
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Automatically Constructing Compositional and Recursive Learners

Anonymous Authors1

Abstract

We consider learning to generalize and extrap-
olate with limited data to harder compositional
problems than a learner has previously seen. We
take steps toward this challenge by presenting
a characterization, algorithm, and implementa-
tion of a learner that programs itself automatically
to reflect the structure of the problem it faces.
Our key ideas are (1) transforming representations
with modular units of computation is a solution
for decomposing problems in a way that reflects
their subproblem structure; (2) learning the struc-
ture of a computation can be formulated as a se-
quential decision-making problem. Experiments
on solving various multilingual arithmetic prob-
lems demonstrate that our method generalizes out
of distribution to unseen problem classes and ex-
trapolates to harder versions of the same problem.
Our paper provides the first element of a frame-
work for learning general-purpose, compositional
and recursive programs that design themselves.

1. Introduction
Teach a human to fish and feed them for a lifetime. Teach
a machine to stack 3 blocks and it still needs to be taught
how to stack 4 blocks. And 5 blocks. And 6 blocks. While
machine learning has seen recent success in mastery of spe-
cific individual skills, it is still a challenge for machines to
reuse past experience to solve harder problems than it has
seen, especially in low data regimes. This is because many
methods do not focus on learning algorithmic procedures
that take advantage of the compositional structure in prob-
lems. How can we enable a learner to capture the essence
of what makes a hard problem more complex than a simple
one, break the hard problem along characteristic lines into
smaller problems it knows how to solve, and sequentially
solve the smaller problems until the larger one is solved?

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

To make progress towards this goal, this paper focuses on
learning programs for solving a particular family of prob-
lems that exhibit compositional structure: their solutions can
be found by composing in sequence a small set of reusable
partial solutions. Such a family offers several attractive chal-
lenges. Firstly, we face the translational challenge which
requires the learner to solve problems of a different category
than it has seen, in which case it must learn to make an anal-
ogy between the new problem and previously encountered
problems by re-representing the new problem into a cate-
gory it is familiar with. We also face the recursive challenge
which requires the learner to solve problems of the same
category but are strictly harder, in which case it must learn
an algorithm to iteratively reduce the harder problem into
simpler problems of the same category.

The key idea behind this paper is to reformulate both anal-
ogy making and algorithm design as a sequential decision-
making problem over transformations between representa-
tions. Unlike neural program synthesis methods that pre-
specify the transformations and learn the structure with
supervised learning (Reed & De Freitas, 2015; Cai et al.,
2017) and reinforcement learning (Chen et al., 2017; Ganin
et al., 2018; Bunel et al., 2018), and unlike neural program
induction methods that learn the transformations but pre-
specify the structure (Devin et al., 2017; Andreas et al.,
2016; Riedel et al., 2016), our learner learns, with sparse
supervision, both the structure and transformations of a
modular recursive program that iteratively re-represents the
input representation into more familiar representations that
it knows how to compute with. One advantage is that the
complexity of our program can dynamically be customized
to the particular problem instance. Another advantage is
that, by drawing the boundaries of modularity via transfor-
mations between representations, the program can learn to
re-represent a new problem into one it already knows how
to solve, rather than learning to solve it from scratch.

To operationalize our method in neural networks, we ob-
serve that a feedforward pass through a neural network is
essentially the execution of an algorithm. This algorithm is a
sequence of computations, where a computation transforms
one representation to another representation. To learn such
an algorithm, we further observe that the execution of an
algorithm can be seen as a traversal through a Markov deci-
sion process (MDP), where the actions are the computations



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2018

and the states are intermediate results. Making this con-
nection between programs and MDPs opens opportunities
to borrow tools from reinforcement learning as a practi-
cal means for solving the discrete optimization problem of
selecting which transformation to apply next.

The closest work to ours are Rosenbaum et al. (2017) and
Gaunt et al. (2016). We build upon Rosenbaum et al. (2017)
by removing the restriction of pre-specified execution length
and allow function reuse within the same execution trace.
Whereas Gaunt et al. (2016) assumes a differentiable in-
terpreter grounded in source code, we take a different per-
spective of learning algorithms through re-representations,
which enables our method to adapt on-line to problem cate-
gories it has not seen before.

