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ABSTRACT

A channel corresponds to a viewpoint or transformation of an underlying mean-
ing. A pair of parallel sentences in English and French express the same underly-
ing meaning but through two separate channels corresponding to their languages.
In this work, we present Multichannel Generative Language Models (MGLM),
which models the joint distribution over multiple channels, and all its decomposi-
tions using a single neural network. MGLM can be trained by feeding it k way
parallel-data, bilingual data, or monolingual data across pre-determined channels.
MGLM is capable of both conditional generation and unconditional sampling. For
conditional generation, the model is given a fully observed channel, and generates
the k − 1 channels in parallel. In the case of machine translation, this is akin
to giving it one source, and the model generates k − 1 targets. MGLM can also
do partial conditional sampling, where the channels are seeded with prespecified
words, and the model is asked to infill the rest. Finally, we can sample from
MGLM unconditionally over all k channels. Our experiments on the Multi30K
dataset containing English, French, Czech, and German languages suggest that
the multitask training with the joint objective leads to improvements in bilingual
translations. We provide a quantitative analysis of the quality-diversity trade-offs
for different variants of the multichannel model for conditional generation, and
a measurement of self-consistency during unconditional generation. We provide
qualitative examples for parallel greedy decoding across languages and sampling
from the joint distribution of the 4 languages.

1 INTRODUCTION

A natural way to consider two parallel sentences in different languages is that each language is ex-
pressing the same underlying meaning under a different viewpoint. Each language can be thought
of as a transformation that maps an underlying concept into a view that we collectively agree is
determined as ‘English’ or ‘French’. Similarly, an image of a cat and the word ‘cat’ are expressing
two views of the same underlying concept. In this case, the image corresponds to a high bandwidth
channel and the word ‘cat’ to a low bandwidth channel. This way of conceptualizing parallel view-
points naturally leads to the formulation of a fully generative model over each instance, where the
transformation corresponds to a particular generation of the underlying view. We define each of
these views as a channel. As a concrete example, given a parallel corpus of English and French sen-
tences, English and French become two channels and the corresponding generative model becomes
p(English,French). One key advantage to this formulation is that single model can be trained that
can capture the full expressivity of the underlying concept, allowing us to compute conditionals
and marginals along with the joint. In the case of parallel sentences, the conditionals correspond to
translations from one channel to another while the marginals correspond to standard monolingual
language models.

In this work, we present a general framework for modeling the joint distribution p(x1, ...,xk) over k
channels. Our framework marginalizes over all possible factorizations of the joint distribution. Sub-
sequently, this allows our framework to perform, 1) unconditional generation and 2) conditional gen-
eration. We harness existing recent work on insertion-based methods that utilize semi-autoregressive
models that are permutation-invariant to the joint factorization.

Specifically, we show a proof-of-concept multichannel modeling by extending KERMIT (Chan
et al., 2019) to model the joint distribution over multiple sequence channels. Specifically, we train
KERMIT on the Multi30K (Elliott et al., 2016) machine translation task, consisting of four lan-

1



Under review as a conference paper at ICLR 2020

guages: English (EN), French (FR), Czech (CS), and German (DE). One advantage of multilingual
KERMIT is during inference, we can generate translation for a single target language, or generate
translations for k− 1 languages in parallel in logarithmic time in the token length per language. We
illustrate qualitative examples for parallel greedy decoding across languages and sampling from the
joint distribution of the 4 languages.

The key contributions in this work are:

1. We present MGLM, a multichannel generative modeling framework. MGLM models the
joint distribution p(x1, . . . ,xk) over k channels.

2. We demonstrate both conditional generation (i.e., machine translation) and unconditional
sampling from MGLM.

3. In the case of conditional generation over multiple languages, we show that not only we
are competitive in BLEU, but also with significant advantages in inference time and model
memory savings.

4. We analyze the Quality-Diversity tradeoff from sampling MGLM and prior work.

We highlight that while we focus on languages as a specific instantiation of a channel, our framework
can generalize to any arbitrary specification, such as other types of languages or other modalities.

