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ABSTRACT

We study the robustness to symmetric label noise of GNNs training procedures.
By combining the nonlinear neural message-passing models (e.g. Graph Isomor-
phism Networks, GraphSAGE, etc.) with loss correction methods, we present a
noise-tolerant approach for the graph classification task. Our experiments show
that test accuracy can be improved under the artificial symmetric noisy setting.

1 INTRODUCTION

Large datasets are beneficial to modern machine learning models, especially neural networks. Many
studies have shown that the accuracy of machine learning models grows log-linear to the amount of
training data (Zhou, 2017). Currently, complex machine learning models can only achieve super-
human classification results when trained with a very large dataset. However, large datasets are
usually expensive to collect and create exact label. One solution to create large datasets is crowd-
sourcing, but this approach introduces a higher level of labeling error into the datasets as well as
requires a lot of human resources (Georgakopoulos et al., 2016). As a consequence, neural networks
are prone to very high generalization error under noisy label data. Figure 1 demonstrate the accuracy
results of a graph neural network trained on MUTAG dataset. Training accuracies tend to remain
high while testing accuracies degrades as more label noise is added to the training data.
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Figure 1: GIN model trained with increasing
symmetric label noise. The generalization gap
increases as more noise is introduced to the
training labels.

Graph neural network (GNN) is a new class
of neural networks which learn from graph-
structured data. Typically, GNNs classify graph
vertices or the whole graph itself. Given the in-
put as the graph structure and data (e.g. feature
vectors) on each vertex, GNNs training aim to
learn a predictive model for classification. This
new class of neural networks enables end-to-
end learning from a wider range of data format.
In order to build large scale GNNs, it requires
large and clean datasets. Since graph data is
arguably harder to label than image data both
at vertex-level or graph-level, graph neural net-
works should have a mechanism to adapt to train-
ing label error or noise.

In this paper, we take the noise-correction ap-
proach to train a graph neural network with noisy
labels. We study two state-of-the-art graph neural network models: Graph Isomorphism Network
(Xu et al., 2019) and GraphSAGE (Hamilton et al., 2017). Both of these models are trained under
symmetric artificial label noise and tested on uncorrupted testing data. We then apply label noise
estimation and loss correction techniques (Patrini et al., 2016; 2017) to propose our denoising graph
neural network model (D-GNN).

∗https://github.com/gear/denoising-gnn
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2 METHOD

2.1 GRAPH NEURAL NETWORKS

Notations and Assumption Let G = (V,E,X) be a graph with vertex set V , edge set E and
vertex feature vector matrix X ∈ R|V |×f , where f is the dimensionality of vertex features. Our
task is graph classification with noisy labels. Given a set of graphs: {G1,G2, . . . ,GN}, their labels
{ỹ1, ỹ2, . . . , ỹN} ⊂ 2m, we aim to learn a neural network model for graph label prediction: yG =
f(G). We assume that the training data is corrupted by a noise process N , Ni,j is the probability
label i being corrupted to label j. We further assume N is symmetric, which corresponds to the
symmetric label noise setting. Noise matrix N is unknown, so we estimate N by learning correction
matrix C from the noisy training data.

GNN Models The most modern approach to the graph classification problem is to learn a graph-
level feature vector hG . There are several ways to learn hG . GCN approach by Kipf & Welling
(2017) approximates the Fourier transformation of signals (feature vectors) on graphs to learn rep-
resentations of a special vertex to use as the representative for the graph. Similar approaches can be
founded in the context of compressive sensing. To overcome the disadvantages of GCN-like meth-
ods such as memory consumption and scalability, the nonlinear neural message passing method is
proposed. GraphSAGE (Hamilton et al., 2017) proposes an algorithm consists of two operations:
aggregate and pooling. aggregate step computes the information on each vertex using the
local neighborhood, then pooling computes the output for each vertex. These vector outputs are
then used in classification at vertex-level or graph-level. More recently, GIN (Xu et al., 2019) model
generalizes the concept in GraphSAGE to propose a unified message-passing framework for graph
classification.

