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ABSTRACT

Multi-relational graph embedding which aims at achieving effective representa-
tions with reduced low-dimensional parameters, has been widely used in knowl-
edge base completion. Although knowledge base data usually contains tree-like
or cyclic structure, none of existing approaches can embed these data into a com-
patible space that in line with the structure. To overcome this problem, a novel
framework, called Riemannian TransE, is proposed in this paper to embed the en-
tities in a Riemannian manifold. Riemannian TransE models each relation as a
move to a point and defines specific novel distance dissimilarity for each relation,
so that all the relations are naturally embedded in correspondence to the structure
of data. Experiments on several knowledge base completion tasks have shown
that, based on an appropriate choice of manifold, Riemannian TransE achieves
good performance even with a significantly reduced parameters.

1 INTRODUCTION

1.1 BACKGROUND

Multi-relational graphs, such as social networks and knowledge bases, have a variety of applica-
tions, and embedding methods for these graphs are particularly important for these applications.
For instance, multi-relational graph embedding has been applied to social network analysis (Krohn-
Grimberghe et al., 2012) and knowledge base completion (Bordes et al., 2013). A multi-relational
graph consists of entities V , a set R of relation types, and a collection of real data triples, where
each triple (h, r, t) ∈ V × R × V represents some relation r ∈ R between a head entity h ∈ V
and a tail entity t ∈ V . Embedding a multi-relational graph refers to a map from the entity and
the relation set to some space. Mathematical operations in this space enable many tasks, including
clustering of entities and completion, prediction, or denoising of triples. Indeed, completion tasks
for knowledge bases attract considerable attention, because knowledge bases are known to be far
from complete, as discussed in (West et al., 2014) (Krompaß et al., 2015). Multi-relational graph
embedding can help its completion and improve the performance of applications that use the graph.
This is the reason why much work focuses on multi-relational graph embedding. Figure 1 shows an
example of a multi-relational graph and a completion task.

In multi-relational graph embedding, reducing the number of parameters is an important problem
in the era of big data. Many parameters are needed with tensor-factorization-based methods, such
as Bayesian clustered tensor factorization (BCTF) (Sutskever et al., 2009), RESCAL (Nickel et al.,
2011), and a neural tensor network (NTN) (Socher et al., 2013), where each relation has a dense
matrix or tensors (O

(
D2
)

or more parameters, where D is dimensionality of the space). Thus,
TransE (Bordes et al., 2013) was proposed to reduce the number of parameters, to overcome this
problem. In TransE, each entity is mapped to a point in Euclidean space and each relation is no
more than a vector addition (O (D) parameters), rather than a matrix operation. The successors
to TransE, TransH (Wang et al., 2014) and TransD (Ji et al., 2016), also use only a small number
of parameters. Some methods succeeded in reducing parameters using diagonal matrices instead
of dense matrices: e.g. DISTMULT (Yang et al., 2015), ComplEx (Trouillon et al., 2016), HolE
(through the Fourier transform) (Nickel et al., 2016), and ANALOGY (Liu et al., 2017). In these
methods, all relations share one space for embedding, but each relation uses its own dissimilarity
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criterion. The success of these methods implies that one common space underlies whole data, and
each relation can be regarded as a dissimilarity criterion in the space.

Whereas these methods use distances or inner products in Euclidean space as dissimilarity criteria,
recent work has shown that using non-Euclidean space can further reduce the number of parameters.
One typical example of this is Poincaré Embedding (Nickel & Kiela, 2017) for hierarchical data,
where a hyperbolic space is used as a space for embedding. Here, the tree structure of hierarchical
data has good compatibility with the exponential growth of hyperbolic space. Recall the circumfer-
ence with radius R is given by 2π sinhR(≈ 2π expR) in a hyperbolic plane. As a result, Poincaré
embedding achieved good graph completion accuracy, even in low dimensionality such as 5 or 10.
On the other hand, spheres (circumference: 2π sinR) are compatible with cyclic structures. Since
Poincaré embedding, several methods have been proposed for single-relational graph embedding in
non-Euclidean space (e.g. (Ganea et al., 2018b), (Nickel & Kiela, 2018)) and shown good results.
The success of these methods suggests that the appropriate choice of a manifold (i.e., space) can
retain low dimensionality, although these methods are limited to single-relational graph embedding.

According to the success of the TransE and its derivation and Poincaré embedding, it is reasonable
in multi-relational graph embedding to assume the existence of a single structure compatible with a
non-Euclidean manifold. For example, we can consider a single tree-like structure, which contains
multiple hierarchical structures, where root selection gives multiple hierarchical structures from
a single tree, which is compatible with hyperbolic spaces (See Figure 2). Therefore, embedding
in a single shared non-Euclidean manifold with multiple dissimilarity criteria used in TransE is
promising. Taking Poincaré embedding’s success with low dimensionality into consideration, this
method should work well (e.g., in graph completion tasks) with small number of parameters. This
is the main idea of this paper.

Figure 1: Multi-relational graph and its completion.
There are five entities and two kinds of relation (hy-
pernym and synonym). Graph completion refers to
answering questions such as “is mammal a hypernym
of cannis?”

Figure 2: Multiple hierarchical relations in a
single tree. As this example shows, it is possi-
ble that multiple relations are given by multi-
ple dissimilarity criteria in a single structure.

1.2 CONTRIBUTIONS

We propose a novel method, called Riemannian TransE, for multi-relation graph embedding using
a non-Euclidean manifold. In Riemannian TransE, the relations share one non-Euclidean space
and the entities are mapped to the space, whereas each relation has its own dissimilarity criterion
based on the distance in the space. Specifically, the dissimilarity criteria in Riemannian TransE are
similar to those in TransE (Bordes et al., 2013) based on vector addition, which is known to be
effective. Unfortunately, we cannot straightforwardly use TransE’s dissimilarity criteria. This is due
to non-existence of a parallel vector field (See Figure 4), which is implicitly but essentially used in
“vector addition.” However, the parallel condition is not essential in TransE’s idea. For example,
hierarchical bottom to top relations should be regarded as attraction to the top in the hierarchy,
which is not parallel but has an attractive point. Moreover, parallel vector fields can be regarded as
a vector field attracted to a point at infinity. Therefore, we replace parallel vector fields in TransE
by vector fields with an attractive point that are well-defined in Riemannian manifolds, and as a
result, we obtain Riemannian TransE. Advantages of non-Euclidean spaces enable our Riemannian
TransE to achieve good performance (e.g. in graph completion) with low-dimensional parameters.
Riemannian TransE further exploits the advantages of TransE: that is, the method needs only O (D)
parameters for each relation. Numerical experiments on graph completion tasks show that with an
appropriate choice of manifold, our method can improve the performance of multi-relational graph
embedding with few parameters.
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2 RELATED WORK

2.1 MULTI-RELATIONAL GRAPH EMBEDDING

Let V and R denote the entities and relations in a multi-relational graph, and let T ⊂ V × R × V
denote the triples in the graph. Multi-relational graph embedding refers to a pair of maps from V
andR intoMe andMr, respectively. Particularly, learning multi-relational graph embedding refers
to obtaining an appropriate pair of maps v 7→ pv (v ∈ V, pv ∈Me) and r 7→ wr (r ∈ R, wr ∈Mr)
from the triples T . In this paper, we call pv the planet of entity v, wr the launcher of relation r, and
Me and Mr the planet manifold and launcher manifold, respectively. The quality of embedding
is measured through a score function f : (Me ×Me) × Mr → R, which is designed by each
method. Embedding is learned such that the value score function f (ph, pt;wr) will be low when
ph, pt;wr ∈ T and high when ph, pt;wr /∈ T . For specific loss functions designed from the score
function, see Subsection 2.3. We interpret the score function of multi-relational graph embedding as
dissimilarity in a manifold, which we call a satellite manifoldMs. We rewrite the score function f in
multi-relational graph embedding using two maps H ,T :Me ×Mr →Ms and the dissimilarity
measure function D :Ms ×Ms → R as follows:

f (ph, pt;wr) := D
(
sHh;r, s

T
t;r

)
, where sHh;r = H (ph;wr) , s

T
t;r = T (pt;wr). (1)

We call H and T the head and tail launch map, respectively, and call sHv;r and sTv;r the head and
tail satellite of entity v (or of planet pv) with respect to relation r. The idea of this formulation is
embedding in one shared space with multiple dissimilarity criteria. Specifically, each entity has only
one planet and their satellite pairs give multiple dissimilarity criteria, each of which corresponds to a
relation. In other words, all of the relations shares one space and the planets in it, and the differences
among the relations are reduced to the difference of their launcher maps and the satellites given by
them. We regard the planets as the embeddings of the entities, whereas dissimilarity between entities
with respect to a relation is evaluated through their satellites which correspond to the relation.