2 BACKGROUND

Traditional autoregressive sequence frameworks (Sutskever et al., 2014; Cho et al., 2014) model the
conditional probability p(y | x) of an output sequence y conditioned on the input sequence x with
a left-to-right factorization. The model decomposes p(y | x) as predicting one output token at time,
conditioning on the previously generated output tokens y<t and the input sequence x:

p(y | x) =
∏
t

p(yt |,y<t) (1)

Recent encoder-decoder models with attention such as Transformer (Vaswani et al., 2017) have been
successfully applied to various domains, including machine translation. If we were to apply this
left-to-right autoregressive approach towards multichannel modeling, we would require to choose a
particular factorization order, such as p(w,x,y) = p(w)p(x|w)p(y|x,w).

Instead of assuming a fixed left-to-right decomposition, recent autoregressive insertion-based con-
ditional modeling frameworks (Stern et al., 2019; Welleck et al., 2019; Gu et al., 2019) consider
arbitrary factorization of the output sequence by using insertion operation, which predicts both (1)
content token c ∈ C from the vocabulary, and (2) location l insert, relative to the current partial
output ŷt:

p(c, l|x, ŷt) = InsertionTransformer(x, ŷt) (2)

Subsequent work, KERMIT (Chan et al., 2019), simplified the Insertion Transformer model by
removing the encoder and only having a decoder, and the trick is to concatenate the original input and
output sequence as one single sequence and optimize over all possible factorizations. Consequently,
KERMIT is able to model the joint p(x,y), conditionals p(x | y), p(y | x), as well as the marginals
p(x), p(y).

Unlike with the left-to-right autoregressive approach, the exact computation of the log-likelihood
equation 3 is not possible due to the intractable marginalization over the generation order z, where
Sn denotes the set of all possible permutations on n elements. However, we can lower bound the
log-likelihood using Jensen’s inequality:

log p(x) = log
∑
z∈Sn

p(z)p(x | z) (3)

≥
∑
z∈Sn

p(z) log p(x | z) =: L(x) (4)
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The loss term can be simplified by changing the summation and careful decomposition of the per-
mutation, leading to:

L(x) =
∑
z∈Sn

p(z) log

n∏
i=1

p((czi , l
z
i ) | x

z,i−1
1:i−1)

=

n∑
i=1

∑
z1:i−1

p(z1:i−1)
∑
zi

p(zi | z1:i−1) log p((czi , lzi ) | x
z,i−1
1:i−1)

Inference can be autoregressive via greedy decoding:

(ĉ, l̂) = argmax
c,l

p(c, l|x̂t), (5)

or partially autoregressive via parallel decoding:

ĉl = argmax
c

p(c | l, x̂t), (6)

which is achieved by inserting at all non-finished slots. Stern et al. (2019) has shown that using a
binary tree prior for p(z) led to ≈ log2 n iterations for n token generation.

3 MULTICHANNEL GENERATIVE LANGUAGE MODELS

In multichannel generative language modeling, our goal is to learn a generative model given a
dataset consisting of a set of sequences {x(i)

1 , . . . ,x
(i)
k }Mi=1 from up to k channels, where x

(i)
k =

[x
(i)
j,1, . . . , x

(i)
j,n] represents a sequence of tokens from the j-th channel for the i-th example. The re-

sulting MGLM models a joint generative distribution over multiple channels. While there are many
possible implementation of Multichannel Generative Language Models, we chose to extended the
work of Chan et al. (2019) to investigate applying the KERMIT objective on tasks with more than 2
sequences, in order to learn the joint distribution p(x1, . . . ,xk) over k channel sequences. For exam-
ple, these channel sequences can denote different languages, such as learning p(EN,FR,CS,DE).
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Inference

D
ec

od
in

g
Ite

ra
tio

n

[SEP]EN [SEP]

[SEP] [SEP]EN [SEP]
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Figure 1: (Left) An example multichannel modeling over 3 languages (English, French, Czech),
where the model predicts the missing tokens at each location across multiple channels. (Right)
During inference, MGLM can generate output sequence for a single target language channel (top),
or for multiple language channels in parallel (bottom), conditioning on source channel sentence and
partial translations of multiple language channels.

