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ABSTRACT

Multi-label classification (MLC) is the task of assigning a set of target labels for
a given sample. Modeling the combinatorial label interactions in MLC has been
a long-haul challenge. Recurrent neural network (RNN) based encoder-decoder
models have shown state-of-the-art performance for solving MLC. However, the
sequential nature of modeling label dependencies through an RNN limits its ability
in parallel computation, predicting dense labels, and providing interpretable results.
In this paper, we propose Message Passing Encoder-Decoder (MPED) Networks,
aiming to provide fast, accurate, and interpretable MLC. MPED networks model
the joint prediction of labels by replacing all RNNs in the encoder-decoder ar-
chitecture with message passing mechanisms and dispense with autoregressive
inference entirely. The proposed models are simple, fast, accurate, interpretable,
and structure-agnostic (can be used on known or unknown structured data). Experi-
ments on seven real-world MLC datasets show the proposed models outperform
autoregressive RNN models across five different metrics with a significant speedup
during training and testing time.

1 INTRODUCTION

Multi-label classification (MLC) is receiving increasing attention in tasks such as text categorization
and image classification. Accurate and scalable MLC methods are in urgent need for applications
like assigning topics to web articles, classifying objects in an image, or identifying binding proteins
on DNA. The most common and straightforward MLC method is the binary relevance (BR) approach
that considers multiple target labels independently (Tsoumakas and Katakis, 2006). However, in
many MLC tasks there is a clear dependency structure among labels, which BR methods ignore.

Accordingly, probabilistic classifier chain (PCC) models were proposed to model label dependencies
and formulate MLC in an autoregressive sequential prediction manner (Read et al., 2009). One
notable work in the PCC category was from Nam et al. (2017) which implemented a classifier chain
using a recurrent neural network (RNN) based sequence to sequence (Seq2Seq) architecture, Seq2Seq
MLC. This model uses an encoder RNN encoding elements of an input sequence, a decoder RNN
predicting output labels one after another, and beam search that computes the probability of the next
T predictions of labels and then chooses the proposal with the max combined probability.

However, the main drawback of classifier chain models is that their inherently sequential nature
precludes parallelization during training and inference. This can be detrimental when there are a
large number of positive labels as the classifier chain has to sequentially predict each label, and
often requires beam search to obtain the optimal set. Aside from time-cost disadvantages, PCC
methods have several other drawbacks. First, PCC methods require a defined ordering of labels for
the sequential prediction, but MLC output labels are an unordered set, and the chosen order can lead
to prediction instability (Nam et al., 2017). Secondly, even if the optimal ordering is known, PCC
methods struggle to accurately capture long-range dependencies among labels in cases where the
number of positive labels is large (i.e., dense labels). For example, the Delicious dataset has a median
of 19 positive labels per sample, so it can be difficult to correctly predict the labels at the end of the
prediction chain. Lastly, many real-world applications prefer interpretable predictors. For instance, in
the task of predicting which proteins (labels) will bind to a DNA sequence based binding site, users
care about how a prediction is made and how the interactions among labels influence the predictions1.

1An important task is modelling what is known as “co-binding” effects, where one protein will only bind if
there is another specific protein already binding, or similarly will not bind if there is another already binding.
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Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) introduce a class of methods
that model joint dependencies of variables using neural message passing rather than an explicit
representation such as a probabilistic classifier chain. Message passing allows for efficient inference
by modelling conditional independence where the same local update procedure is applied iteratively
to propagate information across variables. MPNNs provide a flexible method for modeling multiple
variables jointly which have no explicit ordering (and can be modified to incorporate an order, as
explained in section 3). To handle the drawbacks of BR and PCC methods, we propose a modified
version of MPNNs for MLC by modeling interactions between labels using neural message passing.

We introduce Message Passing Encoder-Decoder (MPED) Networks aiming to provide fast, accurate,
and interpretable multi-label predictions. The key idea is to replace RNNs and to rely on neural
message passing entirely to draw global dependencies between input components, between labels
and input components, and between labels. The proposed MPED networks allow for significantly
more parallelization in training and testing. The main contributions of this paper are:

• Novel approach for MLC. To the authors’ best knowledge, MPED is the first work using neural
message passing for MLC.

• Accurate MLC. Our model achieves similar, or better performance compared to the previous
state of the art across five different MLC metrics. We validate our model on seven MLC datasets
which cover a wide spectrum of input data structure: sequences (English text, DNA), tabular
(bag-of-words), and graph (drug molecules), as well as output label structure: unknown and graph.
• Fast. Empirically our model achieves an average 1.7x speedup over the autoregressive seq2seq

MLC at training time and an average 5x speedup over its testing time.
• Interpretable. Although deep-learning based systems have widely been viewed as “black boxes”

due to their complexity, our attention based MPED models provide a straightforward way to explain
label to label, input to label, and feature to feature dependencies.

2 METHOD: MPED NETWORKS

2.1 BACKGROUND: MESSAGE PASSING NEURAL NETWORKS

Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) are a generalization of graph
neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2009), where variables are represented as
nodes on a graph G and joint dependencies are modelled using message passing rather than explicit
representations, which allows for efficient inference. MPNNs model the joint dependencies using
message function M t and node update function U t for T time steps, where t is the current time step.
The hidden state vti ∈ Rd of node i ∈ G is updated based on messages mt

i from its neighboring
nodes {vtj∈N (i)} defined by neighborhood N (i):

mt
i =

∑
j∈N (i)

M t(vti ,v
t
j), (1)

vt+1
i = U t(vti ,m

t
i). (2)

After T updates, a readout function R is used on the updated nodes for a prediction (e.g., node
classification or graph classification) on the graph G.