A simple example of this is TransE (Bordes et al., 2013), where all of the planets, satellites, and
launchers share the same Euclidean space, i.e.Me =Ms =Mr = RD, the launch maps are given
by vector addition as H (p;w) = p +w and T (p;w) = p, and the distance in a norm space—
i.e. the norm of the difference—is used as a dissimilarity criterion i.e. D

(
sH, sT

)
=
∥∥sT − sH∥∥

(the L1 or L2 norm is often used in practice). See Figure 5 (left). As Nguyen (2017) suggested,
one can associate the idea of representing relations as vector additions with the fact that we can find
a relation through a substraction operator in Word2Vec Mikolov et al. (2013). That is, we can find
relations such as pFrance−pParis ≈ pItaly−pRome in Word2Vec. As explained above, TransE is based
on the distance between satellites, and each satellite is given by simple vector addition. Regardless
of this simplicity, the performance of TransE has been exemplified in review papers (Nickel et al.,
2016) (Nguyen, 2017). Indeed, the addition operation in a linear space is essential in the launcher
map, and hence TransE can easily be extended to a Lie group, which is a manifold equipped with
an addition operator, as suggested in Ebisu & Ichise (2017). Some methods, such as TransH (Wang
et al., 2014), TransR (Lin et al., 2015), and TransD (Ji et al., 2016), also use a norm in linear space
as a dissimilarity measure, integrating a linear map into a latent space.

Another simple example is RESCAL (Nickel et al., 2011), which uses the negative inner product as
a dissimilarity measure. In RESCAL, the launcher of relation r is a matrixW ∈Mr = RD×D, the
launch maps are given by a linear map, i.e. H (p; (W ,w)) = Wp and T (p; (W ,w)) = p, and
the dissimilarity measure is the negative inner product D

(
sH, sT

)
= −

(
sH
)>
sT. Other methods

are also based on the (negative) inner product dissimilarity: e.g., DISTMULT (Yang et al., 2015),
ComplEx (Trouillon et al., 2016), HolE (through the Fourier transform) (Nickel et al., 2016), and
ANALOGY (Liu et al., 2017). Table 1 shows score functions of these methods.

Whereas some methods are based on a neural network (e.g., the neural tensor network (Socher et al.,
2013) and ConvE (Dettmers et al., 2017)), their score function consists of linear operations and
element-wise nonlinear functions.

2.2 GRAPH EMBEDDING IN NON-EUCLIDEAN SPACE

Graph embedding using non-Euclidean space has attracted considerable attention, recently. Specifi-
cally, embedding methods using hyperbolic space have achieved outstanding results (Nickel & Kiela,
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Table 1: Score Functions. The launcher wr of r determines the dissimilarity criterion of r through
satellites. In this table, the dimensionality is set so that the (real) dimensionality of the planets is D.
† denotes conjugate transpose. F denotes the discrete Fourier Transform. The interpretation here of
HolE is given by Liu et al. (2017) and Hayashi & Shimbo (2017).

Model Planets Head satellites sHh;r Dissimilarity
Launchers Tail satellites sTt;r # parameters

Riemannian TransE pv ∈ M (D-dim.) m[`r ]+,pr
(ph) ∈ M (See (6)) ∆

(
sHh;r, s

T
t;r

)
This paper wr = (`r, pr) ∈ R×M m[−`r ]+,pr (pt) ∈ M (See (6)) D |V|+ (D + 1) |R|

TransE pv ∈ RD ph +wr ∈ RD
∥∥∥sTt;r − sHh;r∥∥∥

Bordes et al. (2013) wr ∈ RD pt ∈ RD D |V|+D |R|

TransH pv ∈ RD
[
I−wpr

r w
pr
r
>
]
ph +wr ∈ RD

∥∥∥sTt;r − sHh;r∥∥∥
Wang et al. (2014) (wr,w

pr
r ) ∈ RD × RD

[
I−wpr

r w
pr
r
>
]
pt ∈ RD D |V|+ 2D |R|

TransR pv ∈ RD W rph +wr ∈ RD̃
∥∥∥sTt;r − sHh;r∥∥∥

Lin et al. (2015) (W r,wr) ∈ RD×D̃ × RD̃ W rpt ∈ RD̃ D |V|+
(
DD̃ + D̃

)
|R|

TransD (pv,p
pr
v ) ∈ RD/2 × RD/2

[
I +wpr

r p
pr
h
>
]
ph +wr ∈ RD̃

∥∥∥sTt;r − sHh;r∥∥∥
Ji et al. (2016) (wr,w

pr
r ) ∈ RD̃ × RD̃

[
I +wpr

r p
pr
t
>
]
pt ∈ RD̃ D |V|+ 2D̃ |R|

RESCAL pv ∈ RD W rph ∈ RD −sHh;r
>
sTt;r

Nickel et al. (2011) W ∈ RD×D pt ∈ RD D |V|+D2 |R|

DISTMULT pv ∈ RD diag {wr}ph ∈ RD −sHh;r
>
sTt;r

Yang et al. (2015) wr ∈ RD pt ∈ RD D |V|+D |R|

ComplEx pv ∈ CD/2 diag {wr}ph ∈ CD/2 −Re
(
sHh;r

†
sTt;r

)
Trouillon et al. (2016) wr ∈ CD/2 pt ∈ CD/2 D |V|+D |R|

HolE pv ∈ RD F (ph) ∈ CD −Re
(
sHh;r

†
sTt;r

)
Nickel et al. (2016) wr ∈ RD diag {F (wr)}F (pt) ∈ CD D |V|+D |R|

ANALOGY
(
pC
v,p

R
v

)
∈ CD/4 × RD/2 diag {wr}ph ∈ C

3
4
D −Re

(
sHh;r

†
sTt;r

)
Liu et al. (2017)

(
wC
r ,w

R
r

)
∈ CD/4 × RD/2 pt ∈ C

3
4
D D |V|+D |R|

2017) (Ganea et al., 2018b) (Nickel & Kiela, 2018). With these methods, each node in the graph is
mapped to a point in hyperbolic space and the dissimilarity is measured by a distance function in the
space. Although these methods exploit the advantages of non-Euclidean space, specifically those of
a negative curvature space, they focus on single- rather than multi-relational graph embedding.

By contrast, TransE has been extended to an embedding method in a Lie group—that is, a manifold
with the structure of a group (Ebisu & Ichise, 2017). As such, the regularization problem in TransE
is avoided by using torus, which can be regarded as a Lie group. Although this extension to TransE
deals with multi-relational embedding, it cannot be applied to all manifolds. This is because not all
manifolds have the structure of a Lie group. Indeed, we cannot regard a hyperbolic space (if D 6= 1)
or a sphere (if D 6= 1, 3) as a Lie group.

2.3 LOSS FUNCTION

We can simply design a loss function on the basis of the negative log likelihood of a Bernoulli model
as follows:
L
(
{pv}v∈V , {wr}r∈R

)
:= −

∑
(h,r,t)∈T

log (σ (f (ph, pt;wr)))−
∑

(h′,r′,t′)∈T c

log (1− σ (f (ph′ , pt′ ;wr′))) ,

(2)
where T c := (V ×R× V)\T and σ : R→ [0, 1] is a sigmoid function. However, this loss function
needs evaluation of the score function for all negative triplets (V ×R× V) \ T . To avoid this, most
methods (e.g., TransE) use the following margin-based loss function:

L
(
{pv}v∈V , {wr}r∈R

)
:=

∑
(h,h′,r,t′,t)∈Q

[δ + f (ph, pt;wr)− f (ph′ , pt′ ;wr)]+ , (3)
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where Q is the set of the triples with its corrupted head and tail. That is,

Q := {(h, h′, r, t′, t) ∈ V × V ×R× V × V | [(h, r, t) ∈ T ] ∧ [(h′ = h) ∨ (t′ = t)]} , (4)

where δ ∈ R≥0 is the margin hyperparameter, and [·]+ denotes the negative value clipping—i.e. for
all x ∈ R, [x]+ := max(x, 0). We use this loss function throughout this paper.