We illustrate an example data input consisting of 3 channels in Figure 1 (left). We concatenate the
sequences together from all channels for each example, separate by a SEP token. Even with shared
vocabulary, each channel results in a different token embedding, via an addition of a channel-specific
(learnable) embedding, or simply having a separately learned token embedding per channel. After
passing through the dense self-attention layers as in per Transformer architecture, the contextualized
representation at each output time step predicts the possible tokens to be inserted to the left of the
current input token.

At inference (generation) time, we can generate unconditionally by seeding the canvas with the
[SEP] token and predicting the first actual token, or provide as much, or as little, partial/complete
sequence in each channel. Figure 1 (right) shows two possible decoding inference modes: a single
target language channel (top), or multiple target language channels in parallel (bottom).
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4 EXPERIMENTS

We experiment on a multilingual dataset to demonstrate that we can learn MGLM. We perform
both qualitative and quantitative experiments. We highlight the model’s capabilities ranging from
conditional generation (i.e., machine translation) to unconditional sampling the joint distribution
over multiple languages.

We experiment on the Multi30k (Elliott et al., 2016; 2017; Barrault et al., 2018), a multilingual
dataset which consists of 29000 parallel training sentences in English (EN), French (FR), Czech
(CS), and German (DE) sentences. We use Multi30k because multiple high quality channels (mul-
tilingual translations in this case) is readily available to highlight our framework. We implement
MGLM as a base Transformer decoder, without any causal masking, with 6 hidden layers and 1024
dimensional hidden representation. We concatenate all 4 language raw text training examples and
use SentencePiece (Kudo & Richardson, 2018) to learn an universal subword unigram (Kudo, 2018)
tokenizer with a shared 32K vocabulary size. We follow a similar training set up to BERT (Devlin
et al., 2019), using Adam (Kingma & Ba, 2015) optimizer with learning rate of 1e-4, warmup over
the first 10% of the total training iterations varying between 10k to 50k iterations. We can train 3
different variants of MGLM by altering the sampling ratio of training data seen by the model:

1. Bilingual (e.g., EN→ FR). We give the model a fully observed source (e.g., EN ), and ask
the model to infill the target (e.g., FR).

2. Multi-target (e.g., any 1→ Rest). We give the model a fully observed source (e.g., EN ),
and ask the model to infill the rest of the targets (e.g., DE, FR, CS).

3. Joint. We ask the model to infill all the targets, consequently we learn a joint distribution
over all the languages p(en, fr,de, cs).

4.1 TRANSLATION PERFORMANCE

The goal of MGLM is not conditional generation (i.e., machine translation), but nevertheless, we
demonstrate its ability to do conditional generation in this section. We report the BLEU scores
on the three test sets: test 2016 Flickr, test 2017 Flickr, test 2017 MSCOCO,
for different English → {German, French, Czech} translations. We use parallel greedy decoding
(Stern et al., 2019; Chan et al., 2019), i.e. inserting to all incomplete slots. Table 1 summarizes the
results for English to German and vice versa, respectively. Additional results for English to French,
English to Czech, and German to English are shown in Appendix A.2. We observe that the Multi-
target models performed similar to slightly better than the bilingual models trained only on a single
language pair. This is particularly useful when multiple machine translation targets are desired. We
now only need one MGLM model which is competitive to the bidirectional expert models. This
implies we only need 1 model for inference over multiple languages, as opposed to N models (i.e.,
saving substantial memory).

We also observe the full generative joint model has a BLEU gap compared to the bilingual baseline,
which is consistent with the findings in Chan et al. (2019). We hypothesize this is due to the joint
distribution being a more challenging task. We further hypothesize that in particular, during training
the Joint model needs to fantasize additional details when conditioning on partial sequence in each of
the channels. This results in fantasizing additional details not present in the original source sentence
during translation tasks.

4.2 PARALLEL GREEDY DECODING: PARALLEL IN TARGET LANGUAGES

As alluded conceptually in Figure 1 and in the previous section, our KERMIT-based MGLM is also
able to perform parallel greedy decoding that is also parallel in number of target languages. We
illustrate this process in Figure 2. By starting with K initial [SEP] tokens for K target output
languages, MGLM can decode K target languages that has at most n output tokens per language in
O(log n), i.e. constant in number of target languages.

