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Abstract

We address the problem of person re-identification (reID), that is, retrieving person
images from a large dataset, given a query image of the person of interest. A
key challenge is to learn person representations robust to intra-class variations, as
different persons can have the same attribute and the same person’s appearance
looks different with viewpoint changes. Recent reID methods focus on learning dis-
criminative features but robust to only a particular factor of variations (e.g., human
pose), which requires corresponding supervisory signals (e.g., pose annotations).
To tackle this problem, we propose to disentangle identity-related and -unrelated
features from person images. Identity-related features contain information useful
for specifying a particular person (e.g., clothing), while identity-unrelated ones
hold other factors (e.g., human pose, scale changes). To this end, we introduce a
new generative adversarial network, dubbed identity shuffle GAN (IS-GAN), that
factorizes these features using identification labels without any auxiliary informa-
tion. We also propose an identity-shuffling technique to regularize the disentangled
features. Experimental results demonstrate the effectiveness of IS-GAN, signifi-
cantly outperforming the state of the art on standard reID benchmarks including the
Market-1501, CUHKO3 and DukeMTMC-relID. Our code and models are available
online: https://cvlab-yonsei.github.io/projects/ISGAN/.

1 Introduction

Person re-identification (reID) aims at retrieving person images of the same identity as a query from
a large dataset, which is particularly important for finding/tracking missing persons or criminals
in a surveillance system. This can be thought of as a fine-grained retrieval task in that 1) the data
set contains images of the same object class (i.e., person) but with different background clutter and
intra-class variations (e.g., pose, scale changes), and 2) they are typically captured with different
illumination conditions across multiple cameras possibly with different characteristics and viewpoints.
To tackle these problems, reID methods have focused on learning metric space [[1, 12} 3} 14} 5, 6] and
discriminative person representations [[7, (8} 19,110} [11} 112} [13} 14} [15]], robust to intra-class variations
and distracting scene details.

Convolutional neural networks (CNNs) have allowed significant advances in person relD in the
past few years. Recent methods using CNNs add few more layers for aggregating body parts [9,
10, [11} 12} 16} [17]] and/or computing an attention map [[13} 14, [15]], on the top of e.g., a (cropped)
ResNet [18] trained for ImageNet classification [[19]. They give state-of-the-art results, but finding
person representations robust to various factors is still very challenging. More recent methods exploit
generative adversarial networks (GANs) [20] to learn feature representations robust to a particular
factor. For example, conditioned on a target pose map and a person image, they generate a new
person image of the same identity but with the target pose [21}22], and the generated image is then
used as an additional training data. This allows to learn pose-invariant features, and also has an effect
of data augmentation for regularization.
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(a) Interpolation between identity-related features (b) Interpolation between identity-unrelated features

Figure 1: Visual comparison of identity-related and -unrelated features. We generate new person
images by interpolating (a) identity-related features and (b) identity-unrelated ones between two
images, while fixing the other ones. We can see that identity-related features encode e.g., clothing
and color, and identity-unrelated ones involve e.g., human pose and scale changes. Note that we
disentangle these features using identification labels only. (Best viewed in color.)

In this paper, we introduce a novel framework, dubbed identity shuffle GAN (IS-GAN), that dis-
entangles identity-related and -unrelated features from input person images, without any auxiliary
supervisory signals except identification labels. Identity-related features contain information useful
for identifying a particular person (e.g., gender, clothing, hair), while identity-unrelated ones hold
all other information (e.g., human pose, background clutter, occlusion, scale changes). See Fig.T]
for example. To this end, we propose an identity shuffling technique to disentangle these features
using identification labels only within our framework, regularizing the disentangled features. At
training time, IS-GAN inputs person images of the same identity and extracts identity-related and
-unrelated features. In particular, we divide person images into horizontal parts, and disentangle these
features in both image- and part-levels. We then learn to generate new images of the same identity by
shuffling identity-related features between the person images. We use the identity-related features
only to retrieve person images at test time. We set a new state of the art on standard benchmarks for
person relD, and show an extensive experimental analysis with ablation studies.