Many possibilities exist for functions M t and U t. For example, one can pass messages using neural
attention in which nodes are able to attend over their neighborhoods differentially (Veličković et al.,
2017). This allows for the network to learn different weights for different nodes in a neighborhood,
without depending on knowing the graph structure a priori. In this formulation, messages for node vti
are obtained by a weighted sum of all neighboring nodes {vtj∈N (i)} where the weights are obtained
by attention (Bahdanau et al., 2014). In our implementation, we implement neural message passing
with attention. In the rest of the paper, we use “graph attention” and “neural message passing”
interchangeably. Neural message passing with attention works as follows.

Attention weights αtij for pair of nodes (vti , v
t
j) are computed using some attention function a(·):

etij = a(vti ,v
t
j), (3)

where etij represents the importance of node j for node i. For our attention function, we used a scaled
dot product with node-wise linear transformations Wq ∈ Rd×d on node vti and Wu ∈ Rd×d on
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Figure 1: MPED Networks. Given input x, we encode its components {x1, x2, x3} as embedded input nodes
{ct1, ct2, ct3} of encoder graph GENC. Similarly, we encode labels {y1, y2, ..., y5} as embedded label nodes
{ht1,ht2, ...,ht5} of decoder graph GDEC. MPNNxx is used to pass messages between the input nodes and update
input nodes. MPNNxy is used to pass messages from the input nodes to the labels nodes and update the label
nodes. MPNNyy is used to pass messages between the label nodes and update label nodes. Finally, readout
function R performs node-level classification on label nodes to make binary label predictions {ŷ1, ŷ2, ..., ŷ5}.

node vtj . Scaling by
√
d is used to mitigate training issues (Vaswani et al., 2017):

a(vti ,v
t
j) =

(Wqvti)
>(Wuvtj)√
d

. (4)

Attention coefficients etij are then normalized across all neighboring nodes of node i using a softmax
function:

αtij = softmaxj(etij) = αtij =
exp(etij)∑

k∈N (i) exp(etik)
. (5)

In our method, we use a so called attention message function M t
atn to produce the message from node

j to node i using the learned attention weights αtij and another transformation matrix Wv ∈ Rd×d.
Then we compute the full message mt

i by linearly combining messages from all nodes j ∈ N (i)
with a residual connection on the current vti :

Matn(v
t
i ,v

t
j ;W ) = αtijW

vvtj , (6)

mt
i = vti +

∑
j∈N (i)

Matn(v
t
i ,v

t
j ;W ). (7)

Lastly, node vti is updated to state vt+1
i using message mt

i by a multi-layer perceptron (MLP) update
function Umlp with matrices Wr ∈ R2d×d,Wb ∈ R2d×d, and a residual connection on mt

i:

Umlp(m
t
i;W ) = ReLU(Wrmt

i + b1)
>Wb + b2, (8)

vt+1
i = mt

i + Umlp(m
t
i;W ). (9)

It is important to note that matrices W are shared (i.e., separately applied) across all nodes. This
can be viewed as 1-dimensional convolution with kernel and stride sizes of 1. Weight sharing across
nodes is a key aspect of MPNNs, where node dependencies are learned in an order-invariant manner.

2.2 MPED: MESSAGE PASSING ENCODER-DECODER NETWORK FOR MLC

Notations: We define the following notations, used throughout the paper. Let D = {(xn,yn)}Nn=1
be the set of data samples with inputs x ∈ X and outputs y ∈ Y . Inputs x are a (possibly ordered) set
of S components {x1, x2, ..., xS}, and outputs y are a set of L labels {y1, y2, ..., yL}. MLC involves
predicting the set of binary labels {y1, y2, ..., yL}, yi ∈ {0, 1} given input x.

Input features are represented as embedded vectors {ct=0
1 , ct=0

2 , ..., ct=0
S }, cti ∈ Rd, using embedding

matrix Wx ∈ Rδ×d, where d is the embedding size, δ is the vocabulary size, and t represents the
‘state’ of the embedding after t updates. Similarly, labels are represented as an embedded vectors
{ht=0

1 ,ht=0
2 , ...,ht=0

L }, hti ∈ Rd, using embedding matrix Wy ∈ RL×d, where L is the number of
labels, and t represents the ‘state’ of the embedding after t updates.
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Setup: In MLC, each output label is determined by a joint probability of other labels and the input
features. Our goal is to achieve the performance of explicit joint probability methods such as PCCs
(Eqs. 22 and 23), at the test speed of BR methods (Eq. 21).

We introduce Message Passing Encoder-Decoder (MPED) networks, where we formulate MLC using
an encoder-decoder architecture. In MPED Networks, input components are represented as nodes in
encoder graph GENC using embedding vectors {ct1:S}, and labels are represented as nodes in decoder
graph GDEC using embedding vectors {ht1:L}. MPED networks use three MPNN modules with
attention to pass messages within GENC, from GENC to GDEC, and within GDEC to model the joint
prediction of labels.

The first module, MPNNxx, is used to update input component nodes {ct1:S} by passing messages
within the encoder (between input nodes). The second module, MPNNxy, is used to update output
label nodes {ht1:L} by passing messages from the encoder to decoder (from input nodes {ct1:S} to
output nodes {ht1:L}). The third module, MPNNyy, is used to update output label nodes {ht1:L} by
passing messages within the decoder (between label nodes). Once messages have been passed to
update input and label nodes, a readout function R is then used on the label nodes to make a binary
classification prediction for each label, {ŷ1, ŷ2, ..., ŷL}. An overview of our model is shown in Fig. 1.

2.3 ENCODER: MODELING FEATURE INTERACTIONS VIA INPUT COMPONENT TO
COMPONENT MESSAGE PASSING

For a particular input x, we first assume that the input features {x1:S} are nodes on a graph, we
call GENC. GENC = (V,E), V = {x1:S}, and E includes all undirected pairwise edges connecting
node ci and node cj . MPNNxx, parameterized by Wxx, is used to pass messages between the input
embeddings in order to update their states. xi can be any component of a particular input (e.g. words
in a sentence, patches of an image, nodes of a known graph, or tabular features).