3 RIEMANNIAN TRANSE

In this section, we formulate Riemannian TransE exploiting the advantages of TransE in non-
Euclidean manifolds. Firstly, we give a brief introduction of Riemannian geometry. Secondly,
we explain the difficulty in application of TransE in non-Euclidean manifolds. Lastly, we formulate
Riemannian TransE.

3.1 RIEMANNIAN MANIFOLDS AND OPERATIONS

Let (M, g) be a Riemannian manifold with metric g. We denote the tangent and cotangent space
of M on p by TpM and T∗pM, respectively, and we denote the collection of all smooth vector
fields onM by X (M). Let ∇ : X (M) × X (M) 3 (X,Y ) 7→ ∇XY ∈ X (M) denote the Levi–
Civita connection, the unique metric-preserving torsion-free affine connection. A smooth curve
γ : (−ε, ε) → M is a geodesic when ∇γ̇ γ̇ = 0 on curve γ, where γ̇ is the differential of curve γ.
Geodesics are generalizations of straight lines, in the sense that they are constant speed curves that
are locally distance-minimizing. We define the exponential map Expp, which moves point p ∈ M
towards a vector by the magnitude of the vector. In this sense, the exponential map is regarded as an
extension of vector addition in a Riemannian manifold. Figure 3 shows an intuitive example of an
exponential map on a sphere. Let γv (v ∈ TpM) denote the geodesic that satisfies γ̇v (0) = v. The
exponential map Expp : TpM → M is given by Expp(v) := γv (1). We define the logarithmic
map Logp : M → TpM as the inverse of the exponential map. Note that the exponential map
is not always bijective, and we have to limit the domain of the exponential and logarithmic map
appropriately, while some manifolds, such as Euclidean and hyperbolic space, do not suffer from
this problem.

3.2 DIFFICULTIES IN RIEMANNIAN MANIFOLDS

In TransE, a single vector wr determines the head and tail launch maps H ,T as a transform:
RD → RD. In fact, these launch maps are given by vector addition. Note that this constitution of
the launcher maps implicitly but essentially uses the fact that a vector is identified with a parallel
vector field in Euclidean space. Specifically, a vector w determines a parallel vector field, denoted
by Wr here, which gives a tangent vector [Wr]p ∈ TpRD on every point p ∈ RD, and each tangent
vector determines the exponential map Expp ([Wr]p) at p, which is used as a launch map in TransE.
However, because there is no parallel vector field in non-zero curvature spaces, we cannot apply
TransE straightforwardly in non-zero curvature spaces. Thus, extention of TransE in non-Euclidean
space non-trivial. This is the difficulty in Riemannian Manifolds.

3.3 FORMULATION OF RIEMANNIAN TRANSE

As we have explained in Introduction, our idea is replacing parallel vector fields in TransE by vector
fields attracted to a point. Specifically, we obtain the Riemannian TransE as an extension of TransE,
replacing the launchers wr ∈ RD in TransE by pairs wr = (`r, pr) ∈ R ×M of a scalar value
and point, indicating the length and destination of the satellites’ move, respectively. We call pr the
attraction point of relation r. In other words, we replace parallel vector field Wr = wr in TransE
by `r

Logq(p)

‖Logq(p)‖q
. Note that, we use a fixed manifoldMe =M for entity embedding and use direct

product manifoldMr = R×M for relation embedding.

However, the extension still has arbitrariness. For instance, we could launch the tail satellite instead
of the head satellite in TransE; in other words, the following launching map also gives us a score
function equivalent to that of the original TransE: H (p;w) = p and T (p;w) = p−w (Figure 5
center). On the other hand, the score function depends on whether we move the head or tail satellites
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Figure 3: Tangent space and ex-
ponential map. The exponential
map moves the point p ∈ M
along a geodesic (the white line)
that tangent to v ∈ TpM.

Figure 4: Parallel vector field in a sphere. The left figure shows
a parallel vector field in a plane. In a sphere, there is no parallel
vector field. Even if a vector field seems parallel from one view
(center), it turns out to be not parallel (right)

Figure 5: Difference between TransE and Riemannian TransE. In these examples, the number |V|
of entities is three (1, 2, 3) and the number |R| of relations is two (red and orange), with triples (1,
orange, 2) and (1, red, 3). Hence, these models learn that the orange head satellite of Entity 1 is
close to the orange tail satellite of Entity 2 and the red head satellite of Entity 1 is close to the red
tail satellite of Entity 3. In addition, the distance of the other pair of satellites should be long in
the representation learned by each method. The figure on the left shows the original formulation of
TransE, where the satellites are given by vector addition. In other words, the satellites are given by a
move towards a point at infinity from the planet. The center figure shows an alternative formulation
of TransE, which is equivalent to the original TransE. Here, the tail satellites are launched and the
head satellites are fixed in the red relation. In Riemannian TransE in the figure on the right, the
vector additions are replaced by a move towards a (finite) point.

Figure 6: Relation of the sign for `. If ` is positive (e.g. the orange relation), the relation runs from
low (e.g. Entity 2 and 3) to high hierarchy (e.g. Entity 1), and vice versa (e.g. the red relation).

in our case, where the attraction points are not at infinity. With hierarchical data, an entity at a higher
hierarchy has many related entities in a lower hierarchy. Therefore, it is best to always launch the
satellites of “children,” the entities in a lower hierarchy, toward their parent. Hence, we move the

6



Under review as a conference paper at ICLR 2019

head satellites when `r > 0 and fix the tail satellites, and vice versa when `r < 0; specifically, we
move the head satellites by length λ = [`r]+ and move the tail satellites by length λ = [−`r]+.
Thus, bottom-to-top relation cases correspond to `r > 0 (Figure 6, left), and top-to-bottom relation
cases correspond to `r < 0 (Figure 6, right). Another problem pertains to launching the satellites
near the attraction point. If λ > ∆ (pr, pv), the naive rule causes overrun. In this case, we simply
clip the move and set the satellite in the place of pr.

We turn now to the score function of Riemannian TransE. The score function f : (M×M) ×
(R,M)→ R in Riemannian TransE is given as follows:

f (ph, pt; (`r, pr)) := ∆
(
sHh;r, s

T
t;r

)
, where


sHh;r := H (ph; (`r, pr)) := m

[`r]+,pr
(ph) ,

sTt;r := T (pt; (`r, pr)) := m
[−`r]+,pr

(pt) ,
(5)

where transform m
λ,p

:M→M denotes a move, defined as follows:

m
λ,p

(q) := Expp

(
[∆ (q, p)− λ]+

Logp (q)∥∥Logp (q)
∥∥
p

)
. (6)

Here, note that m
`,p

(q) is on the geodesic that passes through p and q. Figure 5 (right) shows the

Riemannian TransE model. IfM = RD and the attraction points are at infinity, the score function
is equivalent to that of TransE (without the sphere constraint). Although the exponential map and
logarithmic map in closed form are required to implement Riemannian TransE, we can obtain them
when the manifold M is a sphere SD (positive curvature), Euclidean space RD (zero curvature),
and hyperbolic space HD (negative curvature), or a direct product of them. These are practically
sufficient. Also note that the computation costs of these maps are O(D), which is small enough.

3.4 OPTIMIZATION

In typical cases, the number of entities is very large. Therefore, stochastic gradient methods are
effective for optimization. Although we can directly apply stochastic gradient methods of Euclidean
space or the natural gradient method (Amari, 1998), Riemannian gradient methods (e.g. (Zhang &
Sra, 2016) (Zhang et al., 2016)) work better for non-Euclidean embedding (Enokida et al., 2018).
In this paper, we use stocastic Riemannian sub gradient methods Zhang & Sra (2016) with norm
clipping (See Appendix). Note that in spheres or hyperbolic spaces, the computation costs of the
gradient is O(D), which is as small as TransE.