2. General Setup
To solve a problem means transforming its input represen-
tation xi into its output representation yi. xi and yi are
associated with their respective types tx and ty. In a trans-
lational problem, the input representation and the output
representation differ (i.e. tx 6= ty) and in a recursive prob-
lem, they are the same (i.e. tx = ty). The translational
challenge requires solving harder translational problems,
which have unseen pairs of input-output types (e.g., the
learner was trained to translate French to English and En-
glish to Spanish but not French to Spanish). The recursive
challenge requires solving harder recursive problems, which
require more computation (e.g., the learner was trained to
solve up to 5-length arithmetic expressions but is tested on
10-length expressions). To extrapolate to harder problems,
the learner must learn to discover and exploit the composi-
tional structure of problems. However, in general the inter-
nal compositional structure of problems is unknown and the
learner only has access to the input and desired output. For
a particular problem Pi, the learner is given an input and the
output type (xi, tyi

) and is expected to produce output yi.
The only supervision signal it receives is its prediction error.
How does a learner automatically program itself to reflect
the structure of each problem?

3. A Learner That Programs Itself
We present three main ideas. The first is that transforming
representations with modular units of computation is a way
to decompose problems to reflect their subproblem struc-
ture, yielding desirable generalization and extrapolation
capabilities. The second formulates learning the structure
of a compositional problem as a sequential decision-making
process, yielding an algorithm for achieving the solution.
The third is a method for implementing this algorithm in
learnable, differentiable programs that make it possible to
learn the underlying computational units.

3.1. Pattern-matching over problems via analogy

The first observation we make is that if the learner is trained
on a diverse distribution of compositional problems that
share enough structure it can distill out the individual struc-
tural components into specialized, modular computational
units: atomic function operators that perform transforma-
tions between representations. Indeed, it is often the case
that it is easier to solve a problem Pa by making an anal-
ogy to a problem Pb that one already knows how to solve,
rather than retraining to solve Pb from scratch (Schmidhu-
ber, 2015). Therefore, if a learner hasn’t ever translated
French to Spanish but knows how to translate French to
English and English to Spanish, it can reduce the French
to Spanish problem to a English to Spanish problem by
transforming the French input to English input, which it
knows how to compute with. If a learner hasn’t ever seen
a 10-length arithmetic expression before, but it knows how
to reduce an n-length expression to an (n− 1)-length one,
then it can iteratively reduce the 10-length expression down
to a length it knows. Specialization naturally emerges when
the computational units do not know the global problem
they are solving but can make local progress that iteratively
re-represents the problem into a more familiar form.

3.2. Learning the structure of a computation as a
sequential decision-making process

Our second observation is that a transformation between rep-
resentations can be generalized as any computation which
changes the state of a program to another. Therefore, learn-
ing how to apply computational units in sequence can then
be formulated as a sequential decision-making problem,
where the state space is the intermediate results produced by
a program and the action space is the set of computations.

This kind of sequential decision problem can be formalized
as a meta-level Markov decision process (MDP) (Hay et al.,
2014), defined by a tuple (X ,F ,Pmeta, r, γ). X is the set
of information states (intermediate results of computation),
C is the set of computations, Pmeta(xj , fj , xj+1) is the
transition model that expresses the probability that at step j
the computation fj will change the information state from
xj to xj+1, γ is a discount factor. The goal of the learner is
to select a series of computations f to iteratively transform
the input x into its predicted output ŷ. When the learner
selects a special computation, the halt signal, the current
result is produced as output. The learner incurs a cost for
every computation it executes and receives a terminal reward
that reflects how its output ŷ matches the desired output y.
The computation cost and the halt signal differentiate the
meta-level MDP from a generic MDP, requiring the learner
to balance program complexity and performance. The result
is a program composed of a sequence of computations that
customizes its complexity to the problem.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2018

Figure 1. Overview: top-left: The learner is a cycle between a
controller and evaluator: the controller selects a function f given
an intermediate representation x and the evaluator applies f on
x to create a new representation. top-right: The learner dynam-
ically learns the structure of a program (viewed as a finite state
machine) customized for its problem. bottom: A series of com-
putations in the program is equivalent to a traversal through the
Meta-MDP, where functions can be reused across different stages
of computation, allowing for recursive computation.

3.3. A general practical algorithm for learning and
composing computations

The meta-level MDP describes how to choose computations,
but not how to learn the form of the computations them-
selves. We solve this problem by learning differentiable
programs composed of neural networks, in which both the
computations and their composition are learned.

