
Under review as a conference paper at ICLR 2020

THE EFFECT OF NEURAL NET ARCHITECTURE ON
GRADIENT CONFUSION & TRAINING PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of this paper is to study why typical neural networks train so fast, and
how neural network architecture affects the speed of training. We introduce a
simple concept called gradient confusion to help formally analyze this. When
confusion is high, stochastic gradients produced by different data samples may be
negatively correlated, slowing down convergence. But when gradient confusion is
low, data samples interact harmoniously, and training proceeds quickly. Through
novel theoretical and experimental results, we show how the neural net architecture
affects gradient confusion, and thus the efficiency of training. We show that
increasing the width of neural networks leads to lower gradient confusion, and thus
easier model training. On the other hand, increasing the depth of neural networks
has the opposite effect. Finally, we observe empirically that techniques like batch
normalization and skip connections reduce gradient confusion, which helps reduce
the training burden of very deep networks.

1 INTRODUCTION

Stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its variants with momentum
(Sutskever et al., 2013) have become the standard optimization routine for neural networks due to
their fast convergence and good generalization properties (Wilson et al., 2017; Keskar & Socher, 2017;
Sutskever et al., 2013). Yet the behavior of SGD on high-dimensional neural network models still
eludes full theoretical understanding, both in terms of its convergence and generalization properties.
In this paper, we study why SGD is so efficient at converging to low loss values on most standard
neural networks, and how neural net architecture design affects training performance.

Classical stochastic optimization theory predicts that the learning rate of SGD needs to decrease over
time for convergence to be guaranteed to the minimizer of a convex function (Shamir & Zhang, 2013;
Bertsekas, 2011). For strongly convex functions for example, such results show that a decreasing
learning rate schedule of O(1/k) is required to guarantee convergence to within ε-accuracy of the
minimizer in O(1/ε) iterations, where k denotes the iteration number. Such decay schemes, however,
typically lead to poor performance on standard neural network problems. Neural networks operate in
a regime where the number of parameters is much larger than the number of training data. In this
regime, SGD seems to converge quickly with constant learning rates. Most neural net practitioners
use a constant learning rate for the majority of training, with exponentially decaying learning rate
schedules at the end, without seeing the method stall (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; He et al., 2016; Zagoruyko & Komodakis, 2016). With constant learning rates, theoretical
guarantees show that SGD converges quickly to a neighborhood of the minimizer, but then reaches a
noise floor beyond which it stops converging; this noise floor depends on the learning rate and the
variance of the gradients (Moulines & Bach, 2011; Needell et al., 2014). Some more recent results
have shown that when models can fit the data completely while being strongly convex, convergence
without a noise floor is possible without decaying the learning rate (Schmidt & Roux, 2013; Ma et al.,
2017; Bassily et al., 2018; Vaswani et al., 2018).

While these results do give important insights, they do not fully explain the dynamics of SGD on
neural nets, and how they relate to overparameterization. Training performance is also highly affected
by the neural network architecture. It is common knowledge among neural network practitioners that
deeper networks train slower (Bengio et al., 1994; Glorot & Bengio, 2010). This has led to several
innovations over the years to get deeper networks to train more easily, such as careful initialization
strategies (Glorot & Bengio, 2010; He et al., 2015; Zhang et al., 2019), residual connections (He et al.,

1

Under review as a conference paper at ICLR 2020

2016), and various normalization schemes like batch normalization (Ioffe & Szegedy, 2015) and
weight normalization (Salimans & Kingma, 2016). Furthermore, there is ample evidence to indicate
that wider networks are easier to train (Zagoruyko & Komodakis, 2016; Nguyen & Hein, 2017; Lee
et al., 2019), and recent theoretical results suggest that the dynamics of SGD simplify considerably
for very wide networks (Jacot et al., 2018; Lee et al., 2019). Several prior works have investigated
the difficulties of training deep networks (Glorot & Bengio, 2010; Balduzzi et al., 2017), and the
benefits of width (Nguyen & Hein, 2017; Lee et al., 2019; Du et al., 2018; Allen-Zhu et al., 2018).
This work advances the existing literature by identifying and analyzing a condition that enables us to
theoretically and empirically establish novel direct relationships between layer width, network depth,
problem dimensionality, and SGD dynamics on overparameterized networks.

Our contributions. Typical neural nets are overparameterized (i.e., the number of parameters
exceed the number of training points). In this paper, we ask how this overparameterization, and more
specifically the architecture of a neural net, affects the dynamics of SGD. We answer this question
through extensive theoretical and experimental studies and show how network width, depth, batch
normalization and skip connections affect the dynamics. We emphasize that our main contributions
are conceptual. In particular, following are our main contributions.1

• We identify a condition, termed gradient confusion, that impacts the convergence properties
of SGD on overparameterized models. We prove that high gradient confusion may lead to
slower convergence, while convergence is accelerated (and could be faster than predicted by
existing theory) if confusion is low indicating a regime where constant learning rates work
well in practice (sections 2 and 3). We use this gradient confusion condition as the main
proxy, to study the effect of various architecture choices on convergence.

• We study the effect of neural net architecture on gradient confusion (section 4), and prove
(a) gradient confusion increases as the network depth increases, and (b) at initialization,
wider networks have lower gradient confusion. This indicates that deeper networks are more
difficult to train and wider networks improves trainability of neural nets. Directly analyzing
the gradient confusion bound enables us to derive novel and tight results on the direct effect
of depth and width, without requiring arguably restrictive assumptions like infinitely wide
networks (Schoenholz et al., 2016; Lee et al., 2019). Our results hold for a large family of
neural networks with non-linear activations and a large class of loss-functions.

• We test our theoretical predictions using extensive experiments on wide residual networks
(WRNs) (Zagoruyko & Komodakis, 2016), convolutional networks (CNNs) and multi-layer
perceptrons (MLPs) for image classification tasks on CIFAR-10, CIFAR-100 and MNIST
(section 5 and appendix A). We find that our theoretical results consistently hold across
all our experiments. We further show that innovations like batch normalization and skip
connections in residual networks help lower gradient confusion, thus indicating why standard
neural networks that employ such techniques are so efficiently trained using SGD.

2 GRADIENT CONFUSION

Notations. We denote vectors in bold lower-case and matrices in bold upper-case. We use (W)i,j to
indicate the (i, j) cell in matrix W and (W)i for the ith row of matrix W. ‖W‖ denotes the operator
norm of W. [N] denotes {1, 2, . . . , N} and [N]0 denotes {0, 1, . . . , N}.

Preliminaries. Given N training points (specified by the corresponding loss functions {fi}i∈[N]),
we use SGD to solve empirical risk minimization problems of the form,

minw∈Rd F (w) := minw∈Rd
1
N

∑N
i=1 fi(w), (1)

using the following iterative update rule for T rounds:

wk+1 = wk − α∇f̃k(wk). (2)

Here α is the learning rate and f̃k is a function chosen uniformly at random from {fi}i∈[N] at iteration
k ∈ [T]. We use w? to denote the optimal solution, i.e., w? = argminw F (w).

1Due to space constraints, all proofs and several additional experiments are delegated to the appendix.

2

Under review as a conference paper at ICLR 2020

Gradient confusion. SGD works by iteratively selecting a random function f̃k, and modifying the
parameters to move in the direction of the negative gradient of the objective term f̃k. It may happen
that the selected gradient ∇f̃k is negatively correlated with the gradient of another term ∇fj . When
the gradients of different mini-batches are negatively correlated, the objective terms disagree on
which direction the parameters should move, and we say that there is gradient confusion.2

Definition 2.1. A set of objective functions {fi}i∈[N] has gradient confusion bound η ≥ 0 if the
pair-wise inner products between gradients satisfy, for a fixed w ∈ Rd,

〈∇fi(w),∇fj(w)〉 ≥ −η, ∀i 6= j ∈ [N]. (3)

Remarks. Note that while the gradient confusion bound η is defined for the worst-case gradient inner
product, all the results in our paper can be trivially extended to using a bound on the average gradient
inner product:

∑N
i,j=1〈∇fi(w),∇fj(w)〉/N2 ≥ −η. All theoretical results would remain the same

up to constants. Further, note that definition 2.1 is applicable even when the stochastic gradients are
averaged over minibatches of size B. For minibatches of size B, the variance of the gradient inner
product scales down as 1/B2, and thus η is expected to decrease as B grows.

0 20000 40000 60000 80000 100000
iterations

10 5

10 4

10 3

10 2

10 1

100

101

gr
ad

ie
nt

 n
or

m

N = 100, d = 80
N = 100, d = 120

0 20000 40000 60000 80000 100000
iterations

0.45

0.40

0.35

0.30

0.25

0.20

m
in

 g
ra

d
co

si
ne

 s
im

ila
rit

y

N = 100, d = 80
N = 100, d = 120

Figure 1: Linear regression on an over-parameterized
(d = 120) and under-parameterized (d = 80) model with
N = 100 samples generated randomly from a Gaussian,
trained using SGD with minibatch size 1. Plots are averaged
over 3 independent runs. Gradient cosine similarities were
calculated over all pairs of gradients.

Observations in simplified settings. SGD
converges fast when gradient confusion is
low along its path. To see why, consider
the case of training a logistic regression
model on a dataset with orthogonal vec-
tors. We have fi(w) = `(yix

>
i w), where

` : R→ R is the logistic loss, {xi}i∈[N] is a
set of orthogonal training vectors, and yi ∈
{−1, 1} is the label for the ith training exam-
ple. We then have ∇fi(w) = ζixi, where
ζi = yi`

′(yi · x>i w). Note that the gradient
confusion is 0 since 〈∇fi(w),∇fj(w)〉 =
ζiζj〈xi,xj〉 = 0, ∀i, j ∈ [N] and i 6= j.
Thus, an update in the gradient direction fi
has no effect on the loss value of fj for i 6= j.
In this case, SGD decouples into (deterministic) gradient descent on each objective term separately,
and we can expect to see the fast convergence rates attained by gradient descent.

Can we expect a problem to have low gradient confusion in practice? From the logistic regression
problem, we have: |〈∇fi(w),∇fj(w)〉| = |〈xi,xj〉| · |ζiζj |. This inner product is expected to be
small for all w; the logistic loss satisfies |ζiζj | < 1, and for fixed N the quantity maxij |〈xj ,xi〉|
is O(1/

√
d) whenever {xi} are randomly sampled from a sphere (see lemma B.1 for the formal

statement).3 Thus, we would expect a random linear model to have nearly orthogonal gradients, when
the number of parameters is "large" and the number of training data is "small", i.e., when the model is
over-parameterized. This is further evidenced by a toy example in figure 1, where we show a slightly
overparameterized linear regression model can have much faster convergence rates, as well as lower
gradient confusion, compared to the underparameterized model.

Now consider more general neural net problems. There is evidence that the Hessian at the minimizer
is very low rank for many standard overparameterized neural net models (Sagun et al., 2017; Cooper,
2018; Chaudhari et al., 2016; Wu et al., 2017; Ghorbani et al., 2019). What does this imply for the
gradient confusion? For clarity in presentation, suppose each fi has a minimizer at the origin (the
same argument can be easily extended to the more general case). Suppose also that there is a Lipschitz
constant for the Hessian of each function fi that satisfies ‖Hi(w)−Hi(w

′)‖ ≤ LH‖w−w′‖ (note
that this is a standard optimization assumption (Nesterov, 2018), with evidence that it is applicable
for neural nets (Martens, 2016)). Then ∇fi(w) = Hiw + e, where e is an error term bounded as:
‖e‖ ≤ 1

2LH‖w‖
2, and we use the shorthand Hi to denote Hi(0). Then we have (appendix C):

|〈∇fi(w),∇fj(w)〉| ≤ ‖w‖2‖Hi‖‖Hj‖+ 1
2LH‖w‖

3(‖Hi‖+ ‖Hj‖) + 1
4L

2
H‖w‖4.

2This is related to both gradient variance and gradient diversity (Yin et al., 2017), but with important
differences. See section 6 for more discussion.

3Generally, this is true whenever xi = 1√
d
yi, where yi is an isotropic random vector (Vershynin, 2018).