Table 2: Triple classification performance. Bold: Top 1, Italic: Top 3.
Dataset WN11 FB13

Dim. 8 16 32 64 128 8 16 32 64 128

Hyperbolic TransE 64.74 66.51 67.78 67.92 67.87 80.05 78.06 77.53 84.65 84.67
PHyperbolic TransE 68.51 72.88 74.70 75.83 77.03 78.42 77.06 77.39 77.74 78.53

Spherical TransE 82.07 83.11 82.99 83.13 83.30 64.45 63.38 64.69 70.07 69.74
PSpherical TransE 80.73 81.37 77.12 69.05 63.42 71.26 71.34 71.23 73.03 74.83
Euclidean TransE 72.66 73.99 75.27 76.69 77.04 81.84 80.03 75.44 76.99 77.52

TransE 60.94 64.63 63.20 61.92 58.46 67.60 68.29 68.86 75.68 74.92
TransE (unconstraint) 67.55 66.18 64.07 63.23 61.51 76.44 80.22 77.24 76.01 75.59

TorusE 62.34 62.78 63.33 63.19 63.45 61.51 58.04 63.06 60.31 58.14
TransH 77.55 75.44 70.03 65.46 63.75 71.07 75.25 76.89 78.32 80.32
TransR 52.58 53.13 55.30 53.10 55.80 57.43 52.41 51.65 51.87 52.38
TransD 53.43 54.61 55.76 63.32 61.59 55.02 56.68 53.69 56.28 56.02

RESCAL 60.36 57.65 56.85 56.62 57.62 74.28 70.17 67.88 65.90 63.20
DistMult 61.05 61.01 58.97 57.11 55.85 64.54 65.04 63.32 59.77 54.76
ComplEx 62.63 62.47 57.91 56.02 53.47 70.07 72.36 71.11 67.36 64.49

HolE 53.01 53.03 51.19 52.62 53.09 58.12 62.13 61.35 60.74 54.61
Analogy 63.60 59.24 58.55 57.51 57.00 66.38 66.18 64.54 59.48 55.26

4 EXPERIMENTS

Evaluation Tasks We evaluated the performance of our method for a triple classification task
(Socher et al., 2013) on real knowledge base datasets. The triple classification task involved predict-
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ing whether a triple in the test data is correct. We label a triple positive when f (ph, pt; (`r, pr)) >
θr, and vice versa. Here, θr ∈ R≥0 denotes the threshold for each relation r, which is determined
by the accuracy of the validation set. We evaluated the accuracy of classification with the FB13 and
WN11 datasets (Socher et al., 2013). Although we do not report the results of link prediction tasks
(Bordes et al., 2013) here because there are many evaluation criteria for the task, which makes it
difficult to interpret the results, we report the results in Appendix.

Manifolds in Riemannian TransE To evaluate the dependency of performance for Riemannian
TransE, we compared Riemannian TransE using the following five kinds of manifolds: Euclidean
space RD (Euclidean TransE), hyperbolic space HD (Hyperbolic TransE), a sphere SD (Spherical
TransE), the direct product H4 ×H4 × · · · ×H4 of hyperbolic space (PHyperbolic TransE), and the
direct product S4 × S4 × · · · × S4 of a sphere (PSpherical TransE).

Baselines and Implementation We compared our method with the following baselines: RESCAL
(Nickel et al., 2011), TransE (Bordes et al., 2013), TransH (Wang et al., 2014), TransR (Lin et al.,
2015), TransD (Ji et al., 2016), TorusE Ebisu & Ichise (2017), RESCAL (Nickel et al., 2011),
DISTMULT (Yang et al., 2015), HolE (Nickel et al., 2016), ComplEx (Trouillon et al., 2016) and
Analogy (Liu et al., 2017). We used implementations of these methods on the basis of OpenKE
http://openke.thunlp.org/static/index.html, and we used the evaluation scripts
there. Note that we compensated for some missing constraints (for example, in TransR and TransD)
and regularizers (for example, in DISTMULT and Analogy) in OpenKE. We also found that omit-
ting the constraint of the entity planets onto the sphere in TransE gave much better results in our
setting, so we also provide these unconstrained results (UnconstraintTransE). We determined the
hyperparameters by following each paper. For details, see the Appendix.

Results Table 2 shows the results for the triple classification task in each dimensionality. In WN11,
the sphere-based Riemannian TransEs achieved good accuracy. The accuracy did not degrade dra-
matically even with low dimensionality. On the other hand, in FB13, the hyperbolic-space-based
Riemannian TransEs was more accurate than other methods. Moreover for each dimensionality,
these results with the proposed Riemannian TransE were at least comparable to those of the base-
lines. The accuracy of Euclidean-space-based methods (e.g. the original TransE, and Euclidean
TransE) are between that of the sphere-based Riemannian TransEs and that of the hyperbolic-space-
based Riemannian TransEs in most cases. Note that these results are compatible with the curvature
of each space (i.e. Sphere: positive, Euclidean space: 0, a hyperbolic space: negative). Note that
Euclidean methods are sometimes better than non-Euclidean methods. In Appendix, we also report
the triple classification task results in FB15k, where Euclidean TransE as well as baseline methods
outperformed Riemannian TransE did not always outperform the baseline methods. In summary,
positive curvature spaces were good in WN11 and negative curvature spaces were good in FB13,
and zero curvature spaces were good in FB15k. These results show that Riemannian TransE can
attain good accuracy with small dimensionality provided that an appropriate manifold is selected.
What determines the appropriate manifold? Spheres are compatible with cyclic structure and hy-
perbolic spaces are compatible with tree-like structure. One possible explanation is that WN11
has cyclic structure and FB13 has tree-like structure and the structure of FB15k is between them.
However, further discussion remains future work.

5 CONCLUSION AND FUTURE WORK

We proposed Riemannian TransE, a novel framework for multi-relational graph embedding, by ex-
tending TransE to a Riemannian TransE. Numerical experiments showed that Riemannian TransE
outperforms baseline methods in low dimensionality, although its performance depends significantly
on the choice of manifold. Hence, future research shall clarify which manifolds work well with par-
ticular kinds of data, and develop a methodology for choosing the appropriate manifold. This is
important work not only for graph completion tasks but also for furthering our understanding of the
global characteristics of a graph. In other words, observing which manifold is effective can help us
to understand the global “behavior” of a graph. Other important work involves using “subspaces”
in non-Euclidean space. Although the notion of a subspace in a non-Euclidean manifold is non-
trivial, it may be that our method offers advantages over TransH and TransD, which exploit linear
subspaces.
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A OPTIMIZATION

In this paper, we use the following simple (projected) stochastic (Riemannian) (sub-) gradient meth-
ods Zhang & Sra (2016)

θ(τ+1) ← Expθ(τ)

(
−η∇̃(τ)

)
, (7)

where θ(τ) ∈ M|V| × (R×M)
|R| denotes the parameter in the τ -th step, η ∈ R≥0 is the

learning rate, and ∇̃(τ) ∈ Tθ(τ)

(
M|V| × (R×M)

|R|
)

is a stochastic gradient that satisfies

E
[
∇̃(τ)

]
= gradL

(
θ(τ)

)
= ]

(
dL
(
θ(τ)

))
. Recall that ] denotes index raising. Specifically, we

use the following stochastic loss function based on the mini-batch method:

L̃
(
θ(τ)

)
:=

∑
(h,h′,r,t′,t)∈Q′

[δ + f (ph, pt;wr)− f (ph′ , pt′ ;wr)]+ , (8)

where the stochastic quintet set Q′(τ) ⊂ Q is a set of uniform-distributed random variables on Q.
∆
(
sHr (ph) , sTr (pt)

)
. We obtain a stochastic gradient as follows:

∇̃[(τ) = dL̃
(
θ(τ)

)
=

∂

∂θ>
L̃
(
θ(τ)

)
dθ, ∇̃(τ) = ]

(
∇̃[(τ)

)
(9)

where θ is a local coordinate representation of θ. We obtain ∇̃[(τ) easily using an automatic dif-
ferentiation framework. Algorithm 1 shows the learning algorithm for Riemannian TransE. In the
experiments, we applied norm clipping such that the norm of a stochastic gradient is smaller than 1.

Algorithm 1 Learning Riemannian TransE
for τ = 1, 2, . . . do

SampleQ′(τ) from uniform distribution onQ.

