to

as
te

r
re

fri
ge

ra
to

r
ha

rm
on

ica flu
te

dr
um

sc
re

wd
riv

er
sh

ov
el

ha
m

m
er

orangutan
lion

gazelle
hummingbird

vulture
goose

ant
bee

grasshopper
banana
orange
lemon

zucchini
artichoke

cucumber
trolley

minivan
taxi

crate
mailbox
bucket

coffee_pot
toaster

refrigerator
harmonica

flute
drum

screwdriver
shovel

hammer

(f) Superordinate labels
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(g) Basic + Superordinate
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(h) Basic then Superordinate
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(i) Superordinate then Basic
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(j) Basic FastText vectors
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(k) Superordinate
FastText vectors
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VGG16 early

Conv. Autoencoder

Basic

Superordinate

Basic + 
Superordinate

Basic then 
Superordinate

Superordinate 
then Basic

Basic FastText
vectors

Superordinate
FastText vectors

(l) Model Comparison

Figure 2: Cosine similarity matrix visualizing relationships between between 30 basic level
categories. Lighter yellow colors denote higher similarity, and darker purple colors denote lower
similarity. Categories from the same superordinate class are located near to each other in xticks
with the order of ’mammal’, ’bird’, ’insect’, ’fruit’, ’vegetable’, ’vehicle’, ’container’, ’kitchen
appliance’, ’musical instrument’, and ’tool’.
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they are prone to choose ’lemon’ because it is the most odd one in superordinate-level. In fact, when
the number of superordinate categories in a triplet is two as in the example above, 90% of human
responses can be predicted just by telling which one is the odd superordinate category. To investi-
gate how much this task setting would affect the results, we broke down the triplet data based on
the number of superordinate categories that a triplet belongs to and reported prediction performance
for each split, as shown in the Figure 3. Interestingly, the model trained with superordinate labels
alone still performed the best (63%) when superordinate-level information was not very helpful,
where all three images in a triplet come from three different superordinate categories, e.g, (’mam-
mal’,’fruit’,’vehicle’). Moreover, the superordinate labels CNN (59%) outperformed the basic labels
CNN (56%) even when the images were to be compared at the basic level, where all three images
in a triplet come from the same superordinate categories, e.g., (’lemon’,’orange’,’banana’). This im-
plies humans leverage the guidance from coarser superordinate labels in shaping categorical visual
representation in both basic and superordinate levels

Conv.
Autoencoder

Basic Superordinate Basic
+

Superordinate

Basic
then

Superordinate

Superordinate
then
Basic

Basic
FastText
vectors

Superordinate
FastText
vectors

0.0

0.2

0.4

0.6

0.8

1.0

Bayes Acc: 0.84
SPoSE : 0.80

FastText: 0.70

VGG16 early layer: 0.60

Null Acc: 0.36

IMAGENET
THINGS
Single Exemplar

Figure 3: Comparison of Triplet Prediction Accuracy. IMAGENET: when using categorical rep-
resentations averaged over the IMAGENET training dataset (∼1000 images per category); THINGS:
when using categorical representation averaged over the THINGS dataset (∼10 images per cate-
gory); Single Exemplar: when using categorical representation extracted from the single image used
for behavioral data collection. Baseline accuracies are indicated by the dashed lines.

6 CONCLUSION

To be able to generalize to unseen exemplars, any vision system has to learn statistical regularities
that make members of the same category more similar to one another than members of other cat-
egories. But where do these regularities come from? Are they present in the bottom-up (visual)
input to the network? Or does learning the regularities require top-down guidance from category
labels? If so, what kinds of labels? To investigate this problem, we manipulated the visual repre-
sentations learned by CNNs by supervising them using different types of labels and then evaluated
these models in their ability to predict human similarity judgments. We found that the type of label
used during training profoundly affected the visual representations that were learned, suggesting
that there is categorical structure that is not present in the visual input and instead requires top-down
guidance in the form of category labels. We also found guidance from superordinate labels was
often as good or better as guidance from much finer-grained basic-level labels. Models trained only
on superordinate class labels such as ”musical instrument” and ”container” were not only more sen-
sitive to these broader classes than models trained on just basic-level labels, but exposure to just
superordinate labels allowed the model to learn within-class structure, distinguishing a harmonica
from a flute, and a screwdriver from a hammer. This finding is consistent with the previous work that
revealed that training with coarser labels induce more semantically structured visual representations
(Peterson et al., 2018). More surprisingly, models supervised using superordinate labels (vehicle,
tool, etc.) were best in predicting human performance on a triplet odd-one-out task. CNNs trained
with superordinate labels not only outperformed other models when the odd-one-out came from a

8
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Table 3: Triplet Prediction Accuracy. Macro Mean: global mean of performance ignoring the
sample size for each condition. Sample Mean: average performance weighted by sample size for
each condition; The best accuracy for each condition among our trained models is in bold text.