3

Under review as a conference paper at ICLR 2020

If the Hessians are sufficiently random and low-rank (e.g., of the form Hi = aia
>
i where ai ∈ RN×r

are randomly sampled from a unit sphere), then one would expect the terms in this expression to be
small for all w within a neighborhood of the minimizer. While a bit non-rigorous, this nonetheless
suggests that for many standard neural network models, the gradient confusion might be small for a
large class of weights near the minimizer.

The above arguments are rather informal, and ignore issues like the effect of the structure of neural
networks. In the following sections, we rigorously analyze the effect of gradient confusion on the
speed of convergence on non-convex problems, and the effect of width and depth of the neural net
architecture on the gradient confusion.

3 SGD IS EFFICIENT WHEN GRADIENT CONFUSION IS LOW

Several prior papers have analyzed the convergence rates of constant learning rate SGD (Nedić &
Bertsekas, 2001; Moulines & Bach, 2011; Needell et al., 2014; Dieuleveut et al., 2017). These results
show that for strongly convex and Lipschitz smooth functions, SGD with a constant learning rate α
converges linearly to a neighborhood of the minimizer. The noise floor it converges to depends on the
learning rate α and the variance of the gradients at the minimizer, i.e., Ei‖∇fi(w?)‖2. To guarantee
convergence to ε-accuracy in such a setting, the learning rate needs to be small, i.e., α = O(ε), and
the method requires T = O(1/ε) iterations. Some more recent results show convergence of constant
learning rate SGD without a noise floor and without small step sizes for models that can completely
fit the data (Schmidt & Roux, 2013; Ma et al., 2017; Bassily et al., 2018; Vaswani et al., 2018).

The gradient confusion bound is related to these classical results. Cauchy-Swartz inequality implies
that if Ei‖∇fi(w?)‖2 = O(ε), then Ei,j |〈∇fi(w?),∇fj(w?)〉| = O(ε), ∀i, j. Thus the gradient
confusion at the minimizer is small when the variance of the gradients at the minimizer is small.
Further note that when the variance of the gradients at the minimizer is O(ε), a direct application of
the results in (Moulines & Bach, 2011; Needell et al., 2014) shows that constant learning rate SGD
has fast convergence to ε-accuracy in T = O(log(1/ε)) iterations, without the learning rate needing
to be small. Generally however, bounded gradient confusion does not provide a bound on the variance
of the gradients (see section 6 for more discussion). Thus, it is instructive to derive convergence
bounds of SGD explicitly in terms of the gradient confusion to properly understand its effect.

We begin by considering functions satisfying the Polyak-Lojasiewicz (PL) inequality (Lojasiewicz,
1965), a condition related to, but weaker than, strong convexity, and provide bounds on the rate of
convergence in terms of the optimality gap. Then we look at a broader class of smooth non-convex
functions, and analyze convergence to a stationary point. We first make two standard assumptions.

(A1) {fi}i∈[N] are Lipschitz smooth: fi(w′) ≤ fi(w) +∇fi(w)>(w′ −w) + L
2 ‖w

′ −w‖2.

(A2) {fi}i∈[N] satisfy the PL inequality: 1
2‖∇fi(w)‖2 ≥ µ(fi(w)− f?i), f?i = minw fi(w).

Theorem 3.1. If the objective function satisfies (A1) and (A2), and has gradient confusion η, SGD
with updates of the form (2) converges linearly to a neighborhood of the minima of problem (1) as:

E[F (wT)− F ?] ≤ ρT (F (w0)− F ?) + αη
1−ρ ,

where α < 2
NL , ρ = 1− 2µ

N

(
α− NLα2

2

)
, F ? = minw F (w) and w0 is the initialized weights.

This result shows that SGD converges linearly to a neighborhood of a minimizer, and the size of
this neighborhood depends on the level of gradient confusion. When the gradient confusion is small,
i.e., η = O(ε), SGD has fast convergence to O(ε)-accuracy in T = O(log(1/ε)) iterations, without
requiring the learning rate to be vanishingly small. We now extend this to general smooth functions.

Theorem 3.2. If the objective satisfies (A1) and has gradient confusion bound η, then SGD converges
to a neighborhood of a stationary point as:

mink=1,...,T E‖∇F (wk)‖2 ≤ ρ(F (w1)−F?)
T + ρη,

for learning rate α < 2
NL , ρ = 2N

2−NLα , and F ? = minw F (w).

Thus, as long as η = O(1/T), SGD has fast O(1/T) convergence on smooth non-convex functions.
Theorems 3.1 and 3.2 predict an initial phase of optimization with fast convergence to the neighbor-
hood of a minimizer or a stationary point. This behavior is often observed when optimizing neural

4

Under review as a conference paper at ICLR 2020

nets (Darken & Moody, 1992; Sutskever et al., 2013), where a constant learning rate reaches a high
level of accuracy on the model. As we show in subsequent sections, this is expected since for neural
networks typically used, the gradient confusion is expected to be low. Convergence slows down as
the iterates approach the noise floor, and at this point typically practitioners employ exponentially
decaying learning rate schedules (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al.,
2016; Zagoruyko & Komodakis, 2016; Ge et al., 2019). See section 6 for more discussion on theorems
3.1 and 3.2, and how they relate to results in previous works. We stress that our goal is not to study
convergence rates per se, nor is it to prove state-of-the-art rate bounds for this class of problems. The
main intention is to show the direct effect that the gradient confusion bound has on the convergence
rate and the noise floor that constant learning rate SGD converges to. As we show in the following
sections, this new perspective in terms of the gradient confusion helps us more directly understand
how neural net architecture design affects SGD dynamics and why.

4 EFFECT OF NEURAL NET ARCHITECTURE ON GRADIENT CONFUSION

To draw a rigorous connection between neural net structure and training performance, we analyze
gradient confusion for generic (i.e., random) model problems using methods from high-dimensional
probability. In particular, this section considers the following scenarios: (a) Random data drawn from
a unit sphere and the weights in a ball around the local minimizer (theorem 4.1 and corollary 4.1). (b)
Random weights using standard initialization schemes and both arbitrary bounded data (theorem 4.2,
part 1) and random data drawn from a unit sphere (theorem 4.2, part 2). Our results cover a wide range
of scenarios compared to prior work (e.g., Chen et al. (2018); Schoenholz et al. (2016); Balduzzi
et al. (2017)), require minimal additional assumptions, and hold for a large family of neural nets
with non-linear activations and a large class of loss-functions. In particular, our results hold for fully
connected networks (and convolutional networks in some cases) with the square-loss and logistic-loss
functions, and commonly used non-linear activations such as sigmoid, tanh and ReLU.

(a) Random Data, Bounded Weights Around Minimizer. In this subsection, we consider training
data of the formD = {(xi, C(xi))}i∈[N], for some labeling function C : Rd → [−1, 1], and with data
points {xi} drawn uniformly from the surface of a d-dimensional unit sphere. The labeling function
satisfies |C(x)| ≤ 1 and ‖∇xC(x)‖2 ≤ 1 for ‖x‖ ≤ 1. Note that this automatically holds for every
model considered in this paper where the labeling function is realizable (i.e., where the model can
express the labeling function using its parameters). More generally, this assumes a Lipschitz condition
on the labels (i.e., the labels don’t change too quickly with the inputs). In this paper, we consider two
loss-functions, namely, square-loss for regression and logistic loss function for classification. The
square-loss function is defined as fi(w) = 1

2 (C(xi)− gw(xi))
2 and the logistic function is defined

as fi(w) = log(1 + exp(−C(xi)gw(xi))). Here, gw : Rd → R denotes the parameterized function
we fit to the training data and fi(w) denotes the loss-function of hypothesis gw on data point xi.

Formally, let W0 ∈ R`1×d and {Wp}p∈[β] such that Wp ∈ R`p×`p−1 be the given weight matrices.
Let W denote the tuple (Wp)p∈[β]0 . Define ` := maxp∈[β] `p to be the width and β to be the depth
of the neural network. Then, the model gW is defined as

gW(x) := σ(Wβσ(Wβ−1 . . . σ(W1σ(W0x)) . . .)), (4)

where σ denotes the non-linear activation function applied point-wise to its arguments. We assume
that the non-linear activation is given by a function σ(x) with the following properties.

• (P1) Boundedness: |σ(x)| ≤ 1 for vector x ∈ [−1, 1].

• (P2) Bounded differentials: Let σ′(x) and σ′′(x) denote the first and second sub-
differentials respectively. Then, |σ′(x)| ≤ 1 and |σ′′(x)| ≤ 1 for all x ∈ [−1, 1].

When ‖x‖ ≤ 1, as in our random data model, activation functions such as sigmoid, tanh, softmax and
ReLU satisfy these requirements. Additionally, we make the following assumption on the weights.

Assumption 1 (Small Weights). We assume that the operator norm of the weight matrices {Wi}i∈[β]0
are bounded above by 1. In other words, for every i ∈ [β]0 we have ‖Wi‖ ≤ 1.

The operator norm of the weight matrices ‖W‖ being close to 1 is important for the trainability of
neural nets, as it ensures that the input signal is passed through the net without exploding or shrinking

5

Under review as a conference paper at ICLR 2020

across layers (Glorot & Bengio, 2010). Proving non-vacuous bounds in case of such blow-ups in
magnitude of the signal or the gradient is not possible in general, and thus, we consider this restricted
class of weights. The small-weights assumption is not just a theoretical concern, but also usually
enforced in practice using weight decay regularizers of the form

∑
i ‖Wi‖2F , which keep the weights

small during optimization. See appendix F for further discussion on the small weights assumption.

We now prove concentration bounds for the gradient confusion on neural nets.

Theorem 4.1. Consider the problem of training neural nets (equation 4) using either the square-loss
or the logistic-loss function. Let η > 0 be a given constant. Let the weights satisfy assumption 1 and
the non-linearities in each layer satisfy properties (P1) and (P2). For some fixed constant c > 0, the
gradient confusion bound in equation 3 holds with probability at least

1−N2 exp
(

−cdη2
16ζ40 (β+2)4

)
,

For both the square-loss and the logistic-loss functions, ζ0 ≤ 2
√
β (from lemma D.1).

Thus, theorem 4.1 shows that, for a given dimension d and number of samples N , when the network
depth β decreases, the probability that the gradient confusion bound in equation 3 holds increases,
and vice versa. Note that the convergence rate results of SGD in section 3 assume that the gradient
confusion bound holds at every point along the path of SGD. On the other hand, theorem 4.1 shows
concentration bounds for the gradient confusion at a fixed weight W. Thus, to ensure that the
above result is relevant for the convergence of SGD on overparameterized models, we now make the
concentration bound in theorem 4.1 uniform over all weights inside a ball Br of radius r.

Corollary 4.1 (Uniform concentration for all weights around the minimizer). Select a point W =
(W0,W1, . . . ,Wβ), satisfying assumption 1. Consider a ball Br centered at W of radius r > 0. If
the data {xi}i∈[N] are sampled uniformly from a unit sphere, then the gradient confusion bound in
equation 3 holds uniformly at all points W′ ∈ Br with probability at least

1−N2 exp
(
− cdη2

64ζ40 (β+2)4

)
, if r ≤ η/4ζ20 ,

1−N2 exp
(
− cdη2

64ζ40 (β+2)4
+

8dζ20r
η

)
, otherwise.

Thus, corollary 4.1 shows that the probability that the gradient confusion bound holds decreases
with increasing depth, for all weights in a ball around the minimizer. This explains why training
very deep models is hard and typically slow with SGD (Bengio et al., 1994; Glorot & Bengio, 2010).
Note that this is also related to the shattered gradients phenomenon (Balduzzi et al., 2017) that arises
with depth (see appendix 6 for more discussion). This naturally raises the question why modern
deep neural networks are so efficiently trained using SGD. While careful initialization strategies
prevent vanishing or exploding gradients making deeper networks trainable, these strategies still
suffer from high gradient confusion for very deep networks (as we show below in theorem 4.2). Thus,
in section 5, we empirically study how popular techniques like skip connections (He et al., 2016) and
batch normalization (Ioffe & Szegedy, 2015) affect gradient confusion. We find that these techniques
drastically lower gradient confusion, making very deep networks significantly easier to train. Note
that the above results automatically hold for convolutional nets, since a convolution operation on x
can be represented as a matrix multiplication Ux for an appropriate Toeplitz matrix U.