∇̃(τ) ← ]
(

∂

∂θ>
∑

(h,h′,r,t′,t)∈Q′ [δ + f (ph, pt;wr)− f (ph′ , pt′ ;wr)]+

)
θ(τ+1) ← Expθ(τ)

(
−η(τ)∇̃(τ)

)
end for
return θ(τ)

B PARALLEL VECTOR FIELDS AND PARALLEL TRANSFORM IN
RIEMANNIAN MANIFOLDS

We give additional explanations of the reason why we cannot define a parallel vector field on a
non-Euclidean manifold. Specifically we describe the relationship between parallel vector fields
and parallel transform. We can define a parallel transform along a geodesic. This parallel transform
maps a tangent vector in a tangent space to one in another. At one glance, it seems that we can define
a parallel vector field using the parallel transform. However, a parallel transform is not determined
only by the origin and destination but depends on the path i.e. the geodesic. Figure 7 shows an
example on a sphere, where two ways to map a vector from a tangent space to another are shown
and these two give different maps. As this figure shows we cannot obtain a well-defined vector on
more than two points.
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Figure 7: Parallel transforms in a sphere S2. This figure shows two ways to transform vector v ∈
TpS2 to TrS2. We denote the parallel transform from along segment pq by Πq

p : TpS2 → TqS2.
The red vector on TrS2 denotes the vector obtained by the direct transform along segment pr. The
blue vector TrS2 denotes the vector obtained by the transform via q. As this figure shows we cannot
obtain a well-defined vector on more than two points.

C EXAMPLES OF RIEMANNIAN MANIFOLDS

We introduces some Riemannian manifolds useful in applications, and the formula of the expo-
nential map and logarithmic map in these manifolds. The closed form of exponential map and
logarithmic map enables implementation of Riemannian TransE in these manifolds. In the follow-
ing, we omit symbols ∂

∂x and d x of the basis in a tangent and cotangent space, respectively, for
notation simplicity. Moreover, we give the composition of the exponential map and index raising
and that of the index lowering and logarithmic map instead of the exponential map and logarithmic
map themselves. This is because we use a cotangent vector rather than a tangent vector in a prac-
tical implementation and map from/to cotangent space is more useful (Recall that ∂

∂θ>
L̃ is not the

coordinate of a tangent but the coordinate of a cotangent vector).

C.1 EUCLIDEAN SPACE

In a D-dimensional Euclidean Space, the exponential map (with the index raising) Expp ◦ ] :

T∗pRD → RD is given by (
Expp ◦ ]

)
(δ) = p+ δ. (10)

Apparently, the logarithmic map (with the index lowering) [ ◦ Logp : RD → T∗pRD is given by(
[ ◦ Logp

)
(q) = q − p. (11)

C.2 SPHERE

A D-dimensional (unit) sphere is given by point set SD :=
{
p ∈ R(D+1)

∣∣ p>p = 1
}

, and the
cotangent space T∗pSD on p ∈ SD is identified with

{
δ ∈ R(D+1)

∣∣ p>δ = 0
}

. The distance
∆ (p, q) between two points p ∈ SD and q ∈ SD is given as follows:

∆ (p, q) = arccos
(
p>q

)
, (12)

where arccos : [−1, 1] → [0, π] denote arc-cosine function. The exponential map (with the index
raising) Expp ◦ ] : T∗pSD → SD is given by(

Expp ◦ ]
)

(δ) = cos
(√

δ>δ
)
p+ sinc

(√
δ>δ

)
δ, (13)

where sinc denotes the cardinal sine function defined as follows:

sincx =

{
sin x
x if x 6= 0

1 if x = 0.
(14)
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The logarithmic map (with the index lowering) [ ◦ Logp : SD → T∗pSD is given by(
[ ◦ Logp

)
(q) =

arccos
(
p>q

)√
1− (p>q)

2

(
q −

(
p>q

)
p
)
. (15)

Note that in optimization, we need the projection of the differential δ̃ = ∂

∂θ
L (θ)|θ=p of the loss

function L to cotangent vector δ given by:

δ = δ̃ −
(
p>δ̃

)
p. (16)

C.3 HYPERBOLIC SPACE

In this subsection, we introduces models of a hyperbolic space, which are mathematically equivalent
to each other, but have practically different aspects. There are many models of a hyperbolic space.
We introduce two of them: the hyperboloid model and Poincaré disk model.

C.3.1 HYPERBOLOID MODEL

Some formulae here are also given and used in Nickel & Kiela (2018). Let GM denote diagonal
matrix

GM :=


−1

1
. . .

1

 ∈ R(D+1)×(D+1) (17)

Let 〈·, ·〉M : R(D+1) × R(D+1) → R denote the Minkowski inner product defined by

〈p, q〉M := p>GMq = −p0q0 +

D∑
d=1

pdqd, for p =


p0

p1

...
pD

 , q =


q0

q1

...
qD

 . (18)

In the hyperboloid model, a (canonical) hyperbolic space is given by point set HD :={
p ∈ RD+1

∣∣ 〈p,p〉M = −1, p0 > 0
}

. The tangent space TpHD on p ∈ HD is identified with{
δ ∈ RD+1

∣∣ 〈p, δ〉 = 0
}

, and the metric gp : TpHD × TpHD → R in the tangent space is
given by gp (u,v) = 〈u,v〉M. Hence, the cotangent space T∗pHD on p ∈ HD is identified with{
δ ∈ RD+1

∣∣ p>δ = 0
}

, and the metric g∗p : T∗pHD ×T∗pHD → R in the cotangent space is given
by g∗p (γ, δ) = 〈γ, δ〉M. Note that δ ∈ T∗pHD is identified with δ] = G−1M δ ∈ TpHD. The
distance ∆ (p, q) between two points p ∈ HD and q ∈ HD is given as follows:

∆ (p, q) = arcosh (−〈p, q〉M) , (19)

where, arcosh : [1,∞) → [0,∞) denotes the area hyperbolic cosine function, i.e. the inverse
fucntion of the hyperbolic cosine function. The exponential map (with the index raising) Expp ◦ ] :

T∗pHD → HD is given by(
Expp ◦ ]

)
(δ) = cosh

(√
〈δ, δ〉M

)
p+ sinhc

(√
〈δ, δ〉M

)
G−1M δ. (20)

where sinhc denotes the hyperbolic sine cardinal function defined as follows:

sinhcx =

{
sinh x
x if x 6= 0

1 if x = 0.
(21)

The logarithmic map (with the index lowering) [ ◦ Logp : HD → T∗pHD is given by(
[ ◦ Logp

)
(q) = GM

arcosh (−〈p, q〉M)√
〈p, q〉2M − 1

(q + 〈p, q〉M p) . (22)
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Note that in optimization, we need the projection of the differential δ̃ = ∂

∂θ
L (θ)|θ=p of the loss

function L to cotangent vector δ given by:

δ = δ̃ +GM

〈
p,G−1M δ̃

〉
M
p. (23)

C.3.2 POINCARÉ DISK MODEL

In the Poincaré disk model, theD-dimensional hyperbolic space is given by the unit open hyper-ball
DD :=

{
p ∈ RD

∣∣ p>p < 1
}

. The Poincaré disk model and the hyperboloid model are derived
from each other by the following map:

HD 3 p =


p0

p1

...
pD

 7→ 1

1 + p0


p1

p2

...
pD

 ∈ DD

DD 3 p =


p1

p2

...
pD

 7→ 1

µp


1− µp
p1

...
pD

 ∈ HD,

(24)

where µp :=
1−p>p

2 .

The metric is given by gp (u,v) =
(

2
1−p>p

)2
u>v. The distance ∆ (p, q) between two points

p ∈ HD and q ∈ HD is given as follows:

∆ (p, q) = arcosh (1 +M) , (25)

where

M :=
2 (q − p)

>
(q − p)

(1− p>p) (1− q>q)
. (26)

The exponential map (with index raising) Expp ◦ ] : T∗pDD → DD is given by

(
Expp ◦ ]

)
(δ) =

1−
µp

(
sech

√
µ2
pδ
>δ − 1

)
β

p+
µ2
ptanhc

√
µ2
pδ
>δ

β
δ, (27)

where

β := µpsech
√
µ2
pδ
>δ +

(
1− µp

)
+ µp

(
p>δ

)
tanhc

√
µ2
pδ
>δ. (28)

The logarithmic map (with index lowering) [ ◦ Logp : DD → T∗pDD is given by

(
[ ◦ Logp

)
(q) =

[
arcosh (1 +M)√

M

µp
(
µq (q − p)−Mp

)
√
M + 2

]>
dx. (29)

These formulae can be obtained by the coordinate transformation and can be interpreted as a mod-
ification of existing formulae such as ones in Ganea et al. (2018a). In addition, these formulae are
useful in an automatic differentiation system, because sech

√
x, tanhc

√
x, and arcosh(1+x)√

x
, and their

derivatives do not diverge when x→ 0.

D DETAILS OF EXPERIMENTS

D.1 EVALUATION TASKS

We evaluated the performance of our method in the link prediction Bordes et al. (2013) and task and
the triple classification task Socher et al. (2013) on real knowledge base data sets.