2 Related work

Person representations. Recent reID methods provide person representations robust to a par-
ticular factor of variations such as human pose, occlusion, and background clutter. Part-based
methods [9} 10, [11} 12} 16, [17, 23] represent a person image as a combination of body parts either
explicitly or implicitly. Explicit part-based methods use off-the-shelf pose estimators, and extract
body parts (e.g., head, torso, legs) with corresponding features [9} [10]]. This makes it possible to
obtain pose-invariant representations, but off-the-shelf pose estimators often give incorrect pose
maps, especially for occluded parts. Instead of using human pose explicitly, a person image is sliced
into different horizontal parts of multiple scales in implicit part-based methods [[11, 12} [17]]. They
can exploit various partial information of the image, and provide a feature representation robust to
occlusion. Hard [[13]] or soft [[14}[15] attention techniques are also widely exploited in person relD to
focus more on discriminative parts while discarding background clutter.

GAN for person reID. Recent reID methods leverage GANSs to fill the domain gap between source
and target datasets [24} 25]] or to obtain pose-invariant features [21, 22} [26]]. In [24], CycleGAN [27]
is used to transform pedestrian images from a source domain to a target one. Similarly, Liu et
al. [25] use StarGAN [28]] to match the camera style of images between source and target domains.
Two typical ways of obtaining person representations robust to human pose are to fuse all features
extracted from the person images of different poses and to distill pose-relevant information from the
images. In [21}22], new images are generated using GANs conditioned on target pose maps and input
person images. Person representations for the generated images are then fused. This approach gives
pose-invariant features, but requires auxiliary pose information at test time. It is thus not applicable to
new images without pose information. To address this problem, Ge et al. [26] introduce FD-GAN that
generates a new person image of the same identity as the input with the target pose. Different from
the works of [21} 22], it distills identity-related and pose-unrelated features from the input image,
getting rid of pose-related information disturbing the reID task. It also does not require additional
human pose information during inference.

Disentangled representations. Disentangling the factor of variations in CNN features has been
widely used to learn the style of a specified factor in order to synthesize new images or extract
discriminative features. Mathieu et al. [29] introduce a conditional generative model that extracts
class-related and -independent features for image retrieval. Liu et al. [30] and Bao er al. [31]]
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(b) Image synthesis using disentangled features  (c) Image synthesis using identity shuffled features

Figure 2: Overview of IS-GAN. (a) IS-GAN disentangles identity-related and -unrelated features from
person images. (b-c) To regularize the disentanglement process, it learns to generate the same images
as the inputs while preserving the identities, using (b) disentangled features and (c) disentangled and
identity shuffled ones. We train the encoders, Eg and Ey, the generator G, the discriminators, Dp
and D¢, end-to-end. We denote by & a concatenation of features. See text for details.

disentangle the identity and attributes of a face to generate new face images. Denton et al.
represent videos as stationary and temporally varying components for the prediction of future frames.
Unlike these methods, DR-GAN [33]] and FD-GAN [26]] use a side information (i.e., pose labels)
to learn identity-related and pose-unrelated features explicitly for face recognition and person relD,
respectively. Other applications of disentangled features include image-to-image translation for
producing diverse outputs [34} 35] and domain-specific image deblurring for text restoration [36]].

Most similar to ours is FD-GAN [26] that extracts pose-invariant features for person relD. It, however,
offers limited feature representations, in that they are not robust to other factors of variations such as
scale changes, background clutter and occlusion. Disentangling features with respect to these factors
is not feasible within the FD-GAN framework, as this requires corresponding supervisory signals
describing the factors (e.g., foreground masks for background clutter). In contrast, IS-GAN factorizes
identity-related and -unrelated features without any auxiliary supervisory signals. We also propose to
shuffle identity-related features in both image- and part-levels. We empirically find that this is helpful
for robust person representations, especially in the case of occlusion and large pose variations that
can be seen frequently in person images.