(b) Standard Weight Initializations and the Effect of Layer Width. Note that on assuming
‖W‖ ≤ 1 for each weight matrix W in our results in part 1 of section 4, the dependence of gradient
confusion on the layer width goes away in general. A simple example that illustrates this is to consider
the case where each weight matrix in the neural network has exactly one non-zero element, which is
set to 1. The operator norm of each such weight matrix is 1, but the forward or backward propagated
signals would not depend on the width. Thus, to better understand the effect of the layer width, in this
subsection we focus on the behavior of neural nets at initialization by considering standard weight
initialization strategies used when training neural nets. For completeness, we consider both the case
where the data is arbitrary but bounded, as well as where the data is randomly drawn from a unit
sphere. A key point used in the following results is that typical weight initialization techniques ensure
that the operator norm is bounded by 1 with high probability, thus enabling us to derive tight bounds
on the gradient confusion. We consider the following weight initialization strategy.

6

Under review as a conference paper at ICLR 2020

0 50 100 150 200

epochs

0.0

0.5

1.0

1.5

2.0

2.5

tr
a
in

in
g
 l
o
ss

depth 16

depth 22

depth 28

depth 34

depth 40

15 20 25 30 35 40

network depth

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.4 0.2 0.0 0.2 0.4

pairwise gradient cosine similarity

0

1

2

3

4

5

6

7

8

d
e
n
si

ty

depth 16

depth 22

depth 28

depth 34

depth 40

Figure 2: The effect of network depth with CNN-β-2 on CIFAR-10. Left plot: convergence curves of SGD,
Middle plot: minimum of pairwise gradient cosine similarities at the end of training, Right plot: kernel density
estimate of the pairwise gradient cosine similarities at the end of training (over all independent runs).

Strategy 4.1. W0 ∈ R`×d has independent N (0, 1d) entries. For every p ∈ [β], the weights

Wp ∈ R`p×`p−1 have independent N
(
0, 1

κ`p−1

)
entries for some constant κ > 0.

This initialization strategy with different settings of κ are used almost universally for neural networks
(Glorot & Bengio, 2010; He et al., 2015). The following theorem shows how the width ` :=
maxp∈[β] `p and the depth β affect the gradient confusion condition. In particular, as width increases
or depth decreases the probability that the gradient confusion bound (equation 3) holds increases.

Theorem 4.2 (Neural nets with randomly chosen weights). Let W0,W1, . . . ,Wβ be weight matri-
ces chosen according to strategy 4.1. There exists fixed constants c1, c2 > 0 such that we have:

1. Consider a fixed but arbitrary dataset x1,x2, . . . ,xN with ‖xi‖ ≤ 1 for every i ∈ [N]. For
η > 4, the gradient confusion bound in equation 3 holds with probability at least

1− β exp
(
−c1κ2`2

)
−N2 exp

(
−c`2β(η−4)2
64ζ40 (β+2)4

)
.

2. If the dataset {xi}i∈[N] is such that each xi is an i.i.d. sample from the surface of d-
dimensional unit sphere, then for every η > 0 the gradient confusion bound in equation 3
holds with probability at least

1− β exp
(
−c1κ2`2

)
−N2 exp

(
−c2(`d+`2β)η2
16ζ40 (β+2)4

)
.

Thus, theorem 4.2 shows that layer width improves the trainability of deep networks under most
standard initialization techniques. Note that for reasons described above, almost all recent theoretical
results on neural nets have analyzed the effect of width at initialization. Further, one can prove that
when the layers are very wide, the weights move very little, and most of the conditions at initialization
persist during training, considerably simplifying the learning dynamics of gradient descent (Jacot
et al., 2018; Lee et al., 2019). Under this simplifying assumption of very wide networks, several
authors have analyzed the effect of width during optimization on very wide networks (Allen-Zhu et al.,
2018; Du et al., 2018). Under this assumption and using a standard application of the techniques used
in prior work, we can likely show that theorem 4.2 also holds during optimization. In the next section
(and in appendix A), we show substantial empirical evidence that, given a sufficiently deep network,
increasing the layer width often helps in lowering gradient confusion and speeding up convergence
for a range of models, and that these effects persist throughout optimization for most models.

5 EXPERIMENTAL RESULTS

To test our theoretical results and to probe why standard neural nets are efficiently trained with SGD,
we now present experimental results showing the effect of the neural network architecture on the
convergence of SGD and gradient confusion. It is worth noting that theorems 3.1 and 3.2 indicate that
we would expect the effect of gradient confusion to be most prominent closer to the end of training.

We performed experiments on wide residual networks (WRNs) (Zagoruyko & Komodakis, 2016),
convolutional networks (CNNs) and multi-layer perceptrons (MLPs) for image classification tasks
on CIFAR-10, CIFAR-100 and MNIST. We present results for CNNs on CIFAR-10 in this section,

7

Under review as a conference paper at ICLR 2020

0 50 100 150 200

epochs

10-5

10-4

10-3

10-2

10-1

100

tr
a
in

in
g
 l
o
ss

width 2

width 4

width 6

2 3 4 5 6

layer width

0.20

0.18

0.16

0.14

0.12

0.10

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

pairwise gradient cosine similarity

0

2

4

6

8

10

12

14

d
e
n
si

ty

width 2

width 3

width 4

width 5

width 6

Figure 3: The effect of width with CNN-16-` on CIFAR-10. Left plot: convergence curves of SGD (for cleaner
figures, we plot results for width factors 2, 4 and 6 here), Middle plot: minimum of pairwise gradient cosine
similarities at the end of training, Right plot: kernel density estimate of the pairwise gradient cosine similarities
at the end of training (over all independent runs).

20 30 40 50 60 70 80 90 100

network depth

10-5

10-4

10-3

10-2

10-1

100

101

fi
n
a
l
tr

a
in

in
g
 l
o
ss

no BN, no skip

with BN, no skip

no BN, with skip

with BN & skip

20 30 40 50 60 70 80 90 100

network depth

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

no BN, no skip

with BN, no skip

no BN, with skip

with BN & skip

20 30 40 50 60 70 80 90 100

network depth

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fi
n
a
l
te

st
 s

e
t

a
cc

u
ra

cy

no BN, no skip

with BN, no skip

no BN, with skip

with BN & skip

Figure 4: The effect of adding skip connections and batch normalization to CNN-β-2 on CIFAR-10. Plots show
the optimal training loss (left plot), minimum pairwise gradient cosine similarities (middle plot), and test set
accuracies (right plot) at the end of training.

and present all other results in appendix A. We use CNN-β-` to denote WRNs that have no skip
connections or batch normalization, with a depth β and width factor `.4 We turned off dropout
and weight decay for all our experiments. We used SGD as the optimizer without any momentum.
Following Zagoruyko & Komodakis (2016), we ran all experiments for 200 epochs with minibatches
of size 128, and reduced the initial learning rate by a factor of 10 at epochs 80 and 160. We used
the MSRA initializer (He et al., 2015) for the weights as is standard for this model, and used the
same preprocessing steps for the CIFAR-10 images as described in Zagoruyko & Komodakis (2016).
We ran each experiment 5 times, and we show the standard deviation across runs in our plots. We
tuned the optimal initial learning rate for each model over a logarithmically-spaced grid and selected
the run that achieved the lowest training loss value. To measure gradient confusion, at the end of
every training epoch, we sampled 100 pairs of mini-batches each of size 128 (the same size as the
training batch size). We calculated gradients on each mini-batch, and then computed pairwise cosine
similarities. See appendix A.2 for more details on the experimental setup and architectures used.

Effect of depth. To test our theoretical results, we consider CNNs with a fixed width factor of
2 and varying network depth. From figure 2, we see that our theoretical results are backed by the
experiments: increasing depth slows down convergence, and increases gradient confusion. We also
notice that with increasing depth, the density of pairwise gradient cosine similarities concentrates
less sharply around 0 (indicating higher variance), which makes the network harder to train.

Effect of width. We now consider CNNs with a fixed depth of 16 and varying width factors. From
figure 3, we see that increasing width results in faster convergence and lower gradient confusion.
We further see that gradient cosine similarities concentrate around 0 with growing width, indicating
that SGD decouples across the training samples with growing width. Note that the smallest network
considered is still overparameterized and achieves a high level of performance (see appendix A.3).

Effect of batch normalization and skip connections. To help understand why many standard
deep nets are so efficiently trained using SGD, we test the effect of adding skip connections and
batch normalization to CNNs of fixed width and varying depth. Figure 4 shows that adding skip
connections or batch normalization individually help in training deeper models, but these models still
suffer from worsening results and increasing gradient confusion as the network gets deeper. Both
these techniques together keep the gradient confusion relatively low even for very deep networks,

4The width factor denotes the number of filters relative to the original ResNet model.

8

Under review as a conference paper at ICLR 2020

significantly improving trainability of deep models. Note that all these observations are consistent
with previous work (Balduzzi et al., 2017; Santurkar et al., 2018; Yang et al., 2019).

6 CONNECTIONS TO RELATED WORK

The interpolation condition and connections to the gradient variance: The gradient confusion
condition has interesting connections to the variance of the gradients. If we assume bounded gradient
variance σ2, we can bound the gradient confusion parameter η in terms of other quantities. For
example, suppose the true gradient g is defined as g = g1/2 + g2/2. Then we have:

|〈g1, g2〉| ≤ ‖g1‖‖g2‖ ≤ 1/2 ·(‖g1‖2+‖g2‖2) = 1/2 ·(‖g1−g‖2+‖g2−g‖2)+‖g‖2 = σ2+‖g‖2,

where all gradients are defined at the same w.

More interestingly however, it is not possible in general to bound the gradient variance in terms of
the gradient confusion parameter. As a counter-example, consider a problem with the following
distribution on the stochastic gradients: 1

1−p samples with gradient 1
ε and 1

p samples with gradient ε,
where p = ε → 0. In this case, the gradients are positive, so gradient confusion η = 0. The mean
of the gradients is given by 1 + ε(1− ε), which remains bounded as ε→ 0. On the other hand, the
variance (and thus the squared norm of the stochastic gradients) is actually unbounded (O(1/ε) as
ε→ 0). While this is a contrived example, it does show why such a bound does not exist.

A consequence of this is that in theorems 3.1 and 3.2 in section 3, the "noise term" (i.e., the second
term in the RHS of the convergence bounds) does not depend on the learning rate in the general case.
If gradients have unbounded variance, lowering the learning rate does not reduce the variance of
the SGD updates, and thus does not reduce the noise term. This further indicates a regime of high
gradient variance but low gradient confusion where SGD would converge faster than predicted by
classical convergence rate results (Moulines & Bach, 2011; Needell et al., 2014).

In practice, typically the gradient variance is bounded. In this case, tighter convergence rate bounds
in terms of η are possible, which follow as simple corollaries from classical convergence bounds in
terms of the gradient variance such as those in Moulines & Bach (2011); Needell et al. (2014). The
interpolation and strong growth conditions, as analyzed in Ma et al. (2017); Bassily et al. (2018);
Vaswani et al. (2018); Schmidt & Roux (2013), are related to this. These conditions imply that
the variance of the gradients at the minimizer is small. As shown above, this would imply that the
gradient confusion is also small, leading to fast convergence of SGD. This is also similar to the
condition of the minimal risk being small as in Srebro et al. (2010); Zhang & Zhou (2019).

That being said, it is worth noting that the main contribution of this paper is to better understand how
the network architecture impacts SGD. In general, it is not tractable to prove the concentration bounds
in section 4 using the covariance matrix of the gradients alone without further unrealistic assumptions,
such as infinitely wide networks (Schoenholz et al., 2016). A key contribution of this paper is to
identify a suitable surrogate (i.e., the gradient confusion bound) to help study this relationship using
new tight and clean bounds.