Nodes on GENC are represented as embedding vectors {ct1, ct2, ..., ctS}, where the initial states {c01:S}
are obtained using embedding matrix Wx on the input components {x1, x2, ..., xS}. The embeddings
are then updated by MPNNxx using message passing for T time steps to produce {cT1 , cT2 , ..., cTS}.
To update input embedding cti, MPNNxx uses attention message function M t

atn (Eq. 6) on all
neighboring input embeddings {ctj∈N (i)} to produce messages mt

i, and MLP update function Umlp

(Eq. 8) to produce updated embedding ct+1
i :

mt
i = cti +

∑
j∈N (i)

Matn(c
t
i, c

t
j ;Wxx), (10)

ct+1
i = mt

i + Umlp(m
t
i;Wxx). (11)

If there exists a known GENC graph, message mt
i for node i is computed using its neighboring nodes

j ∈ N (i), where the neighborsN (i) are defined by the graph. If there is no known graph, we assume
a fully connected GENC graph, which means N (i) = {j 6= i}. Inputs with a sequential ordering can
be modelled as a fully connected graph using positional embeddings (Battaglia et al., 2018).

2.4 DECODER

Similar to the input components in the encoder, we assume that the labels {y1:L} are nodes on a
decoder graph called GDEC. Nodes on GDEC are represented as embedding vectors {ht1,ht2, ...,htL},
where the initial states {h0

1:L} are obtained using label embedding matrix Wy . The decoder MPNNs
update the label embeddings {ht1:L} by passing messages from the encoder to the decoder, and then
pass messages within the decoder. MPNNxy, is used to pass messages from input embeddings {cT1:S}
to label embeddings, and then MPNNyy is used to pass messages between label embeddings.

2.4.1 UPDATING LABEL EMBEDDINGS THROUGH INPUT TO LABEL MESSAGE PASSING

In order to update the label nodes given a particular input x, the decoder uses MPNNxy, parameterized
by Wxy, to pass messages from input x to labels y. At the equation level, this module is identical to
MPNNxx except that it updates the ith label node’s embedding hi using the embeddings of all the
components of an input. That is, we update each hti by using a weighted sum of all input embeddings
{cT1:S}, in which the weights represent how important an input component is to the ith label node
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and the weights are learned via attention. Messages are only passed from the encoder nodes to the
decoder nodes, and not vice versa (i.e. encoder to decoder message passing is directed).

More specifically, to update label embedding hti, MPNNxy uses attention message function M t
atn on

all embeddings of the input {cT1:S} to produce messages mt
i, and another MLP update function Umlp

to produce the updated intermediate embedding state ht
′

i :

mt
i = hti +

S∑
j=1

Matn(h
t
i, c

T
j ;Wxy), (12)

ht
′

i = mt
i + Umlp(m

t
i;Wxy). (13)

The key advantage of input-to-label message passing with attention is that each label node can attend
to different input nodes (e.g. different words in the sentence).

2.4.2 UPDATING LABEL EMBEDDINGS THROUGH LABEL TO LABEL MESSAGE PASSING

At this point, the decoder can make an independent prediction for each label conditioned on x.
However, in order to make more accurate predictions, we model interactions between the label nodes
{ht′1:L} using message passing and update them accordingly. To do this we use a a third message
passing module, MPNNyy. At the equation level, this layer is identical to MPNNxx except that it
replaces the input embeddings with label embeddings. In other words, label embedding ht

′

i is updated
by a weighted combination through attention of all its neighbor label nodes {ht′j∈N (i)}.

To update each label embedding ht
′

i , MPNNyy uses attention message function M t′

atn on all neighbor
label embeddings {ht′j∈N (i)} to produce message mt

i, and MLP update function U t
′

mlp to compute
updated embedding ht+1

i :

mt′

i = ht
′

i +
∑

j∈N (i)

Matn(h
t′

i ,h
t′

j ;Wyy), (14)

ht+1
i = mt′

i + Umlp(h
t′

i ,m
t′

i ;Wyy). (15)

If there exists a known GDEC graph, message mt
i for node i is computed using its neighboring nodes

j ∈ N (i), where the neighbors N (i) are defined by the graph. If there is no known GDEC graph, we
assume a fully connected graph, which means N (i) = {j 6= i}.
In our implementation, the label embeddings are updated by MPNNxy and MPNNxx for T time steps
to produce {hT1 ,hT2 , ...,hTL}.

2.5 READOUT LAYER (MLC PREDICTIONS FROM THE DECODER)

The last module of the decoder predicts each label {ŷ1, ...ŷL}. A readout function R projects each of
the L label embeddings hTi using projection matrix Wo ∈ RL×d, where row Wo

i ∈ Rd is the learned
output vector for label i. The calculated vector of size L × 1 is then fed through an element-wise
sigmoid function to produce probabilities of each label being positive:

ŷi = R(hTi ;W
o) = sigmoid(Wo

ih
T
i ). (16)

In MPED networks we use binary the mean cross entropy on the individual label predictions to train
the model. p(yi|{yj 6=i}, cT1:S ;W) is approximated in MPED networks by jointly representing {y1:L}
using message passing from {cT1:S} and from the embeddings of all neighboring labels {yj∈N (i)}.

2.6 MODEL DETAILS

Multi-head Attention In order to allow a particular node to attend to multiple other nodes (or
multiple groups of nodes) at once, MPED uses multiple attention heads. Inspired by Vaswani et al.
(2017), we use K independent attention heads for each W· matrix during the message computation,
where each matrix column W·,k

j is of dimension d/K. The generated representations are concatenated
(denoted by ‖) and linearly transformed by matrix Wz ∈ Rd×d. Multi-head attention changes
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message passing function Matn, but update function Umlp stays the same.

et,kij = (Wq,kvti)
>(Wu,kvtj)/

√
d (17)

αt,kij =
exp(et,kij )∑

j∈N (i) exp(et,kij )
(18)

Mk
atn(v

t
i ,v

t
j ;W ) = αt,kij W

v,kvtj , (19)

mt
i = vti +

(∥∥∥∥∥
K

k=1

[ ∑
j∈N (i)

Mk
atn(v

t
i ,v

t
j ;W )

])
Wz (20)

Graph Time Steps To learn more complex relations among nodes, we compute T time
steps of embedding updates. This is essentially a stack of T MPNN layers. Matrices
Wq
· ,W

u
· ,W

v
· ,W

r
· ,W

b
· ,W

z
· , are not shared across time steps (but are shared across nodes).

