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ABSTRACT

Consistent and reproducible evaluation of Deep Reinforcement Learning (DRL) is
not straightforward. In the Arcade Learning Environment (ALE), small changes in
environment parameters such as stochasticity or the maximum allowed play time
can lead to very different performance. In this work, we discuss the difficulties of
comparing different agents trained on ALE. In order to take a step further towards
reproducible and comparable DRL, we introduce SABER, a Standardized Atari
BEnchmark for general Reinforcement learning algorithms. Our methodology
extends previous recommendations and contains a complete set of environment
parameters as well as train and test procedures. We then use SABER to evaluate
the current state of the art, Rainbow. Furthermore, we introduce a human world
records baseline, and argue that previous claims of expert or superhuman per-
formance of DRL might not be accurate. Finally, we propose Rainbow-IQN by
extending Rainbow with Implicit Quantile Networks (IQN) leading to new state-
of-the-art performance. Source code is available for reproducibility.

1 INTRODUCTION

Human intelligence is able to solve many tasks of different natures. In pursuit of generality in
artificial intelligence, video games have become an important testing ground: they require a wide
set of skills such as perception, exploration and control. Reinforcement Learning (RL) is at the
forefront of this development, especially when combined with deep neural networks in DRL. One of
the first general approaches reaching reasonable performance on many Atari games while using the
exact same hyper-parameters and neural network architecture was Deep Q-Network (DQN) (Mnih
et al., 2015), a value based DRL algorithm which directly takes the raw image as input. This success
sparked a lot of research aiming to create better, faster and more stable general algorithms. The
ALE (Bellemare et al., 2013), featuring more than 60 Atari games (see Figure 1), is heavily used in
this context. It provides many different tasks ranging from simple paddle control in the ball game
Pong to complex labyrinth exploration in Montezuma’s Revenge which remains unsolved by general
algorithms up to today.

Figure 1: ALE Space In-
vaders

As the number of contributions is growing fast, it becomes harder and
harder to make a proper comparison between different algorithms. In
particular, a relevant difference in the training and evaluation procedures
exists between available publications. Those issues are exacerbated by
the fact that training DRL agents is very time consuming, resulting in a
high barrier for reevaluation of previous work. Specifically, even though
ALE is fast at runtime, training an agent on one game takes approxi-
mately one week on one GPU and thus the equivalent of more than one
year to train on all 61 Atari games. A standardization of the evaluation
procedure is needed to make DRL that matters as pointed out by Hen-
derson et al. (2018) for the Mujoco benchmark (Todorov et al., 2012):
the authors criticize the lack of reproducibility and discuss how to allow
for a fair comparison in DRL that is consistent between articles.

In this work, we first discuss current issues in the evaluation procedure of different DRL algorithms
on ALE and their impact. We then propose an improved evaluation procedure, extending the rec-
ommendations of Machado et al. (2018), named SABER : a Standardized Atari BEnchmark for
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Reinforcement learning. We suggest benchmarking on the world records human baseline and show
that RL algorithms are in fact far from solving most of the Atari games. As an illustration of SABER,
current state-of-the-art DRL algorithm Rainbow (Hessel et al., 2018) is benchmarked. Finally, we
introduce and benchmark on SABER a new state-of-the-art agent: a distributable combination of
Rainbow and Implicit Quantiles Network (IQN) (Dabney et al., 2018).

The main contributions of this work are :

• The proposal, description and justification of the SABER benchmark.

• Introduction of a world records human baseline. We argue it is more representative of the
human level than the one used in most of previous works. With this metric, we show that
the Atari benchmark is in fact a hard task for current general algorithm.

• A SABER compliant evaluation of current state-of-the art agent Rainbow.

• A new state-of-the-art agent on Atari, Rainbow-IQN, with a comparison on SABER to
Rainbow, to give an improvement range for future comparisons.

• For reproducibility sake, an open-source implementation of Rainbow, Rainbow-IQN, dis-
tributed following the idea from Horgan et al. (2018).