We investigate the relative speed up in generating multiple target language outputs in parallel versus
generating the targets in series, in terms of wall-clock time and number of decoding iterations. In
Figure 3a, we plot the number of decoding iterations taken versus the total output length N for each
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Model Inference Test2016 Test2017 MSCOCO

Bilingual (EN→ DE) EN→ DE 36.14 28.32 24.15
Bilingual (EN↔ DE) EN→ DE 37.08 28.69 26.11

Multi-target (EN→ Rest) EN→ DE 36.83 28.35 25.14
EN→ FR,CS,DE 35.41 29.69 25.64

Multi-target (Any→ Rest) EN→ DE 36.63 28.37 26.98
EN→ FR,CS,DE 36.51 28.53 25.84

Joint (p(EN,FR,CS,DE)) EN→ DE 33.06 23.42 21.39
EN→ FR,CS,DE 32.53 23.78 20.97

Table 1: Multi30k English→ German test BLEU.

Input: A man sits on a bench holding his dog and looking at the water.
Parallel Decode:
FR: Un homme est assis sur un banc , ten ant son chien et regardant l ’ eau . [SEP]
CS: Muž sedı́ na lavičce a držı́ své ho psa a dı́vá se na vodu . [SEP]
DE: Ein Mann sitzt auf einer Bank und hält seine n Hund und schaut auf das Wasser . [SEP]
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Figure 2: Example parallel greedy decode using the Multi-target (Any → Rest) KERMIT model,
starting with an English sentence. Blue underlined tokens are the inserted tokens at each iteration,
and the gray tokens are the final output that have not been generated yet. Note that the three target
languages are generated together in parallel.

sentence in the test 2016 Flickr test set, using the Joint KERMIT model when decoding
from a single source language to 3 target languages: English→ {French, German, Czech}. When
performing serial target decoding, we only output the target conditioned on English, i.e. English→
French, English→ German, English→ Czech. We also plot several theoretical bounds: (1) upper
bound (N ) when decoding entirely serially, (2) lower bound 3(blog2(N/3)c + 2) when decoding
3 languages serially but parallel within each language, (3) lower bound blog2(N/3)c + 2, when
decoding the 3 target languages in parallel and parallel within each language, and (4) blog2(N)c+2,
if we decode the entire output in parallel as a single sequence. We observe that our model is able
to meet the lower bound several times and in many cases decode below the fourth blog2(N)c + 2
bound. Figure 3b compares the wall-clock speed up when decoding targets in parallel vs. in series,
with a linear regression line plotted. Our model achieving almost 3 times speed up in wall-clock
speed. The parallel targets decoding is bottlenecked by the target language with the longest output
sequence. Figure 3c compares the total output length when decoding the targets in series versus
in parallel. We observe that there is a linear relationship between the output lengths using the two
modes.

4.3 CONDITIONAL BILINGUAL GENERATION: QUALITY-DIVERSITY TRADE-OFF

We first evaluated the models on conditional generation task by sampling bilingual translations (1
source, 1 target language) for each of the 12 language pair directions. We sample the token and
location (c, l) ∼ p(c, l|x, ŷ) from the partial canvas at each iteration, generating 100 hypothesis
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Figure 3: (Left) Number of decoding iterations vs. the output length when decoding each target
language serially vs. in parallel, compared to various logarithmic bounds. We have shown that the
model is able to achieve close to the theoretical lower bound blog2(N/k)c+2 where number of target
languages k = 3. (Middle) Relative wall-clock speed up when using the parallel target languages
decoding vs. serial, achieving slightly under 3 times the performance. (Right) Total output length for
the 3 target languages when using serial vs parallel target language generation. While not identical,
we observe a linear relationship between the output length using the two different modes

translations per source sentence, at softmax temperature τ = 0.1, 0.5, 1.0. At each temperature and
model, we computed the quality of the generated samples by computing the BLEU Papineni et al.
(2002) score between the reference translation and the samples, and the diversity by computing the
pairwise BLEU between the 100 samples per source, also known as Self-BLEU Zhu et al. (2018).
Lower Self-BLEU indicates the higher the diversity as there is less overlap between the samples.
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Figure 4: Quality-Diversity BLEU curve for several KERMIT models (bilingual, multitarget, joint)
on the Multi30k text 2016 Flickr test set. Dotted diagonal line signifies BLEU equals Self-
BLEU. Points indicate different temperatures, from 0.1 (low diversity, left in graph) to 1.0 (high
diversity, right in graph)