Connections to gradient diversity: In Yin et al. (2017), the authors define a property called gradient
diversity. This quantity is related to gradient confusion, but with important differences. Gradient
diversity also measures the degree to which individual gradients at different data samples are different
from each other. However, the gradient diversity measure gets larger as the individual gradients
become orthogonal to each other, and further increases as the gradients start pointing in opposite
directions. In a large batch, higher gradient diversity is desirable, and this leads to improved
convergence rates in distributed settings, as shown in Yin et al. (2017). On the other hand, gradient
confusion between two individual gradients is zero unless the inner product between them is negative.
This makes gradient confusion useful for studying convergence of small minibatch SGD. This is
because different possible SGD updates do not conflict with each other unless they are negatively
correlated with each other.

The choice of the definition of gradient diversity in Yin et al. (2017) has important implications
when its behavior is studied in overparameterized settings. Chen et al. (2018) extends the work of
Yin et al. (2017), where the authors prove on 2-layer neural nets (and multi-layer linear neural nets)
that gradient diversity increases with increased width and decreased depth. This metric does not

9

Under review as a conference paper at ICLR 2020

however distinguish between the cases where gradients become more orthogonal vs. more negatively
correlated. As we show in this paper, this can have very different effects on the convergence of
SGD in overparameterized settings. Specifically, we show that increased width and decreased depth
decreases gradient confusion, and makes these networks easier to train. In fact, we see that the
gradients become more orthogonal to each other in this case as shown in section 5. Thus, we view
our papers to be complementary to each other, providing insights about different issues (large batch
distributed training vs. small minibatch convergence).

Other work on the impact of neural net structure: Other works have also studied the impact
of structured gradients on SGD. Balduzzi et al. (2017) study the effects of shattered gradients
at initialization for ReLU networks, which is when stochastic gradients at initialization become
negatively correlated. The authors show how gradients get increasingly shattered with depth in ReLU
networks. Hanin (2018) shows that the variance of gradients in fully connected networks with ReLU
activations is exponential in the sum of the reciprocals of the hidden layer widths at initialization.
Further, Hanin & Rolnick (2018) show that this sum of the reciprocals of the hidden layer widths
determines the variance of the sizes of the activations at each layer during initialization. When this
sum of reciprocals is too large, early training dynamics are very slow, suggesting the difficulties of
starting training on deeper networks, as well as the benefits of increased width.

Other work on SGD convergence on overparameterized neural nets: The convergence of SGD
on over-parameterized models has received a lot of attention recently. Arora et al. (2018b) study the
behavior of SGD on over-parameterized problems, and show that SGD on over-parameterized linear
neural nets is similar to applying a certain preconditioner while optimizing. This can sometimes
lead to acceleration when overparameterizing by increasing the depth of linear neural networks. In
this paper, we show that this property does not hold in general (as mentioned briefly in Arora et al.
(2018b)), and that convergence typically slows down because of gradient confusion when training
very deep networks. There has recently also been interest in analyzing conditions under which
SGD converges to global minimizers of overparameterized linear and non-linear neural networks.
Arora et al. (2018a) shows SGD converges linearly to global minimizers for linear neural nets under
certain conditions. Du et al. (2018); Allen-Zhu et al. (2018); Zou et al. (2018); Brutzkus et al. (2017)
also show convergence to global minimizers of SGD for non-linear nets. While all these results
require the network to be sufficiently wide, they represent an important step in the direction of better
understanding optimization on neural nets. This paper complements these recent results by studying
how low gradient confusion contributes to SGD’s success on modern overparameterized neural nets.

7 CONCLUSIONS

In this paper, we investigate how overparameterization and model architecture affect the dynamics
of SGD on neural networks. To help formally analyze this, we introduce a concept called gradient
confusion, and show that when gradient confusion is low, SGD experiences fast convergence. We then
show that increasing layer width leads to lower gradient confusion, making the model easier to train.
In contrast, increasing network depth results in higher gradient confusion, making deeper models
harder to train. We further show how techniques like batch normalization and skip connections help
in tackling this problem.

Our results provide a number of important insights that can be used for better neural net model design,
as well as for better algorithms for better training and generalization. Our results on the test set
accuracies in appendix A suggest that an interesting topic for future work would be to investigate
the connection between gradient confusion and generalization (Fort et al., 2019). The difference
in the gradient confusion within the same class and across classes could also be an interesting tool
to study adversarial training. Note that many previous results have shown how deeper models are
more efficient at modeling higher complexity function classes than wider models, and thus depth is
essential for the success of neural networks (Eldan & Shamir, 2016; Telgarsky, 2016; Raghu et al.,
2017). Our results indicate that, given a sufficiently deep network, increasing the network width is
important for the trainability of the model, and will lead to faster convergence rates. This is further
supported by other recent research (Hanin, 2018; Hanin & Rolnick, 2018) that suggest that the width
should increase linearly with depth in a neural network to help dynamics at the beginning of training.
Our results also suggest the importance of further investigation into good initialization schemes for
neural networks that make training very deep models possible (Zhang et al., 2019).

10

Under review as a conference paper at ICLR 2020

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018a.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. arXiv preprint arXiv:1802.06509, 2018b.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? arXiv
preprint arXiv:1702.08591, 2017.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimiza-
tion: A survey. Optimization for Machine Learning, 2010(1-38):3, 2011.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic
theory of independence. Oxford university press, 2013.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

Lingjiao Chen, Hongyi Wang, Jinman Zhao, Dimitris Papailiopoulos, and Paraschos Koutris. The ef-
fect of network width on the performance of large-batch training. arXiv preprint arXiv:1806.03791,
2018.

Y Cooper. The loss landscape of overparameterized neural networks. arXiv preprint
arXiv:1804.10200, 2018.

Christian Darken and John Moody. Towards faster stochastic gradient search. In Advances in neural
information processing systems, pp. 1009–1016, 1992.

Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger con-
vergence rates for least-squares regression. The Journal of Machine Learning Research, 18(1):
3520–3570, 2017.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference
on Learning Theory, pp. 907–940, 2016.

Stanislav Fort, Paweł Krzysztof Nowak, and Srini Narayanan. Stiffness: A new perspective on
generalization in neural networks. arXiv preprint arXiv:1901.09491, 2019.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure. arXiv preprint arXiv:1904.12838,
2019.

11

Under review as a conference paper at ICLR 2020

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. arXiv preprint arXiv:1901.10159, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Boris Hanin. Which neural net architectures give rise to exploding and vanishing gradients? In
Advances in Neural Information Processing Systems, pp. 582–591, 2018.

Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture.
In Advances in Neural Information Processing Systems, pp. 571–581, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pp.
8580–8589, 2018.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Stanislaw Lojasiewicz. Ensembles semi-analytiques. Lectures Notes IHES (Bures-sur-Yvette), 1965.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. arXiv preprint arXiv:1712.06559,
2017.

James Martens. Second-order optimization for neural networks. University of Toronto (Canada),
2016.

Vitali D Milman and Gideon Schechtman. Asymptotic Theory of Finite Dimensional Normed Spaces.
Springer-Verlag, Berlin, Heidelberg, 1986. ISBN 0-387-16769-2.

Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems, pp. 451–459, 2011.

Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of distance from
initialization. arXiv preprint arXiv:1901.01672, 2019.

Angelia Nedić and Dimitri Bertsekas. Convergence rate of incremental subgradient algorithms. In
Stochastic optimization: algorithms and applications, pp. 223–264. Springer, 2001.

12

Under review as a conference paper at ICLR 2020

Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling, and
the randomized kaczmarz algorithm. In Advances in Neural Information Processing Systems, pp.
1017–1025, 2014.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. arXiv preprint
arXiv:1805.12076, 2018.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2603–2612. JMLR. org,
2017.

Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear learning: Gradient descent
takes the shortest path? arXiv preprint arXiv:1812.10004, 2018.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On the
expressive power of deep neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2847–2854. JMLR. org, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
901–909, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normaliza-
tion help optimization?(no, it is not about internal covariate shift). arXiv preprint arXiv:1805.11604,
2018.

Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
growth condition. arXiv preprint arXiv:1308.6370, 2013.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. arXiv preprint arXiv:1611.01232, 2016.

Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional layers. arXiv
preprint arXiv:1805.10408, 2018.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In International Conference on Machine Learning, pp.
71–79, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Optimistic rates for learning with a smooth
loss. arXiv preprint arXiv:1009.3896, 2010.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147,
2013.

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.

Matus Telgarsky. Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485, 2016.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. arXiv preprint arXiv:1810.07288, 2018.

13

Under review as a conference paper at ICLR 2020

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge University Press, 2018.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pp. 4151–4161, 2017.

Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspective of
loss landscapes. arXiv preprint arXiv:1706.10239, 2017.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz. A
mean field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter
Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. arXiv preprint
arXiv:1706.05699, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

Lijun Zhang and Zhi-Hua Zhou. Stochastic approximation of smooth and strongly convex functions:
Beyond the o (1/t) convergence rate. Proceedings of Machine Learning Research vol, 99:1–20,
2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

14

Under review as a conference paper at ICLR 2020

A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present more details about our experimental setup, as well as, additional exper-
imental results on a range of models (MLPs, CNNs and Wide ResNets) and a range of datasets
(MNIST, CIFAR-10, CIFAR-100).

A.1 MLPS ON MNIST

To further test the main claims in the paper, we performed additional experiments on an image
classification problem on the MNIST dataset using fully connected neural networks. We iterated over
neural networks of varying depth and width, and considered both the identity activation function (i.e.,
linear neural networks) and the tanh activation function. We also considered two different weight
initializations that are popularly used and appropriate for these activation functions:

• The Glorot normal initializer (Glorot & Bengio, 2010) with weights initialized by sampling
from the distributionN

(
0, 2/(fan-in + fan-out)

)
, where fan-in denotes the number of input

units in the weight matrix, and fan-out denotes the number of output units in the weight
matrix.

• The LeCun normal initializer (LeCun et al., 2012) with weights initialized by sampling from
the distribution N

(
0, 1/fan-in

)
.

We considered the simplified case where all hidden layers have the same width `. Thus, the first
weight matrix W0 ∈ R`×d, where d = 784 for the 28× 28-sized images of MNIST; all intermediate
weight matrices {Wp}p∈[β−1] ∈ R`×`; and the final layer Wβ ∈ R10×` for the 10 image classes in
MNIST. We added biases to each layer, which we initialized to 0. We used softmax cross entropy as
the loss function. We use MLP-β-` to denote this fully connected network of depth β and width `.
We used the standard train-valid-test splits of 40000-10000-10000 for MNIST.

This relatively simple model gave us the ability to iterate over a large number of combinations of
network architectures of varying width and depth, and different activation functions and weight
initializations. Linear neural networks are an efficient way to directly understand the effect of
changing depth and width without increasing model complexity over linear regression. Thus, we
considered both linear and non-linear neural nets in our experiments.

We used SGD with constant learning rates for training with a mini-batch size of 128 and trained each
model for 40000 iterations (more than 100 epochs). The constant learning rate α was tuned over a
logarithmically-spaced grid:

α ∈ {100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6}.
We ran each experiment 10 times (making sure at least 8 of them ran till completion), and picked the
learning rate that achieved the lowest training loss value on average at the end of training. Our grid
search was such that the optimal learning rate never occurred at one of the extreme values tested.

To measure gradient confusion at the end training, we sampled 1000 pairs of mini-batches each of
size 128 (the same size as the training batch size). We calculated gradients on each of these pairs of
mini-batches, and then calculated the cosine similarity between them. To measure the worse-case
gradient confusion, we computed the lowest gradient cosine similarity among all pairs. We explored
the effect of changing depth and changing width on the different activation functions and weight
initializations. We plot the final training loss achieved for each model and the minimum gradient
cosine similarities calculated over the 1000 pairs of gradients at the end of training. For each point,
we plot both the mean and the standard deviation over the 10 independent runs.