1.1 RELATED WORK

Reproducibility and comparison in DRL Deep Reinforcement Learning that matters (Hender-
son et al., 2018) is one of the first works to warn about a reproducibility crisis in the field of DRL.
This article relies on the MuJoCo (Todorov et al., 2012) benchmark to illustrate how some com-
mon practices can bias reported results. As a continuation to the work of Henderson et al. (2018),
J. Pineau introduced a Machine Learning reproducibility checklist (Pineau, 2019) to allow for re-
producibility and fair comparison. Machado et al. (2018) deal with the Atari benchmark. They
describe the divergence in training and evaluation procedures and how this could lead to difficulties
to compare different algorithms. A first set of recommendations to standardize them is introduced,
constituting the basis of this work and will be summarized in the next section. Finally, the Github
Dopamine (Castro et al., 2018) provides an open-source implementation of some of the current
state-of-the-art algorithms on Atari benchmark, including Rainbow and IQN. An evaluation follow-
ing almost all guidelines from Machado et al. (2018) are provided in Castro et al. (2018). However
the implementation of Rainbow is partial, and the recommendation of using the full action set is not
applied. This is why our work contains a new evaluation of Rainbow.

Value based RL DQN (Mnih et al., 2015) is the first value based DRL algorithm benchmarked on
all Atari games with the exact same set of hyperparameters (although previous work by Hausknecht
et al. (2014) already performed such a benchmark with neural networks). This algorithm relies on
the well known Q-Learning algorithm (Watkins & Dayan, 1992) and incorporates a neural network.
Deep Q-learning is quite unstable and the main success of this work is to introduce practical tricks to
make it converge. Mainly, transitions are stored in a replay memory and sampled to avoid correlation
in training batch, and a separate target network is used to avoid oscillations. Since then, DQN has
been improved and extended to make it more robust, faster and better. Rainbow (Hessel et al.,
2018) is the combination of 6 of these improvements (Van Hasselt et al., 2016; Schaul et al., 2015;
Bellemare et al., 2017; Wang et al., 2015; Fortunato et al., 2017; Mnih et al., 2016) implemented
in a single algorithm. Some ablations studies showed that the most important components were
Prioritized Experience Replay (PER) (Schaul et al., 2015) and C51 (Bellemare et al., 2017). The
idea behind PER is to sample transitions according to their surprise, i.e. the worse the network is
at predicting the Q-value of a specific transition, the more we sample it. C51 is the first algorithm
in Distributional RL which predicts the full distribution of the Q-function instead of predicting only
the mean of it. Finally, IQN (Dabney et al., 2018) is an improvement over C51. It almost reaches
on its own the performance of the full Rainbow with all 6 components. In C51 the distribution of
the Q-function is represented as a categorical distribution while in IQN, it is represented by implicit
quantiles.
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2 CHALLENGES WHEN COMPARING PERFORMANCE ON THE ATARI
BENCHMARK

In this section we discuss several challenges to make a proper comparison between different algo-
rithms trained on the Atari benchmark. First, we briefly summarize the initial problems and their
solution as proposed by Machado et al. (2018). Then we detail a remaining issue not handled by
those initial standards, the maximum length time allowed for an episode. Finally, we introduce a
readable metric, representative of actual human level and allowing meaningful comparison.

2.1 REVISITING ALE: AN INITIAL STEP TOWARDS STANDARDIZATION

Machado et al. (2018) discuss about divergence of training and evaluation procedures on Atari. They
show how those divergences are making comparison extremely difficult. They establish recommen-
dations that should be used in order to standardize the evaluation process.

Stochasticity The ALE environment is fully deterministic, i.e. leading to the exact same state
if the exact same actions are taken at each state. This is actually an issue for general algorithm
evaluation. For example, an algorithm learning by heart good trajectories can actually reach a high
score with an open-loop behaviour. To handle this issue, Machado et al. (2018) introduce sticky
actions: actions coming from the agent are repeated with a given probability ξ, leading to a non
deterministic behavior. They show that sticky actions are drastically affecting performance of an
algorithm exploiting the environment determinism without hurting algorithms learning more robust
policies like DQN (Mnih et al., 2015). We use sticky actions with probability ξ = 0.25 (Machado
et al., 2018) in all our experiments.