Figure 4 illustrates the Quality-Diversity trade-off for the three models for different translation pairs
involving English as one of the language. The top right portion of the graph is the ideal area. We
observed that the Multitarget model outperformed the Bilingual model at lower temperature (both
higher quality and diversity), and at higher temperature slightly above or below in quality but still
higher diversity. Note that only one single Multitarget model was used for all language pair at
inference time, while each bilingual model was different for each language pair curve. Therefore, a
single Multitarget KERMIT model could outperform specialized bilingual KERMIT models.

4.4 PARTIAL CONDITIONING MULTILINGUAL GENERATION

We demonstrate our model’s ability to generate infilling for partial conditioning over the multiple
channels. To be explicit, we seed each channel with a few (different) words, and sample from the
model. We ask the model what text completions would best fit under the model’s posterior. Figure
5 highlights several examples for (English, French, German) sentence completion. We took an
example from the test 2016 Flickr test set and split it into 3 chunks–beginning in English,
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middle in French, and ending in German–and sample completion. The model is able to generate a
set of diverse, coherent examples.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
English Groundtruth: A young boy, wearing a chef’s hat and apron, is cutting sausages in a kitchen.
French Groundtruth: Un jeune garçon, portant une toque et un tablier, coupe des saucisses dans une cuisine.
German Groundtruth: Ein kleiner Junge mit Kochmütze und Schürze schneidet in einer Küche Würstchen.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
English Seed: A young boy,
French Seed: portant une toque et un tablier,
German Seed: chneidet in einer Küche Würstchen.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
English: A young boy , wearing a hat , and an apron grilling hotdogs in the kitchen.
French: Un jeune garçon portant une toque et un tablier, faisant cuire du citron et des hotdogs dans la cuisine.
German: Ein junger Mann trägt eine Mütze und schneidet in einer Küche Würstchen.

English: A young boy , wearing a hat and a apron, is in a kitchen , cutting with various foods on it.
French: Un jeune garçon, portant une toque et un tablier, est dans une cuisine en projetant des poêles de la
nourriture.
German: Ein kleiner Junge mit Hut und Schürze schneidet in einer Küche Würstchen.

English: A young boy, wearing an orange hat and apron, puts barbecue chicken in a kitchen.
French: Un jeune garçon, portant une toque et un tablier, coupant du poulet dans une cuisine.
German: Ein kleiner Junge in einer weißen Mütze und mit Schürze schneidet in einer Küche Würstchen glas .

English: A young boy, wearing a blue hat and apron, is cooking meat in a kitchen.
French: Un petit garçon, portant une toque et un tablier, fait la cuisine dans une cuisine.
German: Ein kleiner Junge mit blauer Mütze und schneidet in einer Küche Würstchen.

Figure 5: Partially conditional generation samples drawn from our model. The seed text is shown in
gray, with several different in-filling samples from the model in black. The samples show reasonable
consistency and diversity across samples.

4.5 UNCONDITIONAL MULTILINGUAL GENERATION

We then evaluated the models on unconditional multilingual generation task, to generate a sentence
each in all 4 languages such that they correspond to each other. For the Joint model, we perform 3
types of sampling: (1) unrestricted, (2) chain, and (3) common cause. For unrestricted, we sampled
one (token, location) at each iteration starting from an empty canvas, allowing the model to insert
a token in any language, until all slots were marked as completed. In the chain generation, we first
restrict to generating English sentence one token at a time, then sampled French, German, and Czech
in order, conditioned on the last sentence in the previous language. For common cause, we reuse the
same English and French sampled sentences, and generate the German and Czech conditioned on
the English sentence (i.e. 3 languages are all conditioned on English).