The effect of depth. We first present results showing the effect of network depth. We considered a
fixed width of ` = 100, and varied the depth of the neural network, on the log scale, as:

β ∈ {3, 10, 30, 100, 300, 1000}.
Figure 5 shows results on neural networks with identity and tanh activation functions for the two
weight initializations considered (Glorot normal and LeCun normal). Similar to the experimental
results in section 5, and matching our theoretical results in section 4, we notice the consistent trend
of gradient confusion increasing with increasing depth. This makes the networks harder to train
with increasing depth, and this is evidenced by an increase in the final training loss value. By depth

15

Under review as a conference paper at ICLR 2020

β = 1000, the increased gradient confusion effectively makes the network untrainable when using
tanh non-linearities.

The effect of width. We explored the effect of width by varying the width of the neural network
while keeping the depth fixed at β = 300. We chose a very deep model, which is essentially
untrainable for small widths (with standard initialization techniques) and helps better illustrate the
effects of increasing width. We varied the width of the network, again on the log scale, as:

` ∈ {10, 30, 100, 300, 1000}.

Crucially, note that the smallest network considered here, MLP-300-10, still has more than 50000
parameters (i.e., more than the number of training samples), and the network with width ` = 30 has
almost three times the number of parameters as the high-performing MLP-3-100 network considered
in the previous section. Figure 6 show results on linear neural nets and neural nets with tanh
activations for both the Glorot normal and LeCun normal initializations. As in the experimental
results of section 5, we see the consistent trend of gradient confusion decreasing with increasing
width. Thus, wider networks become easier to train and improve the final training loss value. We
further see that when the width is too small (` = 30), the gradient confusion becomes drastically high
and the network becomes completely untrainable.

101 102 103

depth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(a) Linear NN, Glorot init

101 102 103

depth

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(b) Linear NN, Glorot init

101 102 103

depth

0.0

0.5

1.0

1.5
fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(c) Linear NN, LeCun init

101 102 103

depth

1.0

0.8

0.6

0.4

0.2

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(d) Linear NN, LeCun init

101 102 103

depth

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(e) Tanh NN, Glorot init

101 102 103

depth

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(f) Tanh NN, Glorot init

101 102 103

depth

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(g) Tanh NN, LeCun init

101 102 103

depth

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(h) Tanh NN, LeCun init

Figure 5: Effect of varying depth on MLP-β-100.

101 102 103

width

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(a) Linear NN, Glorot init

101 102 103

width

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(b) Linear NN, Glorot init

101 102 103

width

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(c) Linear NN, LeCun init

101 102 103

width

1.2

1.0

0.8

0.6

0.4

0.2

0.0

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(d) Linear NN, LeCun init

101 102 103

width

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(e) Tanh NN, Glorot init

101 102 103

width

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(f) Tanh NN, Glorot init

101 102 103

width

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

 v
a
lu

e

(g) Tanh NN, LeCun init

101 102 103

width

1.2

1.0

0.8

0.6

0.4

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

(h) Tanh NN, LeCun init

Figure 6: Effect of varying width on MLP-300-`.

16

Under review as a conference paper at ICLR 2020

A.2 ADDITIONAL EXPERIMENTAL DETAILS FOR CNNS AND WRNS

In this section, we review the details of our setup for the image classification experiments on CNNs
and WRNs on the CIFAR-10 and CIFAR-100 datasets.

WIDE RESIDUAL NETWORKS

The Wide ResNet (WRN) architecture (Zagoruyko & Komodakis, 2016) for CIFAR datasets is a
stack of three groups of residual blocks. There is a downsampling layer between two blocks, and
the number of channels (width of a convolutional layer) is doubled after downsampling. In the three
groups, the width of convolutional layers is {16`, 32`, 64`}, respectively. Each group contains βr
residual blocks, and each residual block contains two 3× 3 convolutional layers equipped with ReLU
activation, batch normalization and dropout. There is a 3× 3 convolutional layer with 16 channels
before the three groups of residual blocks. And there is a global average pooling, a fully-connected
layer and a softmax layer after the three groups. The depth of WRN is β = 6βr + 4.

For our experiments, we turned off dropout. Unless otherwise specified, we also turned off batch
normalization. We added biases to the convolutional layers when not using batch normalization to
maintain model expressivity. We used the MSRA initializer (He et al., 2015) for the weights as is
standard for this model, and used the same preprocessing steps for the CIFAR images as described in
Zagoruyko & Komodakis (2016). This preprocessing step involves normalizing the images and doing
data augmentation (Zagoruyko & Komodakis, 2016). We denote this network as WRN-β-`, where β
represents the depth and ` represents the width factor of the network.

To study the effect of depth, we considered WRNs with width factor ` = 2 and depth varying as:

β ∈ {16, 22, 28, 34, 40, 52, 76, 100}.

For cleaner figures, we sometimes plot a subset of these results: β ∈ {16, 28, 40, 52, 76, 100}. To
study the effect of width, we considered WRNs with depth β = 16 and width factor varying as:

` ∈ {2, 3, 4, 5, 6}.

CONVOLUTIONAL NEURAL NETS

The WRN architecture contains skip connections that, as we show, help in training deep networks.
To consider VGG-like convolutional networks, we consider a family of networks where we remove
the skip connections from WRNs. Following the WRN convention, we denote these networks as
CNN-β-`, where β denotes the depth and ` denotes the width factor.

To study the effect of depth, we considered CNNs with width factor ` = 2 and depth varying as:

β ∈ {16, 22, 28, 34, 40}.

To study the effect of width, we considered CNNs with depth β = 16 and width factor varying as:

` ∈ {2, 3, 4, 5, 6}.

HYPERPARAMETER TUNING AND OTHER DETAILS

We used SGD as the optimizer without any momentum. Following Zagoruyko & Komodakis (2016),
we ran all experiments for 200 epochs with minibatches of size 128, and reduced the initial learning
rate by a factor of 10 at epochs 80 and 160. We turned off weight decay for all our experiments.

We ran each individual experiment 5 times. We ignored any runs that were unable to decrease the loss
from its initial value. We also made sure at least 4 out of the 5 independent runs ran till completion.
When the learning rate is close to the threshold at which training is still possible, some runs may
converge, while others may fail to converge. Thus, these checks ensure that we pick a learning rate
that converges reliably in most cases on each problem. We show the standard deviation across runs in
our plots.

We tuned the optimal initial learning rate for each model over a logarithmically-spaced grid:

α ∈ {101, 3×100, 100, 3×10−1, 10−1, 3×10−2, 10−2, 3×10−3, 10−3, 3×10−4, 10−4, 3×10−5},

17

Under review as a conference paper at ICLR 2020

15 20 25 30 35 40

network depth

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

15 20 25 30 35 40

network depth

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fi
n
a
l
te

st
 s

e
t

a
cc

u
ra

cy

0 50 100 150 200

epochs

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

depth 16

depth 22

depth 28

depth 34

depth 40

Figure 7: The effect of network depth with CNN-β-2 on CIFAR-10. Left plot: final training loss values at the
end of training, Middle plot: final test set accuracy values at the end of training. Right plot: curves showing the
minimum of pairwise gradient cosine similarities during training.

2 3 4 5 6

layer width

10-4

10-3

10-2

fi
n
a
l
tr

a
in

in
g
 l
o
ss

2 3 4 5 6

layer width

0.80

0.82

0.84

0.86

0.88

0.90

0.92

fi
n
a
l
te

st
 s

e
t

a
cc

u
ra

cy

0 50 100 150 200

epochs

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

width 2

width 4

width 6

Figure 8: The effect of width with CNN-16-` on CIFAR-10. Left plot: final training loss values at the end
of training, Middle plot: final test set accuracy values at the end of training. Right plot: curves showing the
minimum of pairwise gradient cosine similarities during training.

and selected the run that achieved the lowest final training loss value (averaged over the independent
runs). Our grid search was such that the optimal learning rate never occurred at one of the extreme
values tested. We used the standard train-valid-test splits of 40000-10000-10000 for CIFAR-10 and
CIFAR-100.

To measure gradient confusion, at the end of every training epoch, we sampled 100 pairs of mini-
batches each of size 128 (the same size as the training batch size). We calculated gradients on each
mini-batch, and then computed pairwise cosine similarities. To measure the worse-case gradient
confusion, we computed the lowest gradient cosine similarity among all pairs. We also show the
kernel density estimation of the pairwise gradient cosine similarities of the 100 minibatches sampled
at the end of training (after 200 epochs), to see the concentration of the distribution. To do this,
we combine together the 100 samples for each independent run and then perform kernel density
estimation with a gaussian kernel on this data.

A.3 ADDITIONAL PLOTS FOR CIFAR-10 ON CNNS

In section 5, we showed results for image classification using CNNs on CIFAR-10. In this section,
we show some additional plots for this experiment. Figure 7 shows the effect of changing the depth,
while figure 8 shows the effect of changing the width factor of the CNN. We see that the final training
loss and test set accuracy values show the same trends as in section 5: deeper networks are harder
to train, while wider networks are easier to train. As mentioned previously, theorems 3.1 and 3.2
indicate that we would expect the effect of gradient confusion to be more prominent near the end
of training. From the plots we see that deeper networks have higher gradient confusion close to
minimum, while wider networks have lower gradient confusion close to the minimum.

A.4 CIFAR-100 ON CNNS

We now consider image classifications tasks with CNNs on the CIFAR-100 dataset. Figure 9 shows
the effect of varying depth, while figure 10 shows the effect of varying width. We notice the same
trends as in our results with CNNs on CIFAR-10. Interestingly, from the width results in figure 10, we
see that while there is no perceptible change to the minimum pairwise gradient cosine similarity, the
distribution still sharply concentrates around 0 with increasing width. Thus more gradients become
orthogonal to each other with increasing width, implying that SGD on very wide networks becomes
closer to decoupling over the data samples.

18

Under review as a conference paper at ICLR 2020

15 20 25 30 35

network depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

fi
n
a
l
tr

a
in

in
g
 l
o
ss

15 20 25 30 35

network depth

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.4 0.2 0.0 0.2 0.4

pairwise gradient cosine similarity

0

2

4

6

8

10

12

d
e
n
si

ty

depth 16

depth 22

depth 28

depth 34

Figure 9: The effect of network depth with CNN-β-2 on CIFAR-100. Left plot: training loss values at the end
of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of training, Right plot:
kernel density estimate of the pairwise gradient cosine similarities at the end of training.

2 3 4 5 6

layer width

10-4

10-3

10-2

10-1

fi
n
a
l
tr

a
in

in
g
 l
o
ss

2 3 4 5 6

layer width

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.10 0.05 0.00 0.05 0.10

pairwise gradient cosine similarity

0

5

10

15

20

25

d
e
n
si

ty

width 2

width 3

width 4

width 5

width 6

Figure 10: The effect of width with CNN-16-` on CIFAR-100. Left plot: training loss values at the end of
training. Middle plot: minimum of pairwise gradient cosine similarities at the end of training, Right plot: kernel
density estimate of the pairwise gradient cosine similarities at the end of training.

A.5 IMAGE CLASSIFICATION WITH WRNS ON CIFAR-10 AND CIFAR-100

We now show results for image classification problems using wide residual networks (WRNs) on
CIFAR-10 and CIFAR-100. The WRNs we consider do not have any batch normalization. Later we
show results on the effect of adding batch normalization to these networks.

Figures 11 and 12 show results on the effect of depth using WRNs on CIFAR-10 and CIFAR-100
respectively. We again see the consistent trend of deeper networks having higher gradient confusion,
making them harder to train. We further see that increasing depth results in the pairwise gradient
cosine similarities concentrating less around 0.

Figures 13 and 14 show results on the effect of width using WRNs on CIFAR-10 and CIFAR-100
respectively. We see that increasing width typically lowers gradient confusion and helps the network
achieve lower loss values. The pairwise gradient cosine similarities also typically concentrate around
0 with higher width. We also notice from these figures that in some cases, increasing width might
lead to diminishing returns, i.e., the benefits of increased width diminish after a certain point, as one
would expect.