End of an episode: Use actual game over In most of the Atari games the player has multiple
lives and the game is actually over when all lives are lost. But some articles, e.g. DQN, Rainbow,
IQN, end a training episode after the loss of the first life but still use the standard game over signal
while testing. This can in fact help the agent to learn how to avoid death and is an unfair comparison
to agents which are not using this game-specific knowledge. Machado et al. (2018) recommend to
use only the standard game over signal for all games while training.

Action set Following the recommendation of Machado et al. (2018) we do not use the minimal
useful action set (the set of actions having an effective impact on the current game) as used by many
previous works (Mnih et al., 2015; Hessel et al., 2018). Instead we always use all 18 possible actions
on the Atari Console. This removes some specific domain knowledge and reduces the complexity
of reproducibility. For some games, the minimal useful action set is different from one version to
another of the standard Atari library: an issue to reproduce result on breakout was coming from this
(Graetz, 2018).

Reporting performance As proposed by Machado et al. (2018), we report our score while training
by averaging k consecutive episodes (we have set k = 100). This gives information about the
stability of the training and removes the statistical bias induced when reporting score of the best
policy which is today a common practice (Mnih et al., 2015; Hessel et al., 2018).

2.2 MAXIMUM EPISODE LENGTH

A major parameter is left out of the work of Machado et al. (2018): the maximum number of frames
allowed per episode. This parameter ends the episode after a fixed number of time steps even if the
game is not over. In most of recent works (Hessel et al., 2018; Dabney et al., 2018), this is set to 30
min of game play and only to 5 min in Revisiting ALE (Machado et al., 2018). This means that the
reported scores can not be compared fairly. For example, in easy games (e.g. Atlantis, Enduro), the
agent never dies and the score is more or less linear to the allowed time: the reported score will be
6 times higher if capped at 30 minutes instead of 5 minutes.

We argue that the time cap can make the performance comparison non significant. On many games
(e.g. Atlantis, Video Pinball) the scores reported of Ape-X (Horgan et al., 2018), Rainbow (Hessel
et al., 2018) and IQN (Dabney et al., 2018) are almost exactly the same. This is because all agents
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reach the time limit and get the highest possible score in 30 minutes: the difference in scores is due
to minor variations, not algorithmic difference. As a consequence, the more successful agents are,
the more games are incomparable because they reach the maximum possible score in the time cap.

This parameter can also be a source of ambiguity and error. The best score on Atlantis (2,311,815)
is reported by Proximal Policy Optimization by Schulman et al. (2017) but this score is almost
certainly wrong: it seems impossible to reach it in only 30 minutes! The first distributional paper,
C51 (Bellemare et al., 2017), also did this mistake and reported wrong results before adding an
erratum in a later version on ArXiv.

We argue that episodes should not be capped at all. The original ALE article (Bellemare et al.,
2013, pg.3) states that This functionality is needed for a small number of games to ensure that they
always terminate. On some famously hard games like Pitfall and Tennis, random exploration leads
to much more negative reward than positive and thus the agent effectively learns to do nothing,
e.g. not serving in Tennis. We claim that, even with this constraint, agents still end up learning to
do nothing, and the drawback of the cap harms the evaluation of all other games. Moreover, the
human high scores for Atari games have been achieved in several hours of play, and would have
been unreachable if limited to 30 minutes.

To summarize, ideally one would not cap at all length of episode while training and testing. However
this makes some limitations of the ALE environment appear, as described in the following paragraph.