3 Approach

We denote by I and y € {1,2,...,C} a person image and an identification label, respectively.
C' is the number of identities in a dataset. We denote by I, and I, anchor and positive images,
respectively, that share the same identification label. At training time, we input pairs of I, and I,
with the corresponding labels, and train our model to learn identity-related/-unrelated features, ¢g (I)
and ¢y (I), respectively. At testing time, we compute the Euclidean distance between identity-related
features of person images to distinguish whether the identities of them are the same or not.

3.1 Overview

IS-GAN mainly consists of five components (Fig.2): An identity-related encoder ER, an identity-
unrelated encoder Ey, a generator G, a domain discriminator Dp, and a class discriminator Dg.
Given pairs of I, and I,, the encoders, Er and Ey, learn identity-related features, ¢ (1) and
¢r(I,), and identity-unrelated ones, ¢u(I,) and ¢y (1), respectively (Fig. 2(a)). To encourage
identity-related and -unrelated encoders to disentangle these features from the input images, we



train the generator G, such that it synthesizes the same images as I, from ¢r(I.) © ¢y (I.) and
or(I,) @ ¢u(l.), where we denote by & a concatenation of features (Fig. b-c)). Similarly, it
generates the same images as I, from ¢g(I,) ® ¢u(I,) and ¢r(L,) & ¢u(I,). Since I, and I,
have the same identity but with e.g. different poses, scales, and illumination, this identity shuffling
encourages the identity-related encoder F'g to extract features robust to such variations, focusing
on the shared information between I, and I,, while enforcing the identity-unrelated encoder Evy
to capture other factors. We also perform the feature disentanglement and identity shuffling in a
part-level by dividing the input images into multiple horizontal regions (Fig.[3). Given the generated
images, the class discriminator D¢ determines their identification labels as either that of I, or I, and
the domain discriminator Dp tries to distinguish real and fake images. IS-GAN is trained end-to-end
using identification labels without any auxiliary supervision.

3.2 Baseline model

We exploit a network architecture similar to [[12] for the encoder Ei. It has three branches on top
of a backbone network, where each branch has the same structure but different parameters. We call
them as part-1, part-2, and part-3 branches, that slice a feature map from the network equally into
one, two, and three horizontal regions, respectively. The part-1 branch provides a global feature of
the entire person image. Other branches give both global and local features describing body parts,
where the local features are extracted from corresponding horizontal regions. For example, the part-3
branch outputs three local features and a single global one. Accordingly, we extract K features from
the encoder E'g in total, where K = 8 in our case. Without loss of generality, we can use additional
branches to consider different horizontal regions of multiple scales.

ID loss. We denote by I¥ and gb’f{ (k = 1...K) horizontal regions of multiple scales and corre-
sponding embedding functions that extract identity-related features, respectively. Following other
relD methods [[11} 12} 15| 22], we formulate the reID problem as a multi-class classification task, and
train the encoder E'g with a cross-entropy loss. Concretely, a loss function Ly to learn the embedding
function ¢ is defined as follows:

c K
ZZ log p(c|wk ok (TF)), (1)
=1 k=1

where w” is the classifier parameters associated with the identification label ¢ and the region I*. ¢"
is the index label with ¢* = 1 if the label ¢ corresponds to the identity of the image I¥ (i.e., ¢ = y)
and qf = 0 otherwise. The probability of I* with the label c is defined using a softmax function as

exp(wEGh(IF)
S5 exp(whok (IF))

We concatenate all features from three branches, and use it as an identity-related feature ¢ (I) for
the image I, that is, ¢r (I) = ¢ (I') @ ... © oK (IK).