Label Embedding Weight Sharing To enforce each label’s input embedding to correspond to that
particular label, the label embedding matrix weights Wy are shared with the readout projection
matrix Wo. In other words, Wy is used to produce the initial node vectors for GDEC, and then is
used again to calculate the pre-sigmoid output values for each label, so Wo ≡Wy . This was shown
beneficial in Seq2Seq models for machine translation (Press and Wolf, 2016).

2.7 ADVANTAGES OF MPED MODELS

Speed. In MPED models, the joint probability of labels isn’t explicitly estimated using the chain
rule. This enables making predictions in parallel and decreases test time drastically, especially when
the number of labels is large. We model the joint probability implicitly using the MPED decoder, at
the benefit of a substantial speedup. Time complexities of different types of models are compared in
Table 1. The biggest advantage of MPED networks is constant training and testing times.

Model Training Time Cost
(# sequential operations)

Testing Time Cost
(# sequential operations)

Encoder Layer
Space Cost

Decoder Layer
Space Cost

RNN Seq2Seq O(S + ρ) O(ρ) O(S · d2) O(ρ · d2)
MPED O(1) O(1) O(S2 · d) O(L2 · d)

Table 1: Model Complexities. S represents the input sequence length, ρ represents the number of positive
labels, L represents total number of labels, and d is the size of the model’s hidden state.

Handling dense label predictions. Motivated by the drawbacks of autoregressive models for MLC
(Section 5.6), the proposed MPED model removes the dependencies on a chosen label ordering and
beam search. This is particularly beneficial when the number of positive output labels is large (i.e.
dense). MPED networks predict the output set of labels all at once, which is made possible by the fact
that inference doesn’t use a probabilistic chain, but there is still a representation of label dependencies
via label to label attention. As an additional benefit, as noted by Belanger and McCallum (2016), it
may be useful to maintain ‘soft’ predictions for each label in MLC. This is a major drawback of the
PCC models which make ‘hard’ predictions of the positive labels, defaulting all other labels to 0.

Flexibility Many input or output types are instances where the relational structure is not made
explicit, and must be inferred or assumed (e.g., text corpora, or MLC labels)(Battaglia et al., 2018).
MPED networks allow for greater flexibility of input structures (known structure such as sequence or
graph, or unknown such as tabular), or output structures (e.g., known graph vs unknown structure).

Interpretability. One advantage of MPED models is that interpretability is “built in” via neural
attention. Specifically, we can visualize 3 aspects: input-to-input attention (input dependencies),
input-to-label attention (input/label dependencies), and label-to-label attention (label dependencies).

2.8 CONNECTING TO RELATED TOPICS

Structured Output Predictions The use of graph attention in MPED models is closely connected
to the literature of structured output prediction for MLC. Ghamrawi and McCallum (2005) used
conditional random fields (Lafferty et al., 2001) to model dependencies among labels and features for
MLC by learning a distribution over pairs of labels to input features. In another research direction,
recently proposed SPENs (structured prediction energy network (Belanger and McCallum, 2016;
Tu and Gimpel, 2018)) and Deep Value Networks (Gygli et al., 2017) tackled MLC by optimizing
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different variants of structured loss formulations. In contrast to SPEN and related methods which use
an iterative refinement of the output label predictions, our method is a simpler feed forward block
to make predictions in one step, yet still models dependencies through attention mechanisms on
embeddings. However, we plan to expand MPED models by adding a structured loss formulation.

Graph Neural Networks (GNNs) Passing embedding messages from node to neighbor nodes
connects to a large body of literature on graph neural networks (Battaglia et al., 2018) and embedding
models for structures (Dai et al., 2016). The key idea is that instead of conducting probabilistic
operations (e.g., product or re-normalization), the proposed models perform nonlinear function
mappings in each step to learn feature representations of structured components. Neural message
passing networks (Gilmer et al., 2017), graph attention networks (Veličković et al., 2017) and neural
relation models (Battaglia et al., 2016) follow similar ideas to pass the embedding from node to
neighbor nodes or neighbor edges. There have been many recent works extending the basic GNN
framework to update nodes using various message passing, update, and readout functions (Kipf and
Welling, 2016; Hamilton et al., 2017; Duvenaud et al., 2015; Li et al., 2015; Gilmer et al., 2017;
Battaglia et al., 2016; Kearnes et al., 2016; Zheng et al., 2018). We refer the readers to (Battaglia
et al., 2018) for a survey. However, none of these have used GNNs for MLC.

3 EXPERIMENTS

In the appendix, we have added the details of training/hyperparameters (5.2), datasets (5.1), evaluation
metrics (5.3), and explained how we selected baseline models from previous work (5.8). We explain
our own MPED variations in 5.7 and previous work baselines in section 5.8.

In short, we compare MPED to (1) MPED Prior GDEC (by using a known label graph), (2) MPED
EdgelessGDEC (by removing label-to-label message passing), (3) MPED Autoregressive (by predicting
labels sequentially), (4) MP BR (binary relevance MLP output used on the mean of MPNNxx
embeddings), and the baselines reported in related works. We compare our models on seven real
world datasets, which vary in the number of samples, number of labels, input type (sequential, tabular,
graph), and output type (unknown, known label graph), as summarized in Table 3.