Model # of unique superordinate
categories in the triplet Macro

Mean
Sample
Mean1 2 3

Bayes acc (upper bound) 0.72 0.92 0.80 0.81 0.84
SPoSE 0.59 0.90 0.75 0.75 0.80
FastText 0.56 0.88 0.56 0.67 0.70
VGG16 early layer 0.44 0.80 0.46 0.57 0.60
Null acc (lower bound) 0.40 0.35 0.36 0.37 0.36
Conv. Autoencoder 0.58 0.77 0.43 0.59 0.58
Basic labels 0.56 0.87 0.59 0.67 0.70
Superordinate labels 0.59 0.91 0.63 0.71 0.74
Basic + Superordinate 0.65 0.89 0.58 0.71 0.72
Basic then Superordinate 0.63 0.90 0.60 0.71 0.73
Superordinate then Basic 0.63 0.90 0.61 0.71 0.74
Basic FastText vectors 0.65 0.84 0.61 0.70 0.71
Superordinate FastText vectors 0.61 0.90 0.59 0.70 0.72
# of triplets 507 4108 5082 9697 9697

different superordinate category (which is not surprising), but also when all three objects from a
triplet came from different superordinate categories (e.g., when choosing between a banana, a bee,
and a screwdriver). Our ongoing work into how different types of labels shape visual representations
is exploring the effect of labels specific to different languages (e.g., English vs. Mandarin), and how
these may translate to differential human and CNN classification performance.
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7 SUPPLEMENTARY MATERIAL

7.1 LIST OF 30 CATEGORIES

Superordinate-level 
Category

Basic-level Category Wordnet ID

Mammal Orangutan n02480495

Gazelle n02423022

Lion n02129165

Insect Ant n02219486

Bee n02206856

Grasshopper n02226429

Bird Hummingbird n01833805

Goose n01855672

Vulture n01616318

Vegetable Artichoke n07718747

Cucumber n07718472

Zucchini n07716358

Fruit Orange n07747607

Lemon n07749582

Banana n07753592

Tool Hammer n03481172

Screwdriver n04154565

Shovel n04208210

Vehicle Minivan n03770679

Trolley n04335435

Taxi n02930766

Musical Instrument Drum n03249569

Flute n03372029

Harmonica n03494278

Kitchen Appliance Refrigerator n04070727

Toaster n04442312

Coffee pot n03063689

Container Bucket n02909870

Mailbox n03710193

Crate n03127925
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7.2 CONV. AUTOENCODER PREDICTIONS
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7.3 AVERAGE PRECISION AND AVERAGE RECALL SCORES FOR THE TRAINED MODELS.

The scores were sample-wise averaged (i.e., averaged over samples) for Basic + Superordinate CNN,
and macro-averaged (i.e.,averaged over categories) for the other models.

Model
Name

Learning
Scheme

#
classes

Dimension
of Output

Average
Precision

Average
Recall

Basic labels One-step 30 30 0.90 0.90
Superordinate labels One-step 10 10 0.94 0.94
Basic + Superordinate One-step 40 40 0.91 0.91
Basic then Superordinate Two-step 10 10 0.95 0.95
Superordinate then Basic Two-step 30 30 0.88 0.88
Basic FastText vectors One-step 30 300 0.47 0.50
Superordinate FastText vectors One-step 10 300 0.72 0.75
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7.4 OTHER CLUSTERING QUALITY MEASURES

SC: Silhouette Coefficients; CH: Calinski-Harabasz Index; DB: Davies-Bouldin Index; BW:
Between-to-within class dispersion in cosine distance; The arrow indicates in which direction of
metric value represent more dense and well separated clusterings. NEW

Model By superordinate category By basic category
SC↑ CH↑ DB↓ BW↑ SC↑ CH↑ DB↓ BW↑

Conv. Autoencoder -0.06 166.08 12.24 0.11 -0.09 70.19 15.19 0.15
Basic labels -0.01 427.43 6.45 0.64 -0.02 200.45 7.35 0.84
Superordinate labels 0.00 628.95 5.25 0.71 -0.02 226.09 11.04 0.8
Basic + Superordinate -0.01 534.81 5.79 0.61 -0.02 231.97 7.62 0.78
Basic then Superordinate 0.00 580.74 5.61 0.76 -0.02 233.15 8.62 0.9
Superordinate then Basic -0.01 525.59 5.53 0.75 -0.01 227.35 7.47 0.93
Basic FastText vectors -0.01 1021.60 5.20 0.95 -0.04 423.39 8.75 1.14
Superordinate FastText vectors -0.01 1324.88 5.24 1.11 -0.05 445.75 14.02 1.18

14



Under review as a conference paper at ICLR 2020

7.5 T-SNE PLOTS FROM OUR TRAINED MODELS FIX

(a) Conv. Autoencoder (b) Basic labels

(c) Superordinate labels (d) Basic + Superordinate

15



Under review as a conference paper at ICLR 2020

(a) Basic then Superordinate (b) Superordinate then Basic

(c) Basic FastText vectors (d) Superordinate FastText vectors
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