3.3 IS-GAN

The identity-related feature ¢g (I) from the encoder Er contains information useful for person relD,
such as clothing, texture, and gender. However, the feature ¢g (I) learned using the classification
loss in (I) only may have other information that is not related to or even distracts specifying a
person (e.g., human pose, background clutter, scale), and thus it is not enough to handle these
factors of variations. To address this problem, we use an additional encoder Fy to extract the
identity-unrelated feature ¢y (I), and train the encoders such that they give disentangled feature
representations for identifying a person. The key idea behind the feature disentanglement is to distill
identity-unrelated information from the identity-related feature, and vice versa. To this end, we
propose to leverage image synthesis using an identity shuffling technique. Applying this to the whole
body and its parts regularizes the disentangled features. Two discriminators allow to generate realistic
person images of particular identities, further regularizing the disentanglement process.

ple|wh o (IF)) = )

Identity-shuffling loss. We assume that the disentangled person representation satisfies the follow-
ing conditions: 1) An original image should be reconstructed from its identity-related and -unrelated
features; 2) The shared information between different images of the same identity corresponds to
the identity-related feature. To implement this, the generator G is required to reconstruct an anchor
image I, from ¢ (I.) @ ¢u(I.) and ¢r(I,) @ ¢u(L.) while synthesizing a positive image I, from
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Figure 3: (a) We randomly swap local features between anchor and positive images. (b) Similar
to Fig. 2Jc), we generate person images with identity-related features but shuffled in a part-level and
identity-unrelated ones. See text for details.

or(Ip) ® ¢u(Iy) and g (L) ® ¢u(Iy) (Fig. Pfb-c)). We define an identity-shuffling loss as follows:

Ls= Y |L~-G(or(I;) @ du))lh (3)

i,j€{a,p}
The generator acts as an auto-encoder when ¢ = j, enforcing the combination of identity-related and
-unrelated features from the same image to contain all information in order to reconstruct the original
image. When ¢ # j, it encourages the encoder R to extract the same identity-related features,
¢r(I,) and ¢r(I,) from a pair of I, and I,, focusing on the consistent information between them.
Other factors, not shared by I, and I,, are encoded into the identity-unrelated features, ¢y (I,) and

¢U(Ip)'

Part-level shuffling loss. We also apply the identity shuffling technique to part-level fea-
tures (Fig. . We randomly choose local features from ¢g (I,), and swap them with corresponding
ones from ¢g (I,,) at the same locations, and vice versa (Fig. a)). This assumes that horizontal
regions in a person image contain discriminative body parts sufficient for distinguishing its identity.
Similar to (3), we compute the discrepancy between the original image and its reconstruction from
the identity-related features shuffled in a part-level and the identity-unrelated ones (Fig.[3(b)), and
define a part-level shuffling loss as

Les= Y |IL—G(S(¢r), or(L;)) & ¢u(L))]s, )
i,j€{a,p}
i#]
where we denote by S a region-wise shuffling operator. The part-level identity shuffling has the
following advantages: (1) It enables our model to see various combinations of identity-related features
for individual body parts, regularizing a feature disentanglement process; (2) It imposes feature
consistency between corresponding parts of the images.

KL divergence loss. We disentangle the identity-related and -unrelated features using identification
labels only. Although we train the encoders separately to extract these features, where they share a
backbone network with different heads, the generator G may largely rely on the identity-unrelated
features to synthesize new person images in (3) and @), while ignoring the identity-related ones,
which distracts the feature disentanglement process. To circumvent this issue, we encourage the
identity-unrelated features to have the normal distribution (0, 1) with zero mean and unit variance,
and formulate this using a KL divergence loss as follows:

K
Ly =Y Dxu (ol (1%)[IN(0,1)) 5)

k=1
where Dk, (pllg) = — [ p(z)logf; Ezg The KL divergence loss regularizes the identity-unrelated

features by limiting the distribution range, such that they do not contain much identity-related



information [31}[35] [36]]. This enforces the generator G to use the identity-related features when
synthesizing new person images, facilitating the disentanglement process.