The implementation (Figure 1) consists of a controller
π(f |x, ty), a set of functions fk ∈ F , and an evaluator.
At step j, the controller observes the intermediate state of
computation xj and the target output type ty and selects a
function fk. The evaluator then applies fk to transform xj
into a new intermediate state of computation xj+1. When π
selects the halt signal, a loss is computed by comparing
the current state of computation with the desired output.
The loss is backpropagated through the functions, which are
trained with Adam (Kingma & Ba, 2014). The controller
receives a sparse reward derived from the loss, incurs a cost
for every computation, and is trained with Proximal Policy
Optimization (Schulman et al., 2017).

The state space (excluding the initial state, which is the input

to the learner) consists of the outputs of the functions, the
action space consists of the functions themselves, and the
transition model is the evaluator. As the learner trains, the
function parameters change, so transition dynamics are non-
stationary. Because the outputs of a function are the internal
representations of the larger neural network, the learner
simultaneously designs its own internal representation lan-
guage and the transformations that convert between them.
These internal representations may or may not correspond
with the external representation given by the problem.

4. Experiments
Our experiments are aimed at evaluating the generalization,
extrapolation, and compositional learning capabilities of
our approach. We test on the translational and the recursive
challenges. Specifically: (1) Can we generalize to unseen
problem categories using combinations of transformations
learned from prior tasks? (2) Can we generalize to harder
problem instances, i.e. extrapolate?

Multilingual Arithmetic Task: Although our method can
be applied to various multitask learning settings, multilin-
gual arithmetic is a rich family of tasks that exhibit the
properties we desire: (a) variable length inputs, (b) vari-
able problem complexity, (c) reappearance of subproblems
across problem, (d) reappearance of subproblems within a
single problem, (e) a large combinatorial space created by
composing together a small set of primitives using simple
rules, (f) a natural curriculum of easier (shorter) to harder
(longer) problems (g) diversity in the semantic roles of primi-
tive components (e.g. operators like +,×) (h) mulitmodality
in representations. Any other high-dimensional, continuous
input task would at least have the structure we study here in
arithmetic; understanding how to learn to decompose and
exploit the structure of arithmetic is a necessary prerequisite
to solve any more complex task domain.

Multilingual arithmetic problems (modulo 10) come in m
different types, each corresponding to a language that ex-
presses it. An example 3-term input expression is three
plus four times seven (the source language is En-
glish) and an example desired output is uno (the target
language is Spanish). The learner must be able to trans-
late between types as well as solve the arithmetic problem.
We arbitrarily chose m = 5 languages: English, Numerals,
PigLatin, Reversed-English, Spanish. During training, each
source language is seen with four target languages (and one
held out for testing) and each target language is seen with
four source languages (and one held out for testing). Our
functions consist of “reducers” which reduce a length k
expression to a length k − 3 one: the controller chooses a
window of 3 terms in the expression, and the reducer trans-
forms that into a softmax distribution over a single term in
the vocabulary; and “translators”, which produces a length k



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2018

(a) Training Accuracy (b) Test Accuracy (c) Extrapolation Accuracy

Figure 2. Generalization and Extrapolation We train with a curriculum starting with 2-term expressions, expanding the dataset every
5e4 iterations until we have added 5-term expressions. Our method generalizes to mathematically and linguistically different 5-term
expressions and extrapolates to 10-term expressions. Even with pre-training on auxiliary language translation tasks, the RNN does not
extrapolate at all and only generalizes to equal-length but different language-pair expressions when given 10 times more data.

Figure 3. Qualitative Analysis: A visualization of a randomly selected execution trace from the extrapolation set. The input is the math
expression 0− 6 + 1 + 7× 6− 3 + 7− 7× 7 expressed in Pig Latin. The desired output is seis, which is the value of the expression, 6,
expressed in Spanish. Each step of computation is labeled A - L, which is reflected in the finite state machine view on the right. The
purple functions are reducers and the pink functions are translators. The input to a function is highlighted and the output of the function
is underlined. The controller learns order of operations by attending to where to apply the reducer. The reducer f9 always reduces to
numerals and reducer f10 always reduces to English terms. This is interesting: because the functions do not know what the target language
is, they learn to specialize for a specific purpose, resulting in hybrid arithmetic expressions made of different languages, the learner’s own
internal language. Note also that the learner exhibits meta-reasoning, or reasoning about its own computation: it has never seen the (Pig
Latin, Spanish) language pair before during training, but it has seen (Pig Latin, Numerals) and (Numerals, Spanish), so it first reduces the
Pig Latin expression to a numerical evaluation, and then translates that to its Spanish representation using the translator f6. Note that all
of this computation is happening internally to the learner, which computes on softmax distributions over the vocabulary; for visualization
we show the token of the distribution with maximum probability.

sequence of softmax distributions over the vocabulary from
another length k sequence. We train on length-5 expressions.
The test (length-5 expressions) and extrapolation (length-10
expressions) sets have different language pairs.