Given these sets of sentences in 4 languages, for each pair of language direction, we computed
a pseudo target by using a separately trained (on Multi30k) vanilla Transformer (Vaswani et al.,
2017) and performed beam search (size 5) to translate the chosen source language sample. Figure 6
visualizes the pseudo target BLEU score for different source-target language pairs when comparing
the Joint model under different types of sampling. The shaded colour represents the difference
between the current sampling scheme versus the unrestricted reference. We observe that letting the
model sample in unrestricted order was better than either the chain or the common cause sampling.

5 RELATED WORK

While we have demonstrated a KERMIT implementation of a MGLM, many other variants of Trans-
former models contain similar properties. Xia et al. (2019) and He et al. (2018) both consider shared
encoder/decoders while KERMIT removes altogether the distinction between the encoder and de-
coder. XLNet (Yang et al., 2019) also learns over all permutation of the factorization order, in
addition to architectural modification for two-stream attention parameterization to resolve ambigu-
ity in the targets. The idea of concatenating pairs of source and target sequences from different
language channels have been explored by Lample & Conneau (2019). However, unlike the insertion
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Figure 6: Unconditional multilingual generation Pseudo-Target BLEU for self-consistency when
generating sentences in multiple languages. Colour shading indicates the difference compared to
the Joint model (unrestricted) generation.

Model Language Generated Sentences

Joint English A young man in a blue jacket walking up a mountain.
French Un jeune homme en veste bleue descendant une paroi rocheuse en horu.
German Ein junger Mann in einer blauen Jacke klettert eine Felswand hoch.
Czech Mladý muž v modré bundě stoupá po horách.

≈“Young men in blue jackets ascend and climb mountains.” X

Biling. English Two small white dogs are holding the duck in a fenced yard.
French Deux petits chiens blancs tenant un canard dans une cour clôturée.
German Zwei kleine weiße Hunde halten eine gelbe Ente in einem eingezäunten Hof.
Czech Dva malı́ chlapci držı́ žlutou panou venku u žlutého oploceném nádvořı́.

≈“Two little boys holding a yellow gentleman outside by a yellow fenced courtyard.” 7

Figure 7: Example unconditional text generation samples from the Joint (top) and chain of Bilingual
model (bottom). Note that the Joint model generates one long sequence and we split them into the
resulting four sentences in each language here, while Bilingual generate a complete sentence in each
language conditioned on previous sentence.

objective, their model is trained through Masked Language Modeling as in BERT (Devlin et al.,
2019), and therefore was not readily able to be used for generation.

Evaluation of text generative models remain a challenge (Liu et al., 2016; Novikova et al., 2017).
Quality versus diversity plots have been used to compare the trade-off at different output softmax
temperatures, as such in Stochastic Beam Search (Kool et al., 2019) which used a simpler n-gram
diversity instead of Self-BLEU (Zhu et al., 2018). However, we are the first to characterize the Q-D
behaviour of insertion based models, versus existing left-to-right language models. Other metrics
summarize the quality and diversity trade-off as a single number, such as Frechet BERT Distance
(Montahaei et al., 2019) inspired by the FID score (Heusel et al., 2017) used in computer vision, or
take into account human evaluation (Hashimoto et al., 2019).

6 CONCLUSION

We have demonstrated that a multichannel model implemented with KERMIT can learn a joint dis-
tribution over more than two sequences. Furthermore, our multichannel KERMIT model allows for
efficient inference of multiple target languages in parallel using a single model. Our work focused
on a specific instantiation of channels in the case of languages. However, there are no model lim-
itations that inhibit further generalization to other notion of channels. In future work we aim to
consider the addition of multimodal channels, such as images as well as other textual channels, such
as paraphrases, premises and hypotheses, as well as questions and answers. Fully generative models
still often lag behind purely discriminitive counterparts in terms of performance, but we believe it
is crucial to make steps towards other model formulations that have high potential. We also intend
to explore the limits on the number of channels that can be considered, such as building generative
models over dozens or even hundereds of languages. We hope this initial line of work motivates
future research on building generative models of the world.
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A APPENDICES