14
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D.1.1 LINK PREDICTION TASK

In the link prediction task, we predict the head or the tail entity given the relation type and the other
entity. We evaluate the ranking of each correct test triple (h, r, t) in the corrupted triples. We corrupt
each triple as follows. In our setting, either its head or tail is replaced by one of the possible head
or entity, respectively. In addition, we applied “filtered” setting proposed by Bordes et al. (2013),
where the correct triples, that is, the triples T in the original multi-relational graph are excluded.
Thus, the corrupted triples are given by

{
(h′, r, t)

∣∣ h′ ∈ Vh ∧ (h′, r, t) /∈ T
}

(head corruption) or
{(h, r, t′) | t′ ∈ Vt ∧ (h, r, t′) /∈ T } (tail corruption). where Vh

r and Vt
r denote the possible heads

and tails in relation r, given as follows:

Vh
r := {h ∈ V | ∃t : (h, r, t) ∈ T } ,
Vt
r := {t ∈ V | ∃h : (h, r, t) ∈ T } .

(30)

As evaluation metrics, we use the following:

Mean rank (MR) the mean rank of the correct test triples. The value of this metric is always equal
to or greater than 1, and the lower, the better.

Hits @ n (@n) the propotion of correct triples ranked in the top n predictions (n = 1, 3, 10). The
value ranges from 0 to 1, and the higher, the better.

Mean reciprocal rank (MRR) the mean of the reciprocal rank of the correct test triples. The value
ranges from 0 to 1, and the higher, the better.

D.1.2 TRIPLE CLASSIFICATION TASK

In triple classification tasks, we predict whether a triple in the test data is correct or not. The classifi-
cation is simply based on the score function i.e. we label a triple positive when f (ph, pt; (`r, pr)) >
θr, and the other way around. Here, θr ∈ R≥0 denotes the threshold for each relation r, which is
determined by the accuracy in the validation set.

D.2 DATASETS

In link prediction tasks, we used WN18 and FB15k Bordes et al. (2013) datasets, and WN11 and
FB13 datasets Socher et al. (2013). In triple classification tasks, we used WN11 and FB13 datasets,
as well as FB15k. Note that WN18 and FB15k are originally used for link prediction tasks, whereas
WN11 and FB13 are originally used for triple classification tasks. Also note that WN18 cannot be
used for the triple classification task because WN18 does not have test negative data. Table 3 shows
the number of the entities, relations, and triples in each dataset.

Table 3: Statistics of the experimental datasets

Dataset |V| |R| # triples
train valid test

WN18 40943 18 141442 5000 5000
FB15k 14951 1345 483142 50000 59071
WN11 38696 11 112581 2609 10544
FB13 70543 13 316232 5908 23733

Manifolds in Riemannian TransE To evaluate the dependency of performance of Riemannian
TransE, we compared Riemannian TransE using the following five kinds of manifolds: Euclidean
space RD (Euclidean TransE), hyperbolic spaces HD (HyperbolicTransE), spheres SD (Spherical-
TransE), the direct product H4×H4× · · · ×H4 of hyperbolic spaces (PHyperbolicTransE), and the
direct product S4 × S4 × · · · × S4 of spheres (PSphericalTransE).

D.3 BASELINES AND IMPLEMENTATION

We compared our method with baselines. As baselines, we used RESCAL Nickel et al. (2011),
TransE Bordes et al. (2013), TransH Wang et al. (2014), TransR Lin et al. (2015), TransD Ji
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et al. (2016), DISTMULT Yang et al. (2015), HolE Nickel et al. (2016) and ComplEx Trouillon
et al. (2016). We used implementations of the baselines in OpenKE http://openke.thunlp.
org/static/index.html, a Python library of knowledge base embedding based on Tensor-
flow Abadi et al. (2015), and moreover, we implemented some lacked constraints (for example, in
TransR, TransD) and regularizers (for example, in DistMult, Analogy) in OpenKE. We also found
that omitting the constraint of the entity planets onto sphere in TransE gives much better results in
our setting, and this is why we also show the result without the constraint (UnconstraintTransE). We
also implemented Riemannian TransEs as derivations of the base class of OpenKE.

We set the dimensionality of the entity manifold asD = 8, 16, 32, 64, 128. Although we also have to
determine the dimensionality of the projected space in TransR and TransD, we let them be equal to
D. Due to limitation of the computational costs, we fixed the batch size in baselines and Riemannian
TransEs such that that the training data are split to 100 batches. We also fixed the number of epochs
to 1000. Note that in the first 100 epochs in Riemannian TransEs, we fixed the launchers. Also
note that we applied norm clipping such that the norm of a stochastic gradient in the tangent space
is smaller than 1. We did not use “bern” setting introduced in Wang et al. (2014), where the ratio
between head and tail corruption is not fixed to one to one; in other words, we replaced head and tail
with equal probability.

Other than the dimensionality and batch sizes, we used hyperparameters such as learning rate η
and margin paremeter δ of baselines used in each paper. Note that some methods only reports link
prediction tasks, and reports hyperparameters for WN18 and FB15k and do not reports ones for
WN11 and FB13. Some methods do not mention settings of hyperparameters, and in these cases,
we used the default parameters in OpenKE. In these cases, we used hyperparameters of WN18 and
FB15k also for WN11 and FB13, respectively. Note that the parameters of TorusE is supposed to be
used with very high dimensionality, and the hyperparameters are designed for high dimensionality
settings. In Riemannian TransEs, we simply followed the hyperparameters in TransE.

We used the Xavier initializer Glorot & Bengio (2010) as an initializer. When we have to use the
points on a sphere (in the original TransE and Spherical TransEs), we projected the points generated
by the initialization onto the sphere. We found that choice of an initializer has significant effect on
embedding performance, and the Xavier initializer achieves very good performance.

We selected optimizers in baselines following each paper. Note that while using ADADELTA
(Zeiler, 2012) is also proposed in TransD, we used SGD in TransD. In Riemannian TransEs, we
used we simply followed the hyperparameters in TransE. Table 4 shows the hyperparameters and
optimization method for each method.

Table 4: Hyperparameters and optimizers: SGD denotes the stochastic gradient descent method (in
a Euclidean space). SRGD denotes the stochastic Riemannian gradient descent method Zhang &
Sra (2016) with gradient clipping. Adagrad is proposed by Duchi et al. (2011).

Method Optimizer Learning rate η Margin δ

WN18 FB15k WN11 FB13 WN18 FB15k WN11 FB13

RiemannianTransEs SRGD 0.01 0.01 0.01 0.01 2.0 1.0 2.0 1.0
TransE SGD 0.01 0.01 0.01 0.01 2.0 1.0 2.0 1.0
TransH SGD 0.01 0.005 0.001 0.005 1.0 0.5 2.0 0.25
TransR SGD 0.01 0.005 0.001 0.005 4.0 1.0 4.0 2.0
TransD SGD 0.01 0.01 0.01 0.01 1.0 1.0 1.0 1.0
TorusE SGD 0.0005 0.001 0.0005 0.001 2000.0 500.0 2000.0 500.0

RESCAL Adagrad 0.1 0.1 0.1 0.1 1.0 1.0 1.0 1.0
DistMult Adagrad 0.1 0.1 0.1 0.1 1.0 1.0 1.0 1.0
ComplEx Adagrad 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0

HolE Adagrad 0.1 0.1 0.1 0.1 1.0 1.0 1.0 1.0
Analogy Adagrad 0.1 0.1 0.1 0.1 1.0 1.0 1.0 1.0

D.4 RESULTS

Table 5 shows the results of triple classification tasks in FB15k. In FB15k, the baselines such as
TransH, ComplEx and Analogy attained good accuracies and the Riemannian TransEs did not out-
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perform the baselines. Table 6, Table 7, and Table 8 shows hit@10, mean rank, and mean reciprocal
rank score of link prediction tasks, respectively. As in triple classification tasks, the sphere-based
Riemannian TransEs achieved good accuracy in WN11, whereas the hyperbolic-space-based Rie-
mannian TransEs was more accurate than other methods in FB13. The Riemannian TransEs did
not outperform the baselines in WN18 and FB15k. This tendency is apparent in MR score. The
distance-based methods such as TransE, TransH and Riemannian TransEs tend to attain good scores
in MR and the inner-product-based methods such as DistMult, ComplEx and Analogy tend to attain
good scores in MRR and hit@10.