Generalization and Extrapolation with Low Data: Fig-
ure 2 shows that an RNN fails the translational and recursive
challenges when given only ∼ 104 training examples, but
our method does not. This is challenging because the learner
must reason with the knowledge of language pairs it has
seen in order to solve unseen language pairs; it also needs
to discover the order of operations as an invariant regularity,
such that it can extrapolate to expressions of longer length
by applying reducers in the right locations.

Metareasoning: Figure 3 shows a visualization of the ex-
ecution trace of the learner on the extrapolation set which
contains length-10 expressions in different language pairs,
exhibiting both the translational and recursive challenges.
The controller learns to reason about its own computations
by routing through expressions it does know how to work

with to solve a new problem that it has never seen before.
Our method learns specialized reducers that reduce to a
particular language, which result in intermediate hybrid-
language expressions. After it has reduced the entire expres-
sion, it takes an additional step to translate the final term to
a term in the target language, even though the term before
translation is not in either the source or the target language.

5. Discussion
We described a paradigm for learning to discover and ex-
ploit the structure of compositional problems. Our learner
learns the structure and parameters of a program that dynam-
ically customizes itself to the problem instance. Because
its functions are also learned, our learner is not restricted
to symbolic domains. Thus we believe our focus on com-
positionality is an important link for bridging the program
induction community with other fields such as robotics. Fu-
ture work will scale this approach to higher-dimensional
input spaces.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2018

References
Andreas, Jacob, Rohrbach, Marcus, Darrell, Trevor, and Klein,

Dan. Neural module networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
39–48, 2016.

Bunel, Rudy, Hausknecht, Matthew, Devlin, Jacob, Singh, Rishabh,
and Kohli, Pushmeet. Leveraging grammar and reinforce-
ment learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Cai, Jonathon, Shin, Richard, and Song, Dawn. Making neural pro-
gramming architectures generalize via recursion. arXiv preprint
arXiv:1704.06611, 2017.

Chen, Xinyun, Liu, Chang, and Song, Dawn. Learning neural
programs to parse programs. arXiv preprint arXiv:1706.01284,
2017.

Devin, Coline, Gupta, Abhishek, Darrell, Trevor, Abbeel, Pieter,
and Levine, Sergey. Learning modular neural network policies
for multi-task and multi-robot transfer. In Robotics and Au-
tomation (ICRA), 2017 IEEE International Conference on, pp.
2169–2176. IEEE, 2017.

Ganin, Yaroslav, Kulkarni, Tejas, Babuschkin, Igor, Eslami,
S.M. Ali, and Vinyals, Orial. Synthesizing programs for im-
ages using reinforced adversarial learning. arXiv preprint
arXiv:1804.01118, 2018.

Gaunt, Alexander L, Brockschmidt, Marc, Kushman, Nate, and
Tarlow, Daniel. Differentiable programs with neural libraries.
arXiv preprint arXiv:1611.02109, 2016.

Hay, Nicholas, Russell, Stuart, Tolpin, David, and Shimony,
Solomon Eyal. Selecting computations: Theory and appli-
cations. arXiv preprint arXiv:1408.2048, 2014.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980, 2014.

Reed, Scott and De Freitas, Nando. Neural programmer-
interpreters. arXiv preprint arXiv:1511.06279, 2015.

Riedel, Sebastian, Bosnjak, Matko, and Rocktäschel, Tim. Pro-
gramming with a differentiable forth interpreter. CoRR,
abs/1605.06640, 2016.

Rosenbaum, Clemens, Klinger, Tim, and Riemer, Matthew. Rout-
ing networks: Adaptive selection of non-linear functions for
multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

Schmidhuber, Jürgen. On learning to think: Algorithmic informa-
tion theory for novel combinations of reinforcement learning
controllers and recurrent neural world models. arXiv preprint
arXiv:1511.09249, 2015.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec,
and Klimov, Oleg. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.