Across all datasets, MPED outperforms or achieves similar results as the baseline models. Most
importantly, we show that autoregressive models are not crucial in MLC for most metrics, and
non-autoregressive models result in a significant speedup at test time.

Accuracy (across different input and output types) Table 2 shows the performance of different
models across the 7 datasets. Significance across models is shown in Appendix Table 4. For subset
accuracy (ACC), autoregressive models perform the best, but at a small margin of increase. However,
autoregressive models that predict only positive labels are targeted at maximizing subset accuracy, but
they perform poorly on other metrics. For all other metrics, autoregressive models are not essential.

One important observation is that for most datasets, MPED outperforms the autoregressive models in
both miF1 (frequent labels) and more importantly, maF1 (rare labels). Since maF1 favors models
which can predict the rare labels, this shows that autoregressive models with beam search often
make the wrong predictions on the rare labels (which are ordered last in the sequence during
training). MPED is a solid choice across all metrics as it comes the closest to subset accuracy as the
autoregressive models, but also performs well in other metrics.

While MPED does not explicitly model label dependencies as autoregressive or structured prediction
models do, it seems as though the attention weights do learn some dependencies among labels
(Visualizations, Tables 3 and 4). This is indicated by the fact that MPED, which uses label-to-label
attention, mostly outperforms the ones which don’t, indicating that it is learning label dependencies.
Table 2 shows 3 time step models results, but a comparison of time steps is shown in Figure 2.

Speed Table 2 shows the per epoch train and test times for each model. All models are trained and
tested on the same GPU using a batch size of 32. At test time, since the autoregressive model cannot
be parallelized, MPED and other non-autoregressive models are significantly faster. During training,
the autoregressive model can be parallelized because the true labels are fed as the previous label.
Since the autoregressive models only predict the ρ positive labels, they can be faster at training time,
whereas the MPED model is predicting the probability for all labels. MPED results in a mean of 1.7x
and 5.0x training and testing speedups, respectively, over Seq2Seq autoregressive models.
Interpretability We present visualizations of the input-to-label and label-to-label attention weights
(averaged across the 4 attention heads) in the Appendix. In the visualizations, we show the positive
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Dataset Model ACC HA ebF1 miF1 maF1 Average Train Time Test Time
Reuters MPED 0.834 0.997 0.902 0.871 0.503 0.822 0.788 (1.5x) 0.116 (2.1x)

MPED PriorGDEC 0.827 0.997 0.899 0.870 0.507 0.820 0.788 0.116
MPED EdgelessGDEC 0.828 0.997 0.898 0.873 0.495 0.818 0.738 0.111
MPED Autoregressive 0.835 0.997 0.899 0.868 0.496 0.819 0.618 0.374
RNN Seq2Seq 0.837 0.996 0.900 0.861 0.496 0.818 1.187 0.242
RNN Seq2Seq (Nam et al) 0.828 0.996 0.894 0.858 0.457 0.807 - -
MP BR 0.824 0.997 0.891 0.870 0.463 0.809 0.595 0.102
BR (Nam et al) 0.750 0.995 0.840 0.818 0.308 0.742 - -

Bibtex MPED 0.178 0.987 0.443 0.444 0.362 0.483 0.376 (2.1x) 0.08 (2.1x)
MPED PriorGDEC 0.178 0.987 0.437 0.440 0.331 0.475 0.376 0.08
MPED EdgelessGDEC 0.176 0.987 0.416 0.449 0.329 0.472 0.310 0.013
MPED Autoregressive 0.197 0.984 0.432 0.419 0.315 0.470 0.206 0.208
RNN Seq2Seq 0.195 0.985 0.393 0.384 0.282 0.448 0.778 0.165
MP BR 0.168 0.987 0.410 0.430 0.355 0.470 0.193 0.011
InfNet SPEN (Tu & Gimpel) - - 0.422 - - - - -
SPEN (Belanger & McCallum) - - 0.422 - - - - -
BR (Belanger & McCallum) - - 0.389 - - - - -

Delicious MPED 0.007 0.982 0.368 0.380 0.200 0.388 3.172 (1.1x) 0.473 (3.2x)
MPED PriorGDEC 0.009 0.982 0.369 0.381 0.197 0.388 3.172 0.473
MPED EdgelessGDEC 0.007 0.982 0.332 0.358 0.187 0.373 2.965 0.316
MPED Autoregressive 0.014 0.973 0.322 0.325 0.167 0.360 1.158 5.129
RNN Seq2Seq 0.008 0.980 0.320 0.329 0.166 0.361 3.349 1.497
MP BR 0.005 0.982 0.354 0.378 0.195 0.383 0.502 0.043
InfNet SPEN (Tu & Gimpel) - - 0.375 - - - - -
SPEN (Belanger & McCallum) - - 0.375 - - - - -
BR (Belanger & McCallum) - - 0.378 - - - - -

Bookmarks MPED 0.247 0.991 0.394 0.370 0.277 0.456 9.664 (1.2x) 1.849 (1.3x)
MPED PriorGDEC 0.246 0.991 0.392 0.370 0.277 0.455 9.664 1.849
MPED EdgelessGDEC 0.245 0.991 0.350 0.354 0.256 0.439 8.501 1.534
MPED Autoregressive 0.252 0.988 0.347 0.304 0.209 0.420 7.146 5.74
RNN Seq2Seq 0.273 0.990 0.362 0.329 0.237 0.438 11.863 2.411
MP BR 0.241 0.991 0.382 0.364 0.275 0.451 8.022 1.312
InfNet SPEN (Tu & Gimpel) - - 0.376 - - - - -
SPEN (Belanger & McCallum) - - 0.344 - - - - -
MLP BR (Belanger & McCallum) - - 0.338 - - - - -