D.5 ADDITIONAL DISCUSSION

Why do these baselines attain good results in WN18 and FB15k but bad results in WN11 and FB13?
One reason may simply be that WN18 and FB15k datasets have good compatibility with zero cur-
vature spaces i.e. Euclidean space. This is supported by the results of Euclidean TransE. A possible
second reason is the redundancy of FB15k. Whereas some “easy” relations are excluded from FB15k
Bordes et al. (2013), it still contain many reversible triples, as noted by Toutanova & Chen (2015).
By contrast, these are removed in WN11 and FB13. Recall that projection-based methods such as
TransH, TransR and TransD, and inner-product-based methods such as ComplEx and DISTMULT
can exploit a linear subspace. When a dataset has apparent clusters inside which one relation is
easily recovered from the others, we can allocate each cluster to a subspace and separate subspaces
from one another. This separation is easily realized by setting some elements in the launchers to
zero in these methods. Indeed, the TransE without the sphere constraint attains good accuracies in
WN11 and FB13.

Differences between criteria are also interesting phenomena. Note that MRR and hit@10 is gener-
ous for heavy mistakes. It is possible that inner-product-based methods earn good scores in trivial
relations, but further intensive investigation is needed.

Table 5: Triple classification performance. Bold: Top 1, Italic: Top 3.
Dataset FB15K

Dim. 8 16 32 64 128

Hyperbolic TransE 75.46 76.86 77.34 77.73 77.87
PHyperbolic TransE 76.78 81.40 85.89 89.33 91.13

Spherical TransE 68.43 68.36 70.12 68.51 70.28
PSpherical TransE 74.38 79.73 84.31 88.39 90.31
Euclidean TransE 79.46 83.31 87.22 90.11 91.52

TransE 74.02 78.72 81.05 80.50 76.67
TransE (unconstraint) 78.05 81.72 84.42 85.45 84.74

TorusE 56.17 56.09 56.15 56.10 56.22
TransH 78.10 82.74 85.83 87.33 87.82
TransR 69.85 75.09 77.65 78.01 75.53
TransD 56.44 60.11 63.12 66.17 71.87

RESCAL 77.66 81.36 84.08 83.71 81.10
DistMult 77.13 82.89 88.19 89.64 89.90
ComplEx 78.72 85.66 89.22 90.37 89.75

HolE 68.87 73.61 78.37 83.80 86.12
Analogy 76.41 83.87 88.23 89.75 90.13
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Table 6: hit@10 in link prediction task. Bold: Top 1, Italic: Top 3.
WN18 (hit@10) / dim 8 16 32 64 128

Hyperbolic TransE 21.73 31.88 38.09 41.55 40.93
PHyperbolic TransE 29.18 75.03 85.15 86.52 87.56

Spherical TransE 32.16 31.38 33.63 34.80 36.18
PSpherical TransE 30.13 55.56 85.82 92.83 93.22
Euclidean TransE 38.37 75.05 84.84 86.50 87.17

TransE 12.35 17.80 19.56 17.00 11.19
TransE (unconstraint) 37.36 66.23 86.34 88.82 86.94

TorusE 19.45 30.04 31.62 36.52 36.85
TransH 42.11 76.36 88.34 92.41 90.72
TransR 00.89 01.32 04.95 18.57 43.19
TransD 03.23 10.64 23.65 66.14 92.14

RESCAL 14.91 39.31 74.80 81.98 77.26
DistMult 15.69 63.18 93.95 94.09 94.08
ComplEx 19.29 73.79 93.99 94.20 93.88

HolE 10.54 08.64 15.00 28.59 81.44
Analogy 12.77 70.67 94.20 94.22 94.33

FB15K (hit@10) / dim 8 16 32 64 128

Hyperbolic TransE 44.45 48.70 50.85 51.94 52.37
PHyperbolic TransE 43.17 51.67 61.38 71.86 79.35

Spherical TransE 34.92 34.98 37.60 38.47 39.98
PSpherical TransE 40.17 49.38 59.45 70.48 77.88
Euclidean TransE 45.52 53.82 64.15 74.91 81.11

TransE 39.10 47.01 53.82 55.85 51.86
TransE (unconstraint) 44.18 51.86 60.42 67.09 69.80

TorusE 18.85 19.64 20.29 19.71 19.51
TransH 42.99 52.06 61.21 70.48 75.29
TransR 31.49 40.40 47.44 50.41 49.34
TransD 20.79 25.35 31.13 37.71 44.01

RESCAL 44.50 51.16 56.21 58.22 53.92
DistMult 38.58 45.69 58.86 74.09 83.37
ComplEx 39.05 49.87 62.92 79.96 81.59

HolE 35.50 39.75 45.13 55.86 63.45
Analogy 38.16 47.01 58.85 74.50 83.49

WN11 (hit@10) / dim 8 16 32 64 128

Hyperbolic TransE 08.97 13.41 15.23 16.43 15.69
PHyperbolic TransE 08.74 14.48 17.93 19.42 20.62

Spherical TransE 11.29 11.65 12.07 11.07 13.41
PSpherical TransE 11.86 17.61 17.69 12.18 07.98
Euclidean TransE 10.47 14.65 17.80 19.87 20.57

TransE 03.28 05.71 06.45 05.14 04.34
TransE (unconstraint) 10.32 09.75 09.80 09.62 08.38

TorusE 07.24 09.28 10.49 10.85 10.05
TransH 16.80 18.25 13.17 08.80 07.38
TransR 00.77 01.17 01.72 01.10 02.07
TransD 00.83 01.42 02.60 05.31 04.81

RESCAL 03.61 02.94 03.12 03.19 03.21
DistMult 02.32 03.62 03.60 02.85 02.46
ComplEx 02.78 04.21 03.03 02.35 01.61

HolE 04.02 03.12 30.55 01.27 01.30
Analogy 03.92 03.04 03.22 03.12 02.50

FB13 (hit@10) / dim 8 16 32 64 128

Hyperbolic TransE 31.11 35.18 37.20 38.38 39.33
PHyperbolic TransE 34.05 37.44 39.15 39.90 40.79

Spherical TransE 25.12 28.69 29.73 42.87 45.47
PSpherical TransE 32.60 33.81 33.00 33.29 33.55
Euclidean TransE 31.85 33.91 36.36 38.43 39.49

TransE 21.57 27.39 23.37 29.01 31.40
TransE (unconstraint) 32.64 34.39 32.21 31.86 32.04

TorusE 16.66 17.22 16.63 17.49 17.63
TransH 18.28 22.50 26.82 28.94 29.84
TransR 14.29 12.80 13.21 13.65 13.78
TransD 15.31 13.31 15.39 17.51 18.23

RESCAL 33.58 32.18 28.88 26.46 23.48
DistMult 23.54 22.36 21.71 19.84 17.88
ComplEx 26.26 27.89 28.11 27.13 23.99

HolE 27.64 30.74 30.24 26.03 18.05
Analogy 23.27 23.29 22.58 19.46 17.77
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Table 7: MR in link prediction task. Bold: Top 1, Italic: Top 3.
WN18 (MR) / dim 8 16 32 64 128

Hyperbolic TransE 1899.9 1388.5 1012.3 0807.3 0839.4
PHyperbolic TransE 0437.9 0174.5 0152.8 0125.9 0104.4

Spherical TransE 0653.6 0578.5 0527.7 0536.7 0517.8
PSpherical TransE 0763.6 0336.9 0113.3 0175.8 0235.4
Euclidean TransE 0225.4 0137.5 0134.0 0120.5 0112.7

TransE 6493.7 5836.3 6563.7 8268.8 7798.4
TransE (unconstraint) 0258.9 0200.9 0225.5 0227.6 0257.4

TorusE 2949.0 2398.0 2369.5 2212.3 2257.4
TransH 0307.0 0258.4 0295.2 0318.2 0317.1
TransR 3095.2 3539.9 1803.2 0638.4 0299.0
TransD 4785.2 4450.0 4093.0 0878.5 0233.1

RESCAL 0501.7 0382.6 0325.0 0360.4 0354.2
DistMult 0444.9 0267.2 0277.4 0270.2 0289.1
ComplEx 0411.5 0259.4 0267.5 0303.7 0355.7

HolE 3755.3 2374.6 1116.2 0900.3 0615.1
Analogy 0592.5 0212.0 0269.2 0297.6 0285.5