Domain and class losses. To train the generator G in (3)) and @), we use two discriminators Dp,
and D¢c. The domain discriminator Dp [20] helps the generator G to synthesize more realistic
person images, and the class discriminator D¢ [37] encourages the synthesized images to have the
identification labels of anchor and positive images, further regularizing the feature learning process.
Concretely, we define a domain loss L£p as

Lp = max Z log Dp(I;) + Z log(1 — Dp(G(¢r(I;) @ ¢u(li)))) (6)
P ic{a,p} i,j€{a,p}
+ Z log(1 — Dp(G(S(¢r(Li), ¢r(1;)) © ¢u(1s))))-
i,j€{a,p}
i#£]

The domain discriminator Dp is trained, such that it distinguishes real and fake images while the
generator G tries to synthesize more realistic images to fool Dp. A class loss L is defined as

Lo=— > logDc(L)— > log(Dc(G(ér()) & ¢u(li))) 7
ic{a,p} i,j€{a,p}
— > log(Do(G(S(¢r(Ti), ¢ (L)) & ¢u(L)))).
i,j€{a,p}
i#£]

The class discriminator D¢ classifies the identification labels of generated and input person images.
When the generator GG synthesizes a hard-to-classify image without sufficient identity-related infor-
mation, the class discriminator D¢ would be confused to determine the identification label of the
generated image. The generator G thus tries to synthesize a person image of the particular identity
associated with the identity-related features, ¢r (I;) and S(¢r (L), or(L;)).

Training loss. The overall objective is a weighted sum of all loss functions defined as:
L(Er, Ey,G,Dp, Dc) = ARLr + AuLu + AsLs + ApsLps + ApLp + AcLc,  (8)

where Ar, Au, As, Aps, Ap, Ac are the weighting factors for each loss.

4 Experiments

4.1 Implementation details

Network architecture. We exploit a ResNet-50 [18] trained for ImageNet classification [19]].
Specifically, we use the network cropped at conv4-1 as our backbone to extract CNN features.
On top of that, we add two heads for the identity-related and -unrelated encoders. Each encoder
has part-1, part-2, and part-3 branches that consist of two convolutional, global max pooling, and
bottleneck layers but with different number of channels and network parameters. The part-1, part-2,
and part-3 branches in the encoders give feature maps of size 1 X 1 x p, 1 x 1 x 3p,and 1 x 1 x 4p,
respectively. See Section [3.2] for details. We set the size of p (i.e., the number of channels) to 256
and 64 for the identity-related and -unrelated encoders, respectively. We concatenate all features
from three branches for each encoder, and obtain the identity-related and -unrelated features. The
generator consists of a series of six transposed convolutional layers with batch normalization [38]],
Leaky ReLU [39] and Dropout [40]. It inputs identity-related and -unrelated features, a noise vector,
and a one-hot vector encoding an identification label whose dimensions are 2048, 512, 128 and C,
respectively. The domain and class discriminators share five blocks consisting of a convolutional
layer with stride 2 with instance normalization [41] and Leaky ReL.U [39], but have different heads.
For the domain discriminator, we add two more blocks, resulting in a features map of size 12 x 4.
We then use this as an input to PatchGAN [42]]. For the class discriminator, we add one more block
followed by a fully connected layer.

Dataset and evaluation metric. We compare our model to the state of the art on person reID with
the following benchmark datasets: Market-1501 [43], CUHKO03 [44] and DukeMTMC-reID [45]. The
Market-1501 dataset [43] contains 1, 501 pedestrian images captured from six viewpoints. Following
the standard split [43]], we use 12,936 images of 751 identities for training and 19, 732 images of



Table 1: Quantitative comparison with the state of the art on Market-1501 [43], CUHKO03 [44] and
DukeMTMC-relID [43] in terms of rank-1 accuracy(%) and mAP(%). Numbers in bold indicate the
best performance and underscored ones are the second best. {: ReID methods trained using both
classification and (hard) triplet losses; *: Our implementation.