A.6 EFFECT OF BATCH NORMALIZATION

In section 5 we showed results on the effect of adding batch normalization to CNNs and WRNs
on an image classification task on CIFAR-10. In this section, we present similar results for image
classification on CIFAR-100. Similar to section 5, figure 15 shows that adding skip connections or
batch normalization individually help in training deeper models, but these models still suffer from
worsening results and increasing gradient confusion as the network gets deeper. Both these techniques
together keep the gradient confusion relatively low even for very deep networks, significantly
improving trainability of deep models.

B NEAR ORTHOGONALITY OF RANDOM VECTORS

For completeness, we state and prove below a lemma on the near orthogonality of random vectors.
This result is often attributed to Milman & Schechtman (1986).

19

Under review as a conference paper at ICLR 2020

30 40 50 60 70 80 90 100

network depth

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fi
n
a
l
tr

a
in

in
g
 l
o
ss

30 40 50 60 70 80 90 100

network depth

0.35

0.30

0.25

0.20

0.15

0.10

0.05

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.4 0.2 0.0 0.2 0.4

pairwise gradient cosine similarity

0

2

4

6

8

10

12

14

16

d
e
n
si

ty

depth 28

depth 40

depth 52

depth 76

depth 100

Figure 11: The effect of depth with WRN-β-2 (no batch normalization) on CIFAR-10. Left plot: training loss
values at the end of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of training,
Right plot: kernel density estimate of the pairwise gradient cosine similarities at the end of training.

30 40 50 60 70 80 90 100

network depth

10-4

10-3

10-2

10-1

100

101

fi
n
a
l
tr

a
in

in
g
 l
o
ss

30 40 50 60 70 80 90 100

network depth

0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

pairwise gradient cosine similarity

0

5

10

15

20

25

d
e
n
si

ty

depth 28

depth 40

depth 52

depth 76

depth 100

Figure 12: The effect of depth with WRN-β-2 (no batch normalization) on CIFAR-100. Left plot: training
loss values at the end of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of
training, Right plot: kernel density estimate of the pairwise gradient cosine similarities at the end of training.

Lemma B.1 (Near orthogonality of random vectors). For vectors {xi}i∈[N] drawn uniformly from a
unit sphere in d dimensions, and ν > 0,

Pr
[
∃i, j |x>i xj | > ν

]
≤ N2

√
π
8 exp

(
− d−1

2 ν2
)
.

Proof. Given a fixed vector x, a uniform random vector y satisfies |x>y| ≥ ν only if y lies in
one of two spherical caps: one centered at x and the other at −x, and both with angular radius
cos−1(ν) ≤ π

2 − ν. A simple result often attributed to Milman & Schechtman (1986) bounds the
probability of lying in either of these caps as

Pr[|x>y| ≥ ν] ≤
√
π

2
exp

(
−d− 1

2
ν2
)
. (5)

Because of rotational symmetry, the bound (5) holds if both x and y are chosen uniformly at random.

We next apply a union bound to control the probability that |x>i xj | ≥ ν for some pair (i, j). There
are fewer than N2/2 such pairs, and so the probability of this condition is

Pr[|x>i xj | ≥ ν, for some i, j] ≤ N2

2

√
π

2
exp

(
−d− 1

2
ν2
)
.

C LOW-RANK HESSIANS LEAD TO LOW GRADIENT CONFUSION

In this section, we slightly elaborate on the argument that low-rank random Hessians result in low
gradient confusion. For clarity in presentation, suppose each fi has a minimizer at the origin (the
same argument can be easily extended to the more general case). Suppose also that there is a Lipschitz
constant for the Hessian of each function fi that satisfies ‖Hi(w) −Hi(w

′)‖ ≤ LH‖w − w′‖.
Then ∇fi(w) = Hiw + e, where e is an error term bounded as: ‖e‖ ≤ 1

2LH‖w‖
2, and we use the

shorthand Hi to denote Hi(0). Then we have:

|〈∇fi(w),∇fj(w)〉| = |〈Hiw,Hjw〉|+ 〈e,Hiw +Hjw〉+ ‖e‖2

≤ ‖w‖2‖Hi‖‖Hj‖+ ‖e‖‖w‖(‖Hi‖+ ‖Hj‖) + ‖e‖2

≤ ‖w‖2‖Hi‖‖Hj‖+
1

2
LH‖w‖3(‖Hi‖+ ‖Hj‖) +

1

4
L2
H‖w‖4.

20

Under review as a conference paper at ICLR 2020

2 3 4 5 6

layer width

10-4

10-3

10-2

fi
n
a
l
tr

a
in

in
g
 l
o
ss

2 3 4 5 6

layer width

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

pairwise gradient cosine similarity

0

2

4

6

8

10

12

14

16

18

d
e
n
si

ty

width 2

width 3

width 4

width 5

width 6

Figure 13: The effect of width with WRN-16-` (no batch normalization) on CIFAR-10. Left plot: training
loss values at the end of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of
training, Right plot: kernel density estimate of the pairwise gradient cosine similarities at the end of training.

2 3 4 5 6

layer width

10-4

10-3

10-2

10-1

fi
n
a
l
tr

a
in

in
g
 l
o
ss

2 3 4 5 6

layer width

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08

pairwise gradient cosine similarity

0

5

10

15

20

25

30

35

d
e
n
si

ty

width 2

width 3

width 4

width 5

width 6

Figure 14: The effect of width with WRN-16-` (no batch normalization) on CIFAR-100. Left plot: training
loss values at the end of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of
training, Right plot: kernel density estimate of the pairwise gradient cosine similarities at the end of training.

If the Hessians are sufficiently random and low-rank (e.g., of the form Hi = aia
>
i where ai ∈ RN×r

are randomly sampled from a unit sphere), then one would expect the terms in this expression to
be small for all w within a neighborhood of the minimizer. Given that it has been observed that
many standard neural nets have low rank Hessians at the minimizer, this indicates that the gradient
confusion might be low for a large class of weights near the minimizer for these models.

D MISSING PROOFS

D.1 PROOFS OF THEOREMS 3.1 AND 3.2

This section presents proofs for the convergence theorems of SGD presented in section 3, under the
assumption of low gradient confusion. For clarity of presentation, we re-state each theorem before its
proof.

Theorem 3.1. If the objective function satisfies (A1) and (A2), and has gradient confusion η, SGD
with updates of the form (2) converges linearly to a neighborhood of the minima of problem (1) as:

E[F (wT)− F ?] ≤ ρT (F (w0)− F ?) + αη
1−ρ ,

where α < 2
NL , ρ = 1− 2µ

N

(
α− NLα2

2

)
, F ? = minw F (w) and w0 is the initialized weights.

Proof. Let ĩ ∈ [N] denote the index of the realized function f̃k in the uniform sampling from
{fi}i∈[N] at step k. From assumption (A1), we have

F (wk+1) ≤ F (wk) + 〈∇F (wk), wk+1 −wk〉+
L

2
‖wk+1 −wk‖2

= F (wk)− α〈∇F (wk), ∇f̃k(wk)〉+
Lα2

2
‖∇f̃k(wk)‖2

= F (wk)−
(α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 −

α

N

∑
∀i:i 6=ĩ

〈∇fi(wk), ∇f̃k(wk)〉

≤ F (wk)−
(α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 +

α(N − 1)η

N
,

21

Under review as a conference paper at ICLR 2020

20 30 40 50 60 70 80 90 100

network depth

10-5

10-4

10-3

10-2

10-1

100

101

fi
n
a
l
tr

a
in

in
g
 l
o
ss

no BN, no skip

with BN, no skip

no BN, with skip

with BN & skip

20 30 40 50 60 70 80 90 100

network depth

0.6

0.5

0.4

0.3

0.2

0.1

0.0

m
in

 g
ra

d
 c

o
si

n
e
 s

im
ila

ri
ty

no BN, no skip

with BN, no skip

no BN, with skip

with BN & skip

20 30 40 50 60 70 80 90 100

network depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fi
n
a
l
te

st
 s

e
t

a
cc

u
ra

cy

no BN, no skip

with BN, no skip

no BN, with skip

with BN & skip

Figure 15: The effect of adding skip connections and batch normalization to CNN-β-2 on CIFAR-100. Plots
show the training loss, minimum pairwise gradient cosine similarities, and test accuracies at the end of training.

≤ F (wk)−
(α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 + αη,

where the second-last inequality follows from definition 2.1. Let the learning rate α < 2/NL. Then,
using assumption (A2) and subtracting by F ? = minw F (w) on both sides, we get

F (wk+1)− F ? ≤ F (wk)− F ? − 2µ
(α
N
− Lα2

2

)
(f̃k(wk)− f̃?k) + αη,

where f̃?k = minw f̃k(w). It is easy to see that by definition we have, Ei[f?i] ≤ F ?. Moreover, from

assumption that α < 2
NL , it implies that

(
α
N −

Lα2

2

)
> 0. Therefore, taking expectation on both

sides we get,

E[F (wk+1)− F ?] ≤
(
1− 2µα

N
+ µLα2

)
E[F (wk)− F ?] + αη.

Writing ρ = 1− 2µα
N + µLα2, and unrolling the iterations, we get

E[F (wk+1)− F ?] ≤ ρk+1(F (w0)− F ?) +
k∑
i=0

ρiαη

≤ ρk+1(F (w0)− F ?) +
∞∑
i=0

ρiαη

= ρk+1(F (w0)− F ?) +
αη

1− ρ
.

Theorem 3.2. If the objective satisfies (A1) and has gradient confusion bound η, then SGD converges
to a neighborhood of a stationary point as:

mink=1,...,T E‖∇F (wk)‖2 ≤ ρ(F (w1)−F?)
T + ρη,

for learning rate α < 2
NL , ρ = 2N

2−NLα , and F ? = minw F (w).

Proof. From theorem 3.1, we have:

F (wk+1) ≤ F (wk)−
(α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 + αη. (6)

Now we know that:

E‖∇f̃k(wk)‖2 = E‖∇f̃k(wk)−∇F (wk)‖2 + E‖∇F (wk)‖2 ≥ E‖∇F (wk)‖2.

Thus, taking expectation and assuming the step size α < 2/(NL), we can rewrite equation 6 as:

E‖∇F (wk)‖2 ≤
2N

2α−NLα2
E[F (wk)− F (wk+1)] +

2Nη

2−NLα
.

Taking an average over T iterations, and using F ? = minw F (w), we get:

min
k=1,...,T

E‖∇F (wk)‖2 ≤
1

T

>∑
k=1

E‖∇F (wk)‖2 ≤
2N

2α−NLα2

F (w1)− F ?

T
+

2Nη

2−NLα
.

22

Under review as a conference paper at ICLR 2020

D.2 PROOFS OF HELPER LEMMAS

Lemma D.1. Consider the set of loss-functions {fi(W)}i∈[N] where all fi are either the square-loss
function or the logistic-loss function. Consider a feed-forward neural network as defined in equation 4
whose weights W satisfy assumption 1,. Consider the gradient∇Wfi(W) of each function fi. Note
that we can write ∇Wfi(W) = ζxi(W)∇WgW(xi), where we define ζxi(W) = ∂fi(W)/∂gW.
Then we have the following properties.

1. When ‖x‖ ≤ 1 we have ‖∇WgW(xi)‖ ≤ 1.

2. There exists a constant ζ0 > 0 such that |ζxi(W)| ≤ 2 , ‖∇xiζxi(W)‖2 ≤ ζ0 ,
‖∇Wζxi(W)‖2 ≤ ζ0.

We show that ζ0 ≤ 2
√
β, where β is the depth of the neural network.

Proof. Let W denote the tuple (Wp)p∈[β]0 . Consider |ζxi(W)| = |∂fi(W)/∂gW|. In the case
of square-loss function this evaluates to |gW(x) − C(x)| ≤ 2. In case of logistic regression, this
evaluates to | −1

1+exp(C(xi)gW(xi))
| ≤ 1. Now we consider ‖∇xiζxi(W)‖. Consider the squared loss

function. We then have the following.
‖∇xiζxi(W)‖ = ‖∇xif

′(W)‖
= ‖∇xigW(xi)− C(xi)‖
≤ ‖∇xigW(xi)‖+ 1.