FB15K (MR) / dim 8 16 32 64 128

Hyperbolic TransE 0150.6 0135.1 0126.0 0121.9 0120.0
PHyperbolic TransE 0136.2 0087.2 0053.5 0034.3 0027.0

Spherical TransE 0191.9 0204.4 0185.6 0189.8 0171.7
PSpherical TransE 0136.1 0090.7 0056.1 0036.2 0029.0
Euclidean TransE 0098.7 0067.0 0041.5 0029.8 0024.9

TransE 0136.1 0091.8 0071.3 0069.9 0090.5
TransE (unconstraint) 0103.1 0070.1 0051.7 0045.9 0050.1

TorusE 0397.2 0400.6 0399.7 0395.6 0391.9
TransH 0101.7 0064.4 0044.8 0037.7 0038.5
TransR 0178.7 0121.2 0086.1 0070.9 0074.2
TransD 0355.6 0304.6 0302.7 0302.7 0219.6

RESCAL 0103.2 0069.6 0052.0 0051.4 0066.8
DistMult 0127.8 0079.8 0043.5 0032.7 0033.4
ComplEx 0114.6 0062.2 0036.9 0031.7 0036.7

HolE 0226.0 0174.5 0127.0 0076.4 0054.8
Analogy 0129.6 0073.3 0043.0 0032.5 0032.2

WN11 (MR) / dim 8 16 32 64 128

Hyperbolic TransE 5248.9 4974.3 4853.2 4771.8 4824.7
PHyperbolic TransE 4420.0 3603.0 3115.9 2920.1 2638.3

Spherical TransE 1856.2 1697.9 1689.5 1609.3 1614.0
PSpherical TransE 2059.3 2030.0 2827.6 4128.2 5067.7
Euclidean TransE 3466.7 3220.4 3103.8 2772.1 2606.1

TransE 7615.2 7642.1 7369.9 7852.5 7872.7
TransE (unconstraint) 3538.6 3791.9 4349.4 4618.2 5145.5

TorusE 5389.1 5329.2 5275.6 5273.0 5335.9
TransH 2669.1 2985.7 3952.4 4718.7 5380.7
TransR 7291.8 6386.8 6040.7 5924.2 5330.1
TransD 6883.8 6437.3 6501.1 5077.1 5321.8

RESCAL 5395.7 5855.6 5983.3 5997.4 6003.5
DistMult 5320.1 5369.7 5790.2 6079.6 6312.5
ComplEx 5036.6 4916.1 5791.5 6211.7 6576.1

HolE 6681.5 6775.8 6342.5 6777.8 6462.2
Analogy 4802.2 5682.7 5882.0 6106.2 6150.7

FB13 (MR) / dim 8 16 32 64 128

Hyperbolic TransE 3970.3 3391.0 3304.6 3214.8 3215.6
PHyperbolic TransE 2889.3 2148.5 1835.7 1690.3 1588.8

Spherical TransE 4563.6 3997.7 3844.3 1869.3 1813.7
PSpherical TransE 2304.7 1718.1 1797.9 2238.4 2636.6
Euclidean TransE 2072.1 1899.7 1792.8 1675.4 1607.5

TransE 5993.4 6341.6 6935.9 5406.0 5462.7
TransE (unconstraint) 5143.0 5508.6 6631.5 7918.1 7639.0

TorusE 5972.7 6081.8 6028.5 5709.4 5468.1
TransH 4460.7 4230.5 4386.7 4465.0 4633.8
TransR 4474.6 5272.6 3913.0 2654.0 2063.4
TransD 5844.6 6643.1 6040.2 5893.8 5893.2

RESCAL 2356.9 2303.4 2467.6 2744.5 3236.0
DistMult 2202.8 2400.3 2332.0 2452.5 2777.8
ComplEx 2131.2 2041.4 2261.2 2457.6 2923.1

HolE 4695.4 3866.8 2966.3 3332.8 3647.3
Analogy 2313.2 2265.1 2271.7 2469.5 2664.6
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Table 8: MRR in link prediction task. Bold: Top 1, Italic: Top 3.
WN18 (MRR) / dim 8 16 32 64 128

Hyperbolic TransE 11.07 16.55 19.59 21.00 20.49
PHyperbolic TransE 13.77 36.26 42.57 44.18 44.94

Spherical TransE 16.42 16.22 19.12 17.81 19.04
PSpherical TransE 15.49 29.82 49.00 56.07 55.92
Euclidean TransE 17.87 35.64 42.01 44.15 44.65

TransE 06.82 09.70 11.05 09.35 06.45
TransE (unconstraint) 18.73 38.72 54.88 55.44 53.00

TorusE 11.72 21.54 23.25 28.56 29.22
TransH 22.45 39.07 49.83 57.85 58.10
TransR 00.58 00.65 02.31 08.19 18.27
TransD 01.52 05.38 13.30 39.37 55.03

RESCAL 08.58 20.78 46.32 61.98 60.63
DistMult 08.14 34.52 76.38 83.72 83.67
ComplEx 09.72 43.12 80.42 92.25 92.90

HolE 07.27 06.02 08.20 17.00 58.33
Analogy 06.83 41.48 81.11 93.22 93.99

FB15K (MRR) / dim 8 16 32 64 128

Hyperbolic TransE 26.60 29.92 31.79 32.74 32.94
PHyperbolic TransE 25.81 31.14 38.23 47.36 55.43

Spherical TransE 20.05 21.17 22.82 24.09 24.83
PSpherical TransE 23.55 29.33 36.31 46.20 54.63
Euclidean TransE 26.65 32.36 40.24 49.91 57.24

TransE 22.48 27.91 32.56 33.98 30.79
TransE (unconstraint) 26.53 31.76 37.28 42.26 45.18

TorusE 10.66 11.16 11.40 11.04 11.43
TransH 24.68 30.25 36.62 44.21 50.79
TransR 18.27 23.60 27.59 29.71 28.73
TransD 12.00 14.89 19.07 23.65 27.36

RESCAL 27.84 32.19 35.06 36.19 33.14
DistMult 23.30 27.45 36.07 47.29 60.70
ComplEx 22.93 29.24 37.77 51.84 60.47

HolE 26.14 28.44 33.31 41.68 46.73
Analogy 23.29 28.06 35.81 47.22 61.53

WN11 (MRR) / dim 8 16 32 64 128

Hyperbolic TransE 04.57 06.86 07.71 08.18 07.87
PHyperbolic TransE 04.42 07.05 08.72 09.48 09.65

Spherical TransE 05.67 06.03 06.38 05.95 07.02
PSpherical TransE 06.16 08.86 08.56 06.37 04.37
Euclidean TransE 05.35 07.22 08.56 09.36 09.50

TransE 01.66 02.96 03.31 02.67 02.31
TransE (unconstraint) 05.55 05.31 05.44 05.22 04.42

TorusE 03.66 04.84 05.98 06.30 05.62
TransH 10.22 09.88 06.61 04.51 03.82
TransR 00.49 00.73 01.03 00.64 01.05
TransD 00.55 00.85 01.50 02.82 02.52

RESCAL 01.93 01.56 01.81 01.88 01.91
DistMult 01.16 01.92 01.93 01.58 01.36
ComplEx 01.33 02.22 01.65 01.28 00.84

HolE 03.79 02.92 30.57 00.83 00.71
Analogy 01.91 01.58 01.77 01.67 01.32

FB13 (MRR) / dim 8 16 32 64 128

Hyperbolic TransE 20.60 22.23 24.51 27.36 28.61
PHyperbolic TransE 20.83 21.53 23.52 24.29 25.29

Spherical TransE 14.35 16.24 16.94 30.67 33.05
PSpherical TransE 18.77 18.60 18.97 19.64 21.81
Euclidean TransE 22.84 24.08 22.54 23.48 24.05

TransE 13.71 16.62 16.48 21.66 23.07
TransE (unconstraint) 22.12 24.58 22.85 22.86 22.90

TorusE 11.37 09.35 12.98 11.61 09.58
TransH 12.73 14.54 17.22 19.76 21.05
TransR 12.48 07.58 08.13 09.06 09.42
TransD 12.44 10.24 08.81 10.55 11.36

RESCAL 23.91 21.69 17.44 15.68 13.86
DistMult 13.89 14.61 14.39 13.16 11.56
ComplEx 14.65 17.61 17.78 16.41 14.09

HolE 23.12 27.43 24.33 21.11 12.46
Analogy 14.99 15.51 14.93 13.02 11.67
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