2.2 LEARNING NOISY LABEL DATA

Surrogate Loss Using an alternative loss function to deal with noisy label data is a common
practice in the weakly supervised learning literature (Natarajan et al., 2013; Biggio et al., 2012;
Georgakopoulos et al., 2016; Patrini et al., 2016; 2017). We apply the backward loss correction
procedure to graph neural network: `← = C−1 · `(p̂(y|G)). This loss can be intuitively understood
as going backward one step in the noise process C (Patrini et al., 2017).

We study the symmetric noise setting where label i is corrupted to label j with the same probability
for j to i (Ni,j = Nj,i) (Biggio et al., 2012). We use a m × m symmetric Markov matrix N to
describe the noisy process with m labels. Furthermore, to simplify the experiment settings, with a
given n we set: Ni,j = Ni,k = n ∀j, k 6= i. For example when m = 3, n = 0.2 the noise matrix is:

N =

[
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

]

Matrix N above can be interpreted as all labels are kept with probability 0.8 and corrupted to other
labels with probability 0.2 (summation of off-diagonal elements in a row).

2.3 DENOISING GRAPH NEURAL NETWORKS

Formaly we define our graph neural network model as the message passing approach proposed by
Xu et al. (2019). The feature vector hv of a vertex V at k-th hop (or layer) is given by AGGREGATE
and COMBINE functions:

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N (v)}),

h(k)
v = COMBINE(k)(h(k−1)

v ,a(k)v )
(1)

N (v) denotes the neighborhood set of vertex v; and k ∈ [K] is the predefined number of “layers”
corresponding to network’s perceptive field. The final representation of graph G is calculated using
a READOUT function. Then, we train the neural network by optimizing the surrogate backward loss.
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hG = READOUT({h(K)
v : v ∈ G}),

`←(p(y|hG), yG) = C−1 · CROSS ENTROPY(p(y|hG), yG)
(2)

D-GNN is different from GIN only at the surrogate loss function as described above. To train a
D-GNN model, we first train a GIN model on the noisy data for estimating C, then we train D-GNN
using the estimated correction matrix.

We train our D-GNN model using three different noise estimator: Conservative (D-GNN-C), An-
chors (D-GNN-A), and Exact (D-GNN-E). The exact loss correction is introduced for comparison
purposes. The hyperparameters of our models are set similar to GIN model in the previous para-
graph. For conservative and anchor correction matrix estimation, we train two models on the same
noisy dataset: The first model is without loss correction and the second model is trained using the
correction matrix from the first model. For all neural network models, we use the ReLU activation
unit as the nonlinearity.

3 EMPIRICAL RESULTS

We test our framework on the set of well-studied 9 datasets for the graph classification task:
4 bioinformatics datasets (MUTAG, PTC, NCI1, PROTEINS), and 5 social network datasets
(COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI5K) (Yanardag
& Vishwanathan, 2015). We follow the preprocessing suggested by Xu et al. (2019) to use one-
hot encoding as vertex degrees for social networks (except REDDIT datasets). Table 1 gives the
overview of each dataset. Since these datasets have exact label for each graph, we introduce sym-
metric label noise artificially.

3.1 NOISE ESTIMATION

Table 1: Data overview

Dataset #graphs #classes #vertices

IMDB-B 1000 2 19.8
IMDB-M 1500 3 13.0
RDT-B 2000 2 429.6
RDT-M5K 5000 5 508.5
COLLAB 5000 3 74.5
MUTAG 188 2 17.9
PROTEINS 1113 2 39.1
PTC 344 2 25.5
NCI1 4110 2 29.8

Conservative Estimation We estimate the corrup-
tion probability by the Conservative Estimator de-
scribed in the previous sections. For each noise
configuration, we train the original neural network
(GIN) on the noisy data and use the neural response
to fill each row of the correction matrix C. Table 2
gives an overview of how well the conservative es-
timation matrix diverges from the correct noise ma-
trix. The matrix norm ‖C −N‖ is the p-norm with
p = 1.