Methods Market-1501 CUHKO03 DukeMTMC-relD
labeled detected

f-dim R-1 mAP R-1 mAP R-1 mAP R-1 mAP
IDE [51] 2,048 739 478 222 21.0 213 19.7 - -
SVDNet [52] 2,048 823 62.1 409 378 415 373 76.7 56.8
DaRe' [33] 128 864 693 58.1 53.7 551 513 752 57.4
PN-GAN [21] 1,024 894 726 - - - - 73.6 532
MLEN [54] 1,024 90.0 743 547 492 528 478 81.0 62.8
FD-GAN [26] 2,048 905 777 - - - - 80.0 64.5
HA-CNN [15] 1,024 912 757 444 41.0 4177 38.6 80.5 63.8
Part-Aligned® [23] 512 917 79.6 - - - - 84.4 69.3
PCB [11] 12,288 923 774 - - 59.7 532 81.7 66.1
PCB+RPP [11] 12,288 93.8 81.6 - - 62.8 567 833 69.2
HPM [49] 3,840 942 827 - - 639 575 86.6 74.3
DG-Net [55] 1,024 948 86.0 - - - - 86.6 74.8
MGNT [12] 2,048 957 869 68.0 674 668 66.0 88.7 78.4
MGN** [12] 2,048 945 848 692 67.6 657 62.1 882 76.7
IS-GAN 2,048 952 871 741 725 723 68.8 90.0 79.5

750 identities for testing. The CUHKO3 dataset [44] contains 14,096 images of 1,467 identities
captured by two cameras. For the training/testing split, we follow the experimental protocol in [46].
The DukeMTMC-relD dataset [45]], a subset of the DukeMTMC [47], provides 36,411 images of
1, 812 identities captured by eight cameras, including 408 identities (distractor IDs) that appear in
only one camera. We use the training/test split provided by [45] corresponding 16, 522 images of 702
identities for training and 2, 228 query and 17, 661 gallery images of 702 identities for testing. We
measure mean average precision (mAP) and cumulative matching characteristics (CMC) at rank-1
for evaluation.

Training. To train the encoders and the generator, we use the Adam [48]] optimizer with 5; = 0.9
and B2 = 0.999. For the discriminators, we use the stochastic gradient descent with momentum of
0.9. Similar to the training scheme in [26], we train IS-GAN in three stages: In the first stage, we
train the identity-related encoder Fg using the loss function Lg, which corresponds to the baseline
model, for 300 epochs over the training data. A learning rate is set to 2e-4. In the second stage, we fix
the baseline, and train the identity-unrelated encoder Eyy, the generator GG, and the discriminators Dp
and D¢ with the corresponding losses Ly, Lg, Lps, Lp, and L¢. This process iterates for 200
epochs with the learning rate of 2e-4. Finally, we train the whole network end-to-end with the learning
rate of 2e-5 for 100 epochs. Following [49], we resize all image into 384 x 128. We augment the
datasets with horizontal flipping and random erasing [50]. Note that random erasing is used only in
the first stage, as we empirically find that it hinders the disentanglement process. For mini-batch, we
randomly select 4 different identities, and sample a set of 4 images for each identity.

Hyperparameter. We empirically find that training with a large value of Ay is unstable. We
thus set Ay to 0.001 in the second stage, and increase it to 0.01 in the third stage to regularize
the disentanglement. Following [26 35]], we fix Ag and Ap to 10 and 1, respectively. To set other
parameters, we randomly split IDs in the training dataset of Market-1501 [43]] into 651/100 and used
corresponding images as training/validation sets. We use a grid search to set the parameters (A =
20, Aps = 10, Ac¢ = 2) with A\g € {5,10,20}, Aps € {5,10,20}, and A\c € {1,2} on the
validation split. We fix all parameters and train our models on Market-1501 [43]], CUHKO03 [44]] and
DukeMTMC-relD [45]].