RCV1 MPED 0.655 0.993 0.881 0.871 0.705 0.821 98.346 (1.2x) 1.003 (1.7x)
MPED PriorGDEC 0.651 0.992 0.880 0.867 0.701 0.818 98.346 1.003
MPED EdgelessGDEC 0.650 0.993 0.883 0.875 0.721 0.824 90.142 0.884
MPED Autoregressive 0.660 0.992 0.881 0.868 0.715 0.823 40.366 1.928
RNN Seq2Seq 0.655 0.992 0.880 0.865 0.698 0.818 119.82 1.727
MP BR 0.640 0.992 0.870 0.864 0.642 0.802 69.957 0.593
MLP BR (Nam et al) 0.584 0.991 0.844 0.840 0.657 0.783 - -

TFBS MPED 0.038 0.961 0.209 0.325 0.238 0.354 187.14 (2.5x) 13.048 (4.2x)
MPED PriorGDEC 0.023 0.962 0.201 0.319 0.227 0.347 187.14 13.048
MPED EdgelessGDEC 0.027 0.962 0.077 0.238 0.139 0.288 126.83 12.295
MPED Autoregressive 0.057 0.963 0.201 0.354 0.245 0.364 163.04 114.87
MP BR 0.035 0.961 0.203 0.315 0.147 0.332 111.33 7.715
RNN Seq2Seq 0.114 0.961 0.249 0.311 0.199 0.367 459.41 54.651

SIDER MPED 0.007 0.748 0.766 0.795 0.667 0.597 0.027 (2.5x) 0.003 (21x)
MPED EdgelessGDEC 0.007 0.749 0.765 0.795 0.663 0.596 0.025 0.002
MPED Autoregressive 0.007 0.755 0.719 0.771 0.602 0.571 0.025 0.137
MP BR 0.007 0.749 0.766 0.793 0.667 0.596 0.021 0.002
RNN Seq2Seq 0.000 0.593 0.356 0.389 0.207 0.309 0.068 0.063

Table 2: Results. Across all 7 datasets, MPED produces similar or better average metric scores to baseline
models. MPED results in a mean of 1.7x and 5.0x training and testing speedups, respectively, over the previous
state-of-the-art probabilistic MLC method, RNN Seq2Seq. Speedups over RNN Seq2Seq model are shown in
minutes per epoch in parentheses for the MPED model. Bold numbers show the best performing method(s).

labels only, and the darker lines show higher attention weights to the corresponding label or word.
The attention weights clearly learn certain relationships between input-label pairs as well as the
label-label pairs, which is all done in an unsupervised manner. In future work, we plan to add
a structured prediction loss function which will likely improve the attention mechanisms and the
model’s ability to estimate the joint probability.

4 CONCLUSION

In this work we present Message Passing Encoder-Decoder (MPED) Networks which achieve a
significant speedup at close to the same performance as autoregressive models for MLC. We open a
new avenue of using neural message passing to model label dependencies in MLC tasks. In addition,
we show that our method is able to handle various input data types (sequence, tabular, graph), as well
various output label structures (known vs unknown). One of our future extensions is to adapt the
current model to predict more dynamic outputs.
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5 APPENDIX:

Dataset Input Type #Train #Val #Test Labels
(L)

Mean
Labels
/Sample

Median
Labels
/Sample

Max
Labels
/Sample

Mean
Samples
/Label

Median
Samples
/Label

Max
Samples
/Label

Reuters Sequential 6,993 777 3,019 90 1.23 1 15 106.50 18 2,877
RCV1 Sequential 703,135 78,126 23,149 103 3.21 3 17 24,362.15 7,250 363,991
TFBS Sequential 1,671,873 301,823 323,796 179 7.62 2 178 84,047.43 45,389 466,876
BibTex Bag-of-Words 4,377 487 2,515 159 2.38 2 28 72.79 54 689
Delicious Bag-of-Words 11,597 1,289 3,185 983 19.06 20 25 250.15 85 5,189
Bookmarks Bag-of-Words 48,000 12,000 27,856 208 2.03 1 44 584.67 381 4,642
SIDER Graph 1,141 143 143 27 15.3 16 26 731.07 851 1185

Table 3: Dataset Statistics

Metric Significance

ACC
RNN Seq2Seq� {MPED EdgelessGDEC , BR}
MPED Autoregressive� {MPED EdgelessGDEC , BR}

HA None
ebF1 MPED� {BR, RNN Seq2Seq}
miF1 MPED� {RNN Seq2Seq}
maF1 MPED� {RNN Seq2Seq}

Table 4: MLC Model Significance Using the Nemenyi Test (Read et al., 2009; Demšar, 2006)

5.1 DATASETS

We test our method against baseline methods on seven different multi-label sequence classification datasets.
The datasets are summarized in Table 3. We use Reuters-21578, Bibtex (Tsoumakas et al., 2009), Delicious
(Tsoumakas et al.), Bookmarks (Katakis et al.), RCV1-V2 (Lewis et al., 2004), our own DNA protein binding
dataset (TFBS) from Consortium et al. (2012), and SIDER (Kuhn et al., 2015), which is side effects of drug
molecules. As shown in the table, each dataset has a varying number of samples, number of labels, positive
labels per sample, and samples per label. For BibTex and Delicious, we use 10% of the provided training set for
validation. For the TFBS dataset, we use 1 layer of convolution at the first layer to extract “words” from the
DNA characters (A,C,G,T), as commonly done in deep learning models for DNA.

For datasets which have sequential ordering of the input components (Reuters, RCV1), we add a positional
encoding to the word embedding as used in Vaswani et al. (2017) (sine and cosine functions of different
frequencies) to encode the location of each word in the sentence. For datasets with no ordering or graph stucture
(Bibtex, Delicious, Bookmarks, which use bag-of-word input representations) we do not use positional encodings.
For inputs with an explicit graph representation (SIDER), we use the known graph structer.

5.2 MODEL HYPERPARAMETERS

We validate our model on seven MLC datasets. These datasets cover a wide spectrum of input data types,
including: raw English text (sequential form), bag-of-words (tabular form), and drug molecules (graph form).