A.1 ADDITIONAL QUALITY-DIVERSITY CURVES FOR CONDITIONAL GENERATION
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Figure 8: Quality-Diversity BLEU curve for several KERMIT models (bilingual, multitarget, joint)
on the Multi30k text 2017 Flickr test set. Dotted diagonal line signifies BLEU equals Self-
BLEU. Points indicate different temperatures, from 0.1 (low diversity, left in graph) to 1.0 (high
diversity, right in graph)
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Figure 9: Quality-Diversity BLEU curve for several KERMIT models (bilingual, multitarget, joint)
on the Multi30k text 2017 MSCOCO test set. Dotted diagonal line signifies BLEU equals Self-
BLEU. Points indicate different temperatures, from 0.1 (low diversity, left in graph) to 1.0 (high
diversity, right in graph)
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A.2 ADDITIONAL MULTI30K TRANSLATION RESULTS

Model Inference Test2016 Test2017 MSCOCO

Bilingual (EN→ FR) EN→ FR 58.80 50.35 42.82
Bilingual (EN↔ FR) EN→ FR 59.29 52.13 42.17

Multi-target (EN→ Rest) EN→ FR 58.08 50.39 42.19
EN→ FR,CS,DE 58.52 50.49 41.53

Multi-target (Any→ Rest) EN→ FR 57.64 50.01 40.18
EN→ FR,CS,DE 57.35 48.13 39.98

Joint (p(EN,FR,CS,DE)) EN→ FR 50.87 40.69 33.93
EN→ FR,CS,DE 48.85 39.92 33.45

Table 2: Multi30k English→ French test BLEU.

Model Inference Test2016

Bilingual (EN→ CS) EN→ CS 28.58
Bilingual (EN↔ CS) EN→ CS 29.03

Multi-target (EN→ Rest) EN→ CS 30.48
EN→ FR,CS,DE 30.15

Multi-target (Any→ Rest) EN→ CS 30.11
EN→ FR,CS,DE 30.11

Joint (p(EN,FR,CS,DE)) EN→ CS 26.45
EN→ FR,CS,DE 26.35

Table 3: Multi30k English→ Czech test BLEU.

Model Inference Test2016 Test2017 MSCOCO

Bilingual (DE→ EN) DE→ EN 39.40 34.90 27.75
Bilingual (EN↔ DE) DE→ EN 40.52 35.66 28.61

Multi-target (DE→ Rest) DE→ EN 40.75 36.38 28.91
DE→ EN, FR,CS 39.72 35.95 28.20

Multi-target (Any→ Rest) DE→ EN 40.69 36.02 28.89
DE→ EN, FR,CS 39.97 37.07 28.62

Joint (p(EN,FR,CS,DE)) DE→ EN 38.44 30.82 25.46
DE→ EN, FR,CS 36.30 29.68 24.87

Table 4: Multi30k German→ English test BLEU.
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A.3 UNCONDITIONAL SAMPLING GENERATION

Figure 10 illustrates the serial sampling (one token at a time) from the joint model, every 20
timesteps

Iterations Language Generated Sentence from Joint Model

1 English
French
Czech Mladý

German

20 English
French descendant
Czech Mladý muž v modré bundě stoupá po

German Mann klettert.

40 English blue jacket walking up a mountain.
French veste descendant paroi rocheuse en
Czech Mladý muž v modré bundě stoupá po horách.

German Mann klettert.

60 English A man blue jacket walking up a mountain.
French veste bleue descendant une paroi rocheuse en horu.
Czech Mladý muž v modré bundě stoupá po horách.

German Mann einer blauen klettert eine hoch.

80 English A young man in blue jacket walking up a mountain.
French veste bleue descendant une paroi rocheuse en horu.
Czech Mladý muž v modré bundě stoupá po horách.

German Ein junger Mann in einer blauen Jacke klettert eine Felswand hoch.

96 English A young man in a blue jacket walking up a mountain.
French Un jeune homme en veste bleue descendant une paroi rocheuse en horu.
Czech Mladý muž v modré bundě stoupá po horách.

German Ein junger Mann in einer blauen Jacke klettert eine Felswand hoch.

Figure 10: Example of serial sampling unconditional text generation from the joint
p(EN,FR,CS,DE) model, over 96 insertion time steps. Note that the model generates one long
sequence and we split them into the resulting four sentences in each language here.
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