4.2 Results

Quantitative Comparison with the state of the art. We show in Table [I|rank-1 accuracy and
mAP for Market-1501 [43]], CUHKO03 [44] and DukeMTMC-relD [45]], and compare IS-GAN with
the state of the art including FD-GAN [26], PCB+RPP [11], DG-Net [55], and MGN [12]. We
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Figure 4: Visual comparison of retrieval results on Market- Figure 5: An example of generated
1501 [43]]. Results with green boxes have the same identity images using a part-level identity
as the query, while those with red boxes do not. (Best viewed in  shuffling technique. (Best viewed
color.) in color.)

use a single query, and do not use any post-processing techniques (e.g., a re-ranking method [46]]).
We achieve 95.2% rank-1 accuracy and 87.1% mAP on Market-1501 [43]], 74.1%/72.3% rank-1
accuracy and 72.5%/68.8% mAP with labeled/detected images on CUHKO3 [44]], and 90.0% rank-1
accuracy and 79.5% mAP on DukeMTMC-relD [43]], setting a new state of the art on CUHKO03 and
DukeMTMC-reID. Note that IS-GAN is the first model we are aware of that achieves more 90%
rank-1 accuracy on DukeMTMC-reID [43].

FD-GAN [26] is similar to IS-GAN in that both use a GAN-based distillation technique for person
relD. It extracts identity-related and pose-unrelated features using extra pose labels. Distilling other
factors except for human pose is not feasible. IS-GAN on the other hand disentangles identity-related
and -unrelated features through identity shuffling, factorizing other factors irrelevant to person relD,
such as pose, scale, background clutter, without supervisory signals for them. Accordingly, the
identity-related feature of IS-GAN is much more robust to such factors of variations than the identity-
related and pose-unrelated one of FD-GAN, showing the better performance on Market-1501 and
DukeMTMC-relID. Note that the results of FD-GAN on CUHKO3 are excluded, as it uses a different
training/test split.

DG-Net [33] also use a feature distillation technique, but appearance/structure features in DG-Net are
completely different from identity-related/-unrelated ones in IS-GAN. DG-Net computes the features
by AdalN [36], widely used in image stylization, and thus they contain style/content information,
rather than identity-related/-unrelated one. Figure 9 in Appendix of [53] visualizes generated person
images when structure features (analogous to identity-unrelated features of IS-GAN) are changed
only. We can see that DG-Net even changes the entire attributes (e.g., gender) except the color
information, suggesting that the structure features also contain identity-related cues. As a result,
IS-GAN outperforms DG-Net for all benchmarks by a large margin.

MGN [12] uses the same backbone network as IS-GAN to extract initial part-level features. As it is
trained with a hard-triplet loss, the part-level features of MGN capture discriminative attributes of
person images well. For Market-1501, MGN shows the reID performance comparable with IS-GAN,
and performs slightly better in terms of rank-1 accuracy. Note that, compared to other datasets, it
contains person images of less pose and attribute variations. The relD performance of MGN, however,
drops significantly on other datasets, especially for CUHKO03, where the same person is captured with
different poses, viewpoints, background, and occlusion, demonstrating that the person representations
for MGN are not robust to such factors of variations.

Qualitative Comparison with the state of the art. Figure {] shows person retrieval results of
PCB [[11], FD-GAN [26], and ours on Market-1501 [43]. We can see that PCB mainly focuses on
clothing color, retrieving many person images of different identities from the query. FD-GAN using
the identity-related and pose-unrelated features shows the robustness to pose variations. It, however,
largely relies on color information. For example, FD-GAN even retrieves person images of different
genders, just because the persons carry a red bag and put on a white top. In contrast, [IS-GAN retrieves
person images of the same identity as the query correctly. We can see that identity-related features in
IS-GAN are robust to large pose variations, occlusion, background clutter, and scale changes.