For all 6 datasets except SIDER, we use the same MPED model with T=3 time steps, d = 512, and K=4
attention heads. Since SIDER is significantly smaller, we use T=1 time step, d = 64, and K=4 attention heads.
We trained our models on an NVIDIA TITAN X Pascal with a batch size of 32. We used Adam (Kingma and Ba,
2014) with betas= (0.9, 0.999), eps=1e-08, and a learning rate of 0.0002 for each dataset. We used dropout of
p = 0.2 for all models. The MPED models also use layer normalization (Ba et al., 2016) around each of the
attention and feedforward layers. The non-autoregressive models are trained with binary cross-entropy on each
label and the autoregressive models are trained with cross entropy across all possible labels at each position.

5.3 EVALUATION METRICS

Multi-label classification methods can be evaluated with many different metrics which each evaluate different
strengths or weaknesses. We use the same 5 evaluation metrics from Nam et al. (2017).

All of our autoregressive models predict only the positive labels before outputting a stop signal. This is a special
case of PCC models (explained as PCC+ in section 5.4), which have been shown to outperform the binary
prediction of each label in terms of performance and speed. These models use beam search at inference time
with a beam size of 5. For the non-autoregressive models, to convert the labels to {0, 1} we chose the best
threshold on the validation set from the same set of thresholds used in Tu and Gimpel (2018).
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Example-based measures are defined by comparing the target vector y to the prediction vector ŷ. Subset
Accuracy (ACC) requires an exact match of the predicted labels and the true labels: ACC(y, ŷ) = I[y = ŷ].
Hamming Accuracy (HA) evaluates how many labels are correctly predicted in ŷ: HA(y, ŷ) = 1

L

∑L
j=1 I[yj =

ŷj ]. Example-based F1 (ebF1) measures the ratio of correctly predicted labels to the sum of the total true and

predicted labels:
2
∑L

j=1 yj ŷj∑L
j=1 yj+

∑L
j=1 ŷj

.

Label-based measures treat each label yj as a separate two-class prediction problem, and compute the number
of true positives (tpj), false positives (fpj), and false negatives (fnj) for a label. Macro-averaged F1 (maF1)
measures the label-based F1 averaged over all labels: 1

L

∑L
j=1

2tpj
2tpj+fpj+fnj

. Micro-averaged F1 (miF1)

measures the label-based F1 averaged over each sample:
∑L

j=1 2tpj∑L
j=1 2tpj+fpj+fnj

. High maF1 scores usually

indicate high performance on less frequent labels. High miF1 scores usually indicate high performance on more
frequent labels.

5.4 BACKGROUND OF MULTI-LABEL CLASSIFICATION:

MLC has a rich history in text (McCallum; Ueda and Saito, 2003), images (Tsoumakas and Katakis, 2006;
Elisseeff and Weston, 2002), bioinformatics (Tsoumakas and Katakis, 2006; Elisseeff and Weston, 2002), and
many other domains. MLC methods can roughly be broken into several groups, which are explained as follows.

Label powerset models (LP) (Tsoumakas and Vlahavas, 2007; Read et al., 2011), classify each input into one
label combination from the set of all possible combinations Y = {{1}, {2}, ..., {1, 2, ..., L}}. LP explicitly
models the joint distribution by predicting the one subset of all positive labels. Since the label set Y grows
exponentially in the number of total labels (2L), classifying each possible label set is intractable for a modest L.
In addition, even in small L tasks, LP suffers from the “subset scarcity problem” where only a small amount of
the label subsets are seen during training, leading to bad generalization.

Binary relevance (BR) methods predict each label separately as a logistic regression classfier for each label
(Zhang and Zhou, 2005; Godbole and Sarawagi, 2004). The naïve approach to BR prediction is to predict all
labels independently of one another, assuming no dependencies among labels. That is, BR uses the following
conditional probability parameterized by learned weights W :

PBR(Y |X;W ) =

L∏
i=1

p(Yi|X1:S ;W ) (21)

Probabilistic classifier chain (PCC) methods (Dembczynski et al., 2010; Read et al., 2009) are autoregressive
models that estimate the true joint probability of output labels given the input by using the chain rule, predicting
one label at a time:

PPCC(Y |X;W ) =

L∏
i=1

p(Yi|Y1:i−1, X1:S ;W ) (22)

Two issues with PCC models are that inference is very slow if L is large, and the errors propagate as L increases
(Montañes et al., 2014). To mitigate the problems with both LP and PCC methods, one solution is to only predict
the true labels in the LP subset. In other words, only predicting the positive labels (total of ρ for a particular
sample) and ignoring all other labels, which we call PCC+. Similar to PCC, the joint probability of PCC+ can
be computed as product of conditional probabilities, but unlike PCC, only ρ < L terms are predicted as positive:

PPCC+(Y |X;W ) =

ρ∏
i=1

p(Ypi |Yp1:i−1 , x1:S ;W ) (23)

This can be beneficial when the number of possible labels L is large, reducing the total number of prediction
steps. However, in both PCC and PCC+, inference is done using beam search, which is a costly dynamic
programming step to find the optimal prediction.

MPED methods approximate the following factored formulation, where N (Yi) denotes the neighboring nodes
of Yi.

PG2G(Y |X;W ) =
L∏
i=1

p(Yi|{YN (Yi)}, X1:S ;W ). (24)

5.5 SEQ2SEQ MODELS

In machine translation (MT), sequence-to-sequence (Seq2Seq) models have proven to be the superior method,
where an encoder RNN reads the source language sentence into an encoder hidden state, and a decoder RNN
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Figure 2: Average Across Metrics for T=1, T=2, and T=3 GDEC time steps. In these experiments, the encoder
GENC is processed with a fixed T=3 time steps, and the decoder time steps are varied. We do not compare time
steps for the SIDER dataset since it is too small, and we only evaluate using T=1.

translates the hidden state into a target sentence, predicting each word autoregressively (Sutskever et al., 2014).
Bahdanau et al. (2014) improved this model by introducing “neural attention” which allows the decoder RNN to
“attend” to every encoder word at each step of the autoregressive translation.