Anchor Estimation We follow the noise estima-
tion method introduced in Patrini et al. (2017)

(Equations (12,13)) to estimate the noise probability using an unseen set of samples. These an-
chor samples are assumed to have the correct labels, hence they can be used to estimate the noise
matrix according to the expressivity assumption. In our experiments, these samples are taken from
the testing data (one per class). Table 2 demonstrates the similarity results.

Table 2: Norm distance between conservative correction matrix estimation Cc and Ca compared
with true noise matrix N when n = 0.2

Dataset (#classes) diag(N ) Avg. diag(Cc) ‖Cc −N‖ Avg. diag(Ca) ‖Ca −N‖

IMDB-B (2) 0.8 0.99 0.76 0.77 0.12
IMDB-M (3) 0.8 0.99 1.14 0.85 0.30
RDT-B (2) 0.8 0.99 0.76 0.75 0.20
RDT-M5K (5) 0.8 0.99 1.90 0.81 0.10
COLLAB (3) 0.8 0.99 1.14 0.75 0.30
MUTAG (2) 0.8 0.99 0.76 0.74 0.24
PROTEINS (2) 0.8 0.99 0.76 0.78 0.08
PTC (2) 0.8 0.99 0.76 0.63 0.68
NCI1 (2) 0.8 0.99 0.76 0.74 0.24
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Exact Assumption In this experiment setting, we assume that the noise matrix is exactly known
from some other estimation process. In practice, such an assumption might not be realistic. How-
ever, under the symmetric noise assumption, the diagonal of the correction matrix C can be tuned
as a hyperparameter.

3.2 GRAPH CLASSIFICATION

We compare our model with the original Graph Isomorphism Network (GIN) (Xu et al., 2019).
The hyperparameters are fixed across all datasets as follow: epochs=20, num layers=5,
num mlp layers=2, batch size=64. We keep these hyperparameters fixed for all datasets
since the similar trend of accuracy degradation is observed independently of hyperparameter tuning.
Besides GIN, we consider GraphSAGE model (Hamilton et al., 2017) under the same noisy setting.
We use the default setting for GraphSAGE as suggested in the original paper.

Table 3: Classification results at symmetric noise, when n = 0.2 (80% data has correct labels). We
calculate the mean and std of accuracy score on test data for 10 runs each configuration. Bold font
indicates improvement compared to the original model.

MUTAG IMDB-M RDT-B RDT-M5K COLLAB IMDB-B PROTEINS PTC NCI1

GIN .7327 .4476 .6695 .3677 .6544 .6573 .6257 .4824 .6472
GraphSAGE .7072 .4373 - - - .6410 .6583 .4892 .6053

D-GNN-C .5727 .4747 .5005 .2000 .5979 .6940 .6693 .5557 .6170
D-GNN-A .7102 .4505 .5307 .2000 .6917 .7088 .6769 .5001 .6405
D-GNN-E .7002 .4633 .5270 .2022 .6960 .7190 .6917 .5235 .6638
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Figure 2: Denoising results on bioinformatics datasets. X-axis presents the test accuracies.

We fix the noise rate at 20% for the experiments in Table 3 and report the mean accuracy after
10 fold cross validation run. The worst performance variance of our model is the conservative
estimation model. Due to the overestimation of softmax unit within the cross-entropy loss, the
model’s confidence to all training data is close to 1.0. Such overconfidence leads to wrong correction
matrix estimation, which in turn leads to worse performance (Table 2). In contrast to D-GNN-C,
D-GNN-A and D-GNN-E have consistently outperformed the original model. Such improvement
comes from the fact that the correction matrix C is correctly approximated. Figure 2 suggests that
the D-GNN-C model might work well under the higher label noise settings.

4 CONCLUSION

In this paper, we have introduced the use of loss correction for Graph Neural Networks to deal
with symmetric graph label noise. We experimented on two different practical noise estimatation
methods and compare them to the case when we know the exact noise matrix. Our empirical results
show some improvement on noise tolerant when the correction matrix C is correctly estimated. In
practice, we can consider C as a hyperparameter and tune it following some clean validation data.
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