Likewise, consider the logistic-loss function. We then have the following.

‖∇xiζxi(W)‖ ≤
∥∥∥∥ C(xi)2

(1 + exp(C(xi)gW(xi)))2
exp(C(xi)gW(xi))

∥∥∥∥ ‖∇xigW(xi)‖

≤ ‖∇xigW(xi)‖.

Thus, it suffices to bound ‖∇xigW(xi)‖. Using assumption 1 and the properties (P1), (P2) of σ, this
can be upper-bounded by 1.

Consider ∇Wp
ζxi(W) for some layer index p ∈ [β]0. We will show that ‖∇Wp

ζxi(W)‖2 ≤ 2.
Then it immediately follows that ‖∇Wζxi(W)‖2 ≤ 2

√
β. In the case of a squared loss function. We

have the following.
‖∇Wp

ζxi(W)‖ = ‖∇Wp
f ′(W)‖

= ‖∇WpgW(xi)− C(xi)‖
≤ ‖∇Wp

gW(xi)‖+ 1.

Likewise, consider the logistic-loss function. We then have the following.

‖∇Wpζxi(W)‖ ≤
∥∥∥∥ C(xi)2

(1 + exp(C(xi)gW(xi)))2
exp(C(xi)gW(xi))

∥∥∥∥ ‖∇WpgW(xi)‖

≤ ‖∇WpgW(xi)‖.

Since ‖∇Wp
gW(xi)‖ ≤ 1, we have that ‖∇Wp

ζxi(W)‖ ≤ 2 in both the cases. Thus, ζ0 =

2
√
β.

D.3 PROOFS OF THEOREM 4.1 AND COROLLARY 4.1

In this section, we will analyze the case when we have non-linear activations at each layer.

Theorem 4.1. Consider the problem of training neural nets (equation 4) using either the square-loss
or the logistic-loss function. Let η > 0 be a given constant. Let the weights satisfy assumption 1 and
the non-linearities in each layer satisfy properties (P1) and (P2). For some fixed constant c > 0, the
gradient confusion bound in equation 3 holds with probability at least

1−N2 exp
(

−cdη2
16ζ40 (β+2)4

)
,

For both the square-loss and the logistic-loss functions, ζ0 ≤ 2
√
β (from lemma D.1).

23

Under review as a conference paper at ICLR 2020

Proof. We show two key properties, namely bounded gradient and non negative expectation. We will
then use both these properties to complete the proof.

Bounded gradient. For every i ∈ [n] define ζxi(W) := f ′(W). For every p ∈ [β] define Hp as
follows.

Hp(x) := σ(Wp · σ(Wp−1 · σ(. . . · σ(W0 · x) . . .).
Fix an i ∈ [N]. Then we have the following recurrence

gβ(xi) := σ′(Hβ(xi))

gp(xi) := (W>
p+1 · gp+1(xi)) ·Diag(σ′(Hp(xi))) ∀p ∈ {0, 1, . . . , β − 1}.

Then the gradients can be written in terms of the above quantities as follows.

∇Wp
fi(W) = gp(xi) ·Hp−1(xi)

> ∀p ∈ [β]0.

We can write hW(xi,xj) as follows.

ζxi(W)ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

 . (7)

We will now bound ‖∇(xi,xj)hW(xi,xj)‖2. Consider ∇xihW(xi,xj). This can be written as
follows.

(∇xiζxi(W))ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

+

ζxi(W)ζxj (W)
∑
p∈[β]0

[
∇xi

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)]>
. (8)

Observe that each of the entries in the diagonal matrix Diag(σ′(Hp(xi))) is at most 1. Thus, we
have that ‖Diag(σ′(Hp(xi)))‖ ≤ 1.

We have the following relationship.

‖gβ(xi)‖ ≤ 1

‖gp(xi)‖ ≤ ‖W>
p+1‖‖gp+1(xi))‖‖Diag(σ′(Hp(xi)))‖ ≤ 1 ∀p ∈ {0, 1, . . . , β − 1}.

Moreover we have,

‖Tr[Hp−1(xi)·gp(xi)>·gp(xj)·Hp−1(xi)
>]‖ ≤ ‖Hp−1(xi)‖‖gp(xi)>‖‖gp(xj)‖‖Hp−1(xi)

>‖ ≤ 1.

Consider ‖∇xi

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)
‖ for every p ∈ [β]0.

This can be upper-bounded by,

‖∇xiHp−1(xi)‖‖gp(xi)>‖‖gp(xj)‖‖Hp−1(xi)‖+‖Hp−1(xi)‖‖∇xigp(xi)
>‖‖gp(xj)‖‖Hp−1(xi)‖.

Note that∇xiHp−1(xi) = g1(xi) ·Diag(σ′(W0 ·xi)) ·W>
0 ·gp(xi)>. Thus, ‖∇xiHp−1(xi)‖ ≤ 1.

We will now show that ‖∇xigp(xi)‖ ≤ β − p+1. We prove this inductively. Consider the base case
when p = β.

‖∇xigβ(xi)‖ = ‖∇xiσ
′(Hβ(xi))‖ ≤ 1 = β − β + 1.

Now, the inductive step.

‖∇xigp(xi)‖ ≤ ‖∇xigp+1(xi)‖+ ‖∇xi Diag(σ′(Hp(xi)))‖ ≤ β − p ≤ β − p+ 1.

Thus, using equation 8 and the above arguments, we obtain, ‖∇xihW(xi,xj)‖2 ≤ ζ20 (β + 1) +
ζ20 (β + 1)(β + 2) ≤ 2ζ20 (β + 2)2 and thus, ‖∇(xi,xj)hW(xi,xj)‖2 ≤ 4ζ20 (β + 2)2.

24

Under review as a conference paper at ICLR 2020

Non-negative expectation.

Exi,xj [h(xi,xj)] =Exi,xj [〈∇fi(W),∇fj(W)〉]
= 〈Exi [∇fi(W)],Exj [∇fj(W)]〉
= ‖Exi [∇fi(W)]‖2 ≥ 0.

We have used the fact that∇fi(W) and ∇fj(W) are identically distributed and independent.

Concentration of Measure. We combine the two properties as follows. From Non-negative
Expectation property and equation 23, we have that

Pr[hW(xi,xj) ≤ −η] ≤ Pr[hW(xi,xj) ≤ E(xi,xj)[hW(xi,xj)]− η] ≤ exp

(
−cdη2

16ζ40 (β + 2)4

)
.

(9)

To obtain the probability that some value of hw(∇wfi,∇wfj) lies below −η, we use a union bound.
There are N(N − 1)/2 < N2/2 possible pairs of data points to consider, and so this probability is
bounded above by N2 exp

(
−cdη2

16ζ40 (β+2)4

)
.

D.3.1 PROOF OF COROLLARY 4.1

Before we prove corollary 4.1 we prove the following helper lemma.

Lemma D.2. Suppose maxW ‖∇Wfi(W)‖ ≤ M, and both ∇Wfi(w) and ∇Wfj(W) are Lips-
chitz in W with constant L. Then hW(xi,xj) is Lipschitz in W with constant 2LM.

Proof. We view W as flattened vector. We now prove the above result for these two vectors. For two
vectors w,w′,

|hw(xi,xj)− hw′(xi,xj)|
= |〈∇wfi(w),∇wfj(w)〉 − 〈∇w′fi(w

′),∇w′fj(w
′)〉|

= |〈∇wfi(w)−∇w′fi(w
′) +∇w′fi(w

′),∇wfj(w)〉
− 〈∇w′fi(w

′),∇w′fj(w
′)−∇wfj(w) +∇wfj(w)〉|

= |〈∇wfi(w)−∇w′fi(w
′),∇wfj(w)〉 − 〈∇w′fi(w

′),∇w′fj(w
′)−∇wfj(w)〉|

≤ |〈∇wfi(w)−∇w′fi(w
′),∇wfj(w)〉|+ |〈∇w′fi(w

′),∇w′fj(w
′)−∇wfj(w)〉|

≤ ‖∇wfi(w)−∇w′fi(w
′)‖‖∇wfj(w)‖+ ‖∇w′fi(w

′)‖‖∇w′fj(w
′)−∇wfj(w)‖

≤ L‖w −w′‖‖∇wfj(w)‖+ ‖∇w′fi(w
′)‖L‖w′ −w‖

≤ 2LM‖w −w′‖.

Here the first inequality uses the triangle inequality, the second inequality uses the Cauchy-Schwartz
inequality, and the third and fourth inequalities use the assumptions that ∇wfi(w) and ∇wfj(w)
are Lipschitz in w and have bounded norm.

We are now ready to prove the corollary, which we restate here. The proof uses a standard
"epsilon-net" argument; we identify a fine net of points within the ball Br. If the gradient confusion
is small at every point in this discrete set, and the gradient confusion varies slowly enough with W,
when we can guarantee small gradient confusion at every point in Br.

Corollary 4.1 (Uniform concentration for all weights around the minimizer). Select a point W =
(W0,W1, . . . ,Wβ), satisfying assumption 1. Consider a ball Br centered at W of radius r > 0. If
the data {xi}i∈[N] are sampled uniformly from a unit sphere, then the gradient confusion bound in
equation 3 holds uniformly at all points W′ ∈ Br with probability at least

1−N2 exp
(
− cdη2

64ζ40 (β+2)4

)
, if r ≤ η/4ζ20 ,

1−N2 exp
(
− cdη2

64ζ40 (β+2)4
+

8dζ20r
η

)
, otherwise.

25

Under review as a conference paper at ICLR 2020

Proof. Define the function h+(W) = maxij hW(xi,xj). Our goal is to find conditions under
which h+(W) > −η for all W in a large set. To derive such conditions, we will need a Lipschitz
constant for h+(W), which is no larger than the maximal Lipschitz constant of hW(xi,xj) for all
i, j. We have that ‖∇Wfi‖ = ‖ζxi(W)xi‖ ≤ ζ0. Now we need to get a W-Lipschitz constants
for ∇xifi = ζxi(W)xi. By lemma D.1, we have ‖∇W(ζxi(W)xi)‖ = ‖(∇Wζxi(W))xi‖ ≤ ζ0.
Using lemma D.2, we see that 2ζ20 is a Lipschitz constant for hW(xi,xj), and thus also h+(W).

Now, consider a minimizer W of the objective, and a ball Br around this point of radius r. Define the
constant ε = η

4ζ20
, and create an ε-net of points Nε = {Wi} inside the ball. This net is sufficiently

dense that any W′ ∈ Br is at most ε units away from some Wi ∈ Nε. Furthermore, because h+(W)
is Lipschitz in W, |h+(W′)− h+(Wi)| ≤ 2ζ20 ε = η/2.

We now know the following: if we can guarantee that

h+(Wi) ≥ −η/2, for all Wi ∈ Nε, (10)

then we also know that h+(W′) ≥ −η for all W′ ∈ Br. For this reason, we prove the result by
bounding the probability that (10) holds. It is known that Nε can be constructed so that |Nε| ≤
(2r/ε + 1)d = (8ζ20r/η + 1)d (see Vershynin (2018), corollary 4.1.13). Theorem 4.1 provides a
bound on the probability that each individual point in the net satisfies condition (10). Using a union
bound, we see that all points in the net satisfy this condition with probability at least

1−N2

(
8ζ20r

η
+ 1

)d
exp

(
−cd(η/2)

2

16ζ40

)
(11)

= 1−N2 exp(d log(8ζ20r/η + 1)) exp

(
− cdη

2

64ζ40

)
(12)

≥ 1−N2 exp(8dζ20r/η) exp

(
− cdη

2

64ζ40

)
(13)

= 1−N2 exp

(
− cdη

2

64ζ40
+

8dζ20r

η

)
. (14)

Finally, note that, if r < ε, then we can form a net with |Nε| = 1. In this case, the probability of
satisfying (10) is at least

1−N2 exp

(
−cd(η/2)

2

64ζ40

)
.