Recently, Nam et al. (2017) showed that, across several metrics, state-of-the-art MLC results could be achieved
by using a recurrent neural network (RNN) based encoder-to-decoder framework for Equation 23 (PCC+). They
use a Seq2Seq RNN model (Seq2Seq Autoregressive) which uses one RNN to encode x, and a second RNN to
predict each positive label sequentially, until it predicts a ‘stop’ signal. This type of model seeks to maximize
the ‘subset accuracy’, or correctly predict every label as its exact 0/1 value.

Vaswani et al. (2017) eliminated the need for the recurrent network in MT by introducing the Transformer.
Instead of using an RNN to model dependencies, the Transformer explicitly models pairwise dependencies
among all of the features by using attention (Bahdanau et al., 2014; Xu et al.) between signals. This speeds up
training time because RNNs can’t be fully parallelized but, the transformer still uses an autoregressive decoder.

5.6 DRAWBACKS OF AUTOREGRESSIVE MODELS

Autoregressive models have been proven effective for machine translation and MLC (Sutskever et al., 2014;
Bahdanau et al., 2014; Nam et al., 2017). However, predictions must be made sequentially, eliminating
parallelization. Also, beam search is typically used at test time to find optimal predictions. But beam search is
limited by the time cost of large beams sizes, making it difficult to optimally predict many output labels (Koehn
and Knowles, 2017).

In addition to speed constraints, beam search for autoregressive inference introduces a second drawback: initial
wrong predictions will propagate when using a modest beam size (e.g. most models use a beam size of 5). This
can lead to significant decreases in performance when the number of positive labels is large. For example, the
Delicious dataset has a median of 19 positive labels per sample, and it can be very difficult to correctly predict
the labels at the end of the prediction chain.

Autoregressive models are well suited for machine translation because these models mimic the sequential
decoding process of real translation. However, for MLC, the output labels have no intrinsic ordering. While the
joint probability of the output labels is independent of the label ordering via autoregressive based inference, the
chosen ordering can make a difference in practice (Vinyals et al., 2015; Nam et al., 2017). Some ordering of
labels must be used during training, and this chosen ordering can lead to unstable predictions at test time.

Our non-autoregressive version connects to Gu et al. (2017) who removed the autoregressive decoder in MT with
the Non-Autoregressive Transformer. In this model, the encoder makes a proxy prediction, called “fertilities”,
which are used by the decoder to predict all translated words at once. The difference between their model and
ours is that we have a constant label at each position, so we don’t need to marginalize over all possible labels at
each position.

5.7 MODEL VARIATIONS

MPED: In the full MPED model, we use 3 encoder time steps and 3 decoder time steps with node to node
attention in both the encoder and decoder graphs, and K=4 attention heads.
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MPED Prior GDEC: The same as MPED except that we use a prior representation of GDEC rather than fully
connected. For Reuters, Bibtex, Delicious, and Bookmarks we have extracted label graphs using label similarity
(using fixed WUP scores) from WordNet. For RCV1, we use the topological graph from the RCV1 dataset.
For TFBS, we use String-DB (Szklarczyk et al., 2016) to obtain the label graph representing TF-TF protein
interactions.

MPED Edgeless GDEC: In this baseline, we remove MPNNyy, and only use MPNNxy to pass messages from
the inputs to the labels, and not between labels. This model assumes no dependencies among output labels.

MPED Autoregressive: Instead of predicting all labels simultaneously and modelling label dependencies using
graph attention, the MPED Autoregressive variation models p(yi+1|y1:i, x1:S ;W ) by predicting each positive
label yi sequentially and using attention on {cT1:S} and the previously predicted labels (ŷ1, ..., ŷi) until a stop
signal is predicted (see PCC+ in Appendix). While it is possible to predict the probability for each label (i.e.
regular PCC), this is extremely time consuming when the number of possible labels is large (and in general,
doesn’t increase performance (Nam et al., 2017)).

BR: The mean node output of a MPNNxx is used as the input to a 2 layer multilayer perceptron (MLP) readout
module. This model assumes no dependencies among output labels.

RNN Seq2Seq: A 3-layer RNN Seq2Seq model with attention. This is similar to RNN Seq2Seq from Nam et al.
(2017) (RNNm in their paper), except with 3 layers.

5.8 BASELINE COMPARISONS

For Reuters and RCV1-V2, we compare against the MLP and autoregressive model used in (Nam et al., 2017),
which use these two datasets. MLP: standard MLP without the self attention input representation. RNN
Seq2Seq: RNN PCC+ autoregressive model from (Nam et al., 2017), which is a GRU encoder/decoder model
with pretrained word embeddings. We omit the binary relevance RNN since it was shown that it doesn’t perform
well and is extremely slow.

For BibTex, Delicious, Bookmarks, we compare against the models from Belanger and McCallum (2016) and
Tu and Gimpel (2018), which use these three datasets. They only evaluate using ebF1, so this is the only metric
for which we compare our model with theirs. MLP (Belanger and McCallum, 2016): Standard 2-layer MLP.
SPEN (Belanger and McCallum, 2016): original structured prediction energy network. InfNet SPEN (Tu and
Gimpel, 2018): improved SPEN model, which uses an inference network to estimate ŷ.

5.9 VISUALIZATIONS
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Figure 3: Label-To-Label Attention Weights. On the left are the positive labels, and on the right are all
labels. These are taken from the layer 2 Label-To-Label attentions on a sample from Reuters-21578
(same input sample as shown in 4.
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input components (words). These are taken from the layer 1 Input to Label attentions on a sample
from Reuters-21578.
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