Table 2: Ablation studies of IS-GAN on Market-1501 [43]], CUHKO03 [44] and DukeMTMC-relD [45]
in terms of rank-1 accuracy(%) and mAP(%).

Losses Market-1501 CUHKO3-labeled DukeMTMC-relD
Lr Ly Ls Lps Lp Lc R-1 mAP R-1 mAP R-1 mAP

Baseline 939 84.1 684 65.9 86.6 74.9
948 87.0 734 72.3 89.5 79.5
IS-GAN 95.0 871 739 72.1 89.7 79.4

v 949 870 739 72.3 89.8 79.4
95.1 869 737 72.3 89.7 79.5

v
v
v
v
v v

v v oo v 952 871 741 72.5 90.0 79.5

SN
SENENENEN
SENENEN

Ablation study. We show an ablation analysis on different losses in IS-GAN. We measure rank-1
accuracy and mAP, and report results on Market-1501 [43]], CUHKO3 [44] and DukeMTMC-reID [435]
in Table |2l From the first and second rows, we can clearly see that disentangling identity-related
and -unrelated features using an identity shuffling technique gives better results on all datasets,
but the performance gain for the CUHKO3 [44], which typically contains person images of large
pose variations and similar attributes, is more significant. The third row shows that applying the
identity shuffling technique in a part-level further boosts the relD performance. The last three rows
demonstrate that domain and class discriminators are complementary, and combining all losses gives
the best results.

Part-level shuffling loss. We show in Table [3|the effect of the part- Table 3: Ablation studies of
level shuffling loss for different numbers of body parts. We can see different numbers of body
that 1) the part-level shuffling loss generalizes well across different parts on Market-1501 [43].
numbers of body parts, and 2) IS-GAN shows better performance as Lps R-1  mAP
more body parts are used. To further evaluate the generalization ability

of our model, we use PCB [[11] as our baseline and add IS-GAN on top part-2 ); g;g ggg
of that. We modify the network architecture such that each part-level X 041 829
feature has the size of 1 x 1 x 256 for an efficient computation. Note ~ part-3 v 944 830
that the original PCB also gives six part-level features, but with the

size of 1 x 1 x 2,048. The rank-1/mAP results of PCB, PCB+IS-GAN  part-1,2 ’f gj;‘ gj;‘
(w/o Lpg), and PCB+IS-GAN are 91.0/74.2, 92.1/78.3, and 92.6/78.5, : :
respectively, showing that our model improves the performance of PCB part-1,3 ); gig g‘s‘g

consistently.

Visual analysis for disentangled features. Figure[]visualizes the ability of IS-GAN to disentangle
identity-related and -unrelated features in a part-level. We show an example of generated images
using a part-level identity shuffling technique. Specifically, we shuffle the identity-related/-unrelated
features for upper/lower parts between person images of different identities. When identity-related
features are shuffled e.g., in the upper left picture, we can see that IS-GAN changes colors of T-shirts
between persons but with the same pose and background. This suggests that the identity-related
features do not contain pose and background information. Interestingly, when identity-unrelated
features are shuffled, IS-GAN generates new images where background and pose information for the
corresponding parts are changed. For example in the upper right picture, the person looking at the
front side now sees the left side and vice versa when shuffling the features between upper parts, while
preserving the shapes of the legs in the lower parts.

5 Conclusion

We have presented a novel framework, IS-GAN, to learn disentangled representations for robust
person relD. In particular, we have proposed a feature disentanglement method using an identity
shuffling technique, which regularizes identity-related and -unrelated features and allows to factorize
them without any auxiliary supervisory signals. We achieve a new state of the art on standard reID
benchmarks in terms of rank-1 accuracy and mAP.
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