D.4 PROOF OF THEOREM 4.2

Theorem 4.2 (Neural nets with randomly chosen weights). Let W0,W1, . . . ,Wβ be weight matri-
ces chosen according to strategy 4.1. There exists fixed constants c1, c2 > 0 such that we have:

1. Consider a fixed but arbitrary dataset x1,x2, . . . ,xN with ‖xi‖ ≤ 1 for every i ∈ [N]. For
η > 4, the gradient confusion bound in equation 3 holds with probability at least

1− β exp
(
−c1κ2`2

)
−N2 exp

(
−c`2β(η−4)2
64ζ40 (β+2)4

)
.

2. If the dataset {xi}i∈[N] is such that each xi is an i.i.d. sample from the surface of d-
dimensional unit sphere, then for every η > 0 the gradient confusion bound in equation 3
holds with probability at least

1− β exp
(
−c1κ2`2

)
−N2 exp

(
−c2(`d+`2β)η2
16ζ40 (β+2)4

)
.

Both parts in theorem 4.2 depend on the following argument. From theorem 2.3.8 and Proposition
2.3.10 in Tao (2012) with appropriate scaling5, we have for every p = 1, . . . , β we have that the matrix
norm ‖Wp‖ ≤ 1 with probability at least 1− β exp

(
−c1κ2`2

)
and ‖W0‖ ≤ 1 with probability at

least 1− exp
(
−c1κ2d2

)
when the weight matrices are initialized according to strategy 4.1. Thus,

5In particular, each entry has to be scaled by 1
`

for matrices {Wp}p∈[β] and 1
d

for the matrix W0.

26

Under review as a conference paper at ICLR 2020

conditioning on this event it implies that these matrices satisfy assumption 1. The proof strategy is
similar to that of theorem 4.1. We will first show that the gradient of the function h(., .) as defined
in equation (7) with respect to the weights is bounded. Note that in part (1) the random variable is
the set of weight matrices {Wp}p∈[β]. Thus, the dimension used to invoke theorem E.1 is at most
`2β. In part (2) along with the weights, the data x ∈ Rd is also random. Thus, the dimension used to
invoke theorem E.1 is at most `d+ `2β. Combining this with theorem E.1, the bound on the gradient
of h(., .) and taking a union bound, we get the respective parts of the theorem. Thus, all it remains to
prove is the bound on the gradient of the function h(., .) as defined in equation (7) with respect to the
weights conditioning on the event that ‖Wp‖ ≤ 1 for every p ∈ {0, 1, . . . , β}.
We obtain the following analogue of equation (8).

(∇Wζxi(W))ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

+

(∇Wζxj (W))ζxi(W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

+

ζxi(W)ζxj (W)
∑
p∈[β]0

[
∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)]>
. (15)

As in the case of the proof for theorem 4.1, we will upper-bound the `2-norm of the above expression.
In particular, we show the following.∥∥∥(∇Wζxi(W))ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

∥∥∥
2
≤ 2ζ20 (β + 2)2.

(16)∥∥∥(∇Wζxj (W))ζxi(W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

∥∥∥
2
≤ 2ζ20 (β + 2)2.

(17)∥∥∥ζxi(W)ζxj (W)
∑
p∈[β]0

[
∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)]> ∥∥∥
2
≤ 4ζ20 (β + 2)2.

(18)

Equations (16) and 17 follow from the the fact that ‖(∇Wζxi(W))‖2 ≤ ζ0 and the arguments in the
proof for theorem 4.1. We will now show the proof sketch for equation (18). For every p ∈ [β]0,
consider ‖∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)
‖. Using the symmetry between xi and

xj , the expression can be upper-bounded by,

2‖∇WHp−1(xi)‖‖gp(xi)>‖‖gp(xj)‖‖Hp−1(xi)‖+2‖Hp−1(xi)‖‖∇Wgp(xi)
>‖‖gp(xj)‖‖Hp−1(xi)‖.

As before we can use an inductive argument to find the upper-bound and thus, we obtain the following
which implies equation (18).

‖∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)
‖ ≤ 4(β + 2)2.

Next, we show that the expected value can be lower-bounded by −4 as in the case of theorem 4.2
above. Combining these two gives us the desired result. Consider EW[hW(xi,xj)]. We compute
this expectation iteratively as follows.

EW[hW(xi,xj)]

= EW0
[EW1

[. . .EWβ
[hW(xi,xj)]

≥ −4EW0

EW1

. . .EWβ

 ∑
p∈[β]0

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)

 .
27

Under review as a conference paper at ICLR 2020

The inequality combines Eq. (7) with Lemma D.1. We now prove the following inequality.

EW0

EW1

. . .EWβ

 ∑
p∈[β]0

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)

 ≤ 1. (19)

Consider the inner-most expectation. Note that the only random variable is Wβ . Moreover, the term
inside the trace is scalar. Note that the activation function σ satisfies |σ′(x)| ≤ 1. Using the linearity
of expectation, the LHS in equation (19) can be upper-bounded by the following.

EW0

[
EW1

[
. . .EWβ−1

[
Tr(Hβ−1(xi) ·Hβ−1(xi)

>)
]]]

(20)

+ EW0

[
EW1

[
. . .EWβ

[∑
p∈[β]0\{β}

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)
]]]

. (21)

The first sum in the above expression can be upper-bounded by 1, since |σ(x)| ≤ 1. We will now
show that the second sum is 0. Consider the inner-most expectation. The weights Wβ appears only
in the expression gp(xi)

> ·gp(xj). Moreover, note that every entry in Wβ is an i.i.d. normal random
variable with mean 0. Thus, the second summand simplifies to,

EW0

[
EW1

[
. . .EWβ−1

[∑
p∈[β]0\{β,β−1}

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)
]]]

.

Applying the above argument repeatedly we obtain that the second summand (equation (21)) is 0.

Thus, we obtain the inequality in equation (19) which implies that EW[hW(xi,xj)] ≥ −4.

E TECHNICAL LEMMAS

We will briefly describe some technical lemmas we require in our analysis. The following
Chernoff-style concentration bound is proved in Chapter 5 of Vershynin (2018).

Lemma E.1 (Concentration of Lipshitz function over a sphere). Let x ∈ Rd be sampled uniformly
from the surface of a d-dimensional sphere. Consider a Lipshitz function ` : Rd → R which is
differentiable everywhere. Let ‖∇`‖2 denote supx∈Rd ‖∇`(x)‖2. Then for any t ≥ 0 and some fixed
constant c ≥ 0, we have the following.

Pr
[∣∣∣`(x)− E[`(x)]

∣∣∣ ≥ t] ≤ 2 exp

(
−cdt

2

ρ2

)
, (22)

where ρ ≥ ‖∇`‖2.

We will rely on the following generalization of lemma E.1. We would like to point out that the
underlying metric is the Euclidean metric and thus we use the ‖.‖2-norm.

Corollary E.1. Let x,y ∈ Rd be two mutually independent vectors sampled uniformly from the
surface of a d-dimensional sphere. Consider a Lipshitz function ` : Rd × Rd → R which is
differentiable everywhere. Let ‖∇`‖2 denote sup(x,y)∈Rd×Rd ‖∇`(x,y)‖2. Then for any t ≥ 0 and
some fixed constant c ≥ 0, we have the following.

Pr
[∣∣∣`(x,y)− E[`(x,y)]

∣∣∣ ≥ t] ≤ 2 exp

(
−cdt

2

ρ2

)
, (23)

where ρ ≥ ‖∇`‖2.

Proof. This corollary can be derived from lemma E.1 as follows. Note that for every fixed ỹ ∈ Rd,
equation 22 holds. Additionally, we have that the vectors x and y are mutually independent. Hence
we can write the LHS of equation 23 as the following.∫

(ỹ)1=∞

(ỹ)1=−∞

. . .

∫
(ỹ)d=∞

(ỹ)d=−∞

Pr

[∣∣∣`(x,y)− E[`(x,y)]
∣∣∣ ≥ t ∣∣∣∣∣ y = ỹ

∣∣∣∣∣
]
φ(ỹ)d(ỹ)1 . . . d(ỹ)d.

28

Under review as a conference paper at ICLR 2020

Here φ(ỹ) refers to the pdf of the distribution of y. From independence, the inner term in the integral
evaluates to Pr

[∣∣∣`(x, ỹ)− E[`(x, ỹ)]
∣∣∣ ≥ t]. We know this is less than or equal to 2 exp

(
− cdt2

‖∇`‖22

)
.

Therefore, the integral can be upper bounded by the following.∫
(ỹ)1=∞

(ỹ)1=−∞

. . .

∫
(ỹ)d=∞

(ỹ)d=−∞

2 exp

(
− cdt2

‖∇`‖22

)
φ(ỹ)d(ỹ)1 . . . d(ỹ)d.

Since φ(ỹ) is a valid pdf, we get the required equation 23.

Additionally, we will use the following facts about a normalized Gaussian random variable.

Lemma E.2. For a normalized Gaussian x (i.e., an x sampled uniformly from the surface of a unit
d-dimensional sphere) the following statements are true.

1. ∀p ∈ [d] we have that E[(x)p] = 0.

2. ∀p ∈ [d] we have that E[(x)2p] = 1/d.

Proof. Part (1) can be proved by observing that the normalized Gaussian random variable
is spherically symmetric about the origin. In other words, for every p ∈ [d] the vectors
(x1, x2, . . . , xp, . . . , xd) and (x1, x2, . . . ,−xp, . . . , xd) are identically distributed. Hence E[xp] =
E[−xp] which implies that E[xp] = 0.

Part (2) can be proved by observing that for any p, p′ ∈ [d], xp and xp′ are identically distributed. Fix
any p ∈ [d]. We have that

∑
p′∈[d] E[x2p′] = d× E[x2p]. Note that we have

∑
p′∈[d]

E[x2p′] =

∫
(x)1=∞

(x)1=−∞

. . .

∫
(x)d=∞

(x)d=−∞

∑
p′∈[d] x

2
p′∑

p′′∈[d] x
2
p′′
φ(x)d(x)1 . . . d(x)d = 1.

Therefore E[x2p] = 1/d.

We use the following well-known Gaussian concentration inequality in our proofs (e.g., Chapter 5 in
Boucheron et al. (2013)).

Lemma E.3 (Gaussian Concentration). Let x = (x1, x2, . . . , xd) be i.i.d. N (0, ν2) random vari-
ables. Consider a Lipshitz function ` : Rd → R which is differentiable everywhere. Let ‖∇`‖2 denote
supx∈Rd ‖∇`(x)‖2. Then for any t ≥ 0, we have the following.

Pr
[∣∣∣`(x)− E[`(x)]

∣∣∣ ≥ t] ≤ 2 exp

(
− t2

2ν2ρ2

)
, (24)

where ρ ≥ ‖∇`‖2.

F ADDITIONAL DISCUSSION OF THE SMALL WEIGHTS ASSUMPTION
(ASSUMPTION 1)

Without the small-weights assumption, the signal propagated forward or the gradients∇Wfi could
potentially blow up in magnitude, making the network untrainable. Proving non-vacuous bounds in
case of such blow-ups in magnitude of the signal or the gradient is not possible in general, and thus,
we assume this restricted class of weights.

Note that the small-weights assumption is not just a theoretical concern, but also usually enforced in
practice. Neural networks are often trained with weight decay regularizers of the form

∑
i ‖Wi‖2F ,

which keep the weights small during optimization. The operator norm of convolutional layers have
also recently been used as an effective regularizer as well for image classification tasks by Sedghi
et al. (2018).

29

Under review as a conference paper at ICLR 2020

In the proof of theorem 4.2 we showed that assumption 1 holds at initialization with high probability.
While, in general, there is no reason to believe that such a small-weights assumption would continue to
hold during optimization without explicit regularizers like weight decay, some recent work has shown
evidence that the weights do not move too far away during training from the random initialization
point for overparameterized neural nets (Neyshabur et al., 2018; Dziugaite & Roy, 2017; Nagarajan &
Kolter, 2019; Zou et al., 2018; Allen-Zhu et al., 2018; Du et al., 2018; Oymak & Soltanolkotabi, 2018).
It is worth noting though that all these results have been shown under some restrictive assumptions,
such as the width requiring to be much larger than generally used by practitioners.

30