Glitch and bug in the ALE environment

When setting the maximum length of an episode to infinite time, the agent gets stuck on some games,
i.e. the episode never ends, because of a bug in the emulator. In this case, even doing random actions
for more than 20 hours neither gives any reward nor end the game. This happens consistently on
BattleZone and less frequently on Yar’s Revenge. One unmanaged occurrence of this problem is
enough to hamper the whole training of the agent. It is important to note that those bugs were
discovered by chance and it is probable that this could happen on some other games.

Figure 2: World records scores vs. the usual be-
ginner human baseline (Mnih et al., 2015) (log
scale).

We recommend to set the maximum episode
length to infinite (in practice, a limit of 100
hours was used). Additionally we suggest a
maximum stuck time of 5 minutes. Instead of
limiting the allowed time for the agent, we limit
the time without receiving any reward. This
small trick handles all issues exposed above,
and sets all reported scores on the same basis,
making comparison to world records possible.

Other bugs or particularities harming evalua-
tion were encountered while training on the full
Atari benchmark: buffer rollover with sudden
negative score, influence of a start key for some
games, etc. They are detailed and discussed in
the supplementary material and we argue that
they can have a drastic impact on performance
and explain inconsistencies.

2.3 HUMAN WORLD RECORDS BASELINE

A common way to evaluate AI for games is to
let agents compete against human world cham-
pions. Recent examples for DRL include the
victory of AlphaGo versus Lee Sedol for Go
(Silver et al., 2016), OpenAI Five on Dota 2 (OpenAI, 2018) or AlphaStar versus Mana for StarCraft
2 (Vinyals et al., 2019). In the same spirit, one of the most used metric for evaluating RL agents on
Atari is to compare them to the human baseline introduced by Mnih et al. (2015). Previous works
use the normalized human score, i.e. 0% is the score of a random player and 100% is the score
of the human baseline, which allows to summarize the performance on the whole Atari set in one
number, instead of individually comparing raw scores for each of the 61 games. However we argue
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that this human baseline is far from being representative of the best human player, which means that
using it to claim superhuman performance is misleading. The current world records are available
online for 58 of the 61 evaluated Atari game 1. Evaluating these world records scores using the usual
human normalized score has a median of 4.4k% and a mean of 99.3k% (see Figure 2 for details), to
be compared to 200% and 800% of original Rainbow (Hessel et al., 2018). As a consequence, we
argue that using a normalized human score with the world records will give a much better indication
of the performance of the agents and the margin of improvement. Note that 3 games of the ALE
(double dunk, elevator action and tennis) do not have a registered world record, so all following
experiments contain 58 games.

3 SABER : A STANDARDIZED ATARI BENCHMARK FOR REINFORCEMENT
LEARNING

In this section we introduce SABER, a set of training and evaluation procedures on the Atari bench-
mark allowing for fair comparison and for reproducibility. Moreover, those procedures make it
possible to compare with the human world records baseline introduced above and thus to obtain an
accurate idea of the gap between general agents and best human players.

3.1 TRAINING AND EVALUATION PROCEDURES

All recommendations stated in the previous section are summarized in Table 1 to constitute the
SABER benchmark. It is important to note that those procedures must be used at both training and
test time. The recent work Go-Explore (Ecoffet et al., 2019) opened a debate on allowing or not
stochasticity at training time. They report state-of-the-art performance on the famously hard game
Montezuma’s Revenge by removing stochasticity at training time. They conclude that we should
have benchmarks with and without it (Ecoffet Adrien & Clune, 2018). We choose to use same
conditions for training and testing general agents: this is more in line with realistic tasks.

3.2 REPORTING RESULTS

Table 1: Game parameters of SABER
Parameter Value

Sticky actions ξ = 0.25
Life information Not allowed
Action set 18 actions
Max stuck time 5 min (18000 frames)
Max episode length Infinite (100 hours)
Initial state and ran-
dom seed

Same starting state
and varying seed

In accordance with previous guidelines, we ad-
vocate to report mean scores of 100 consecutive
training episodes at specific time, here 10M,
50M, 100M and 200M frames. This removes
the bias of reporting scores of the best agent en-
countered during training and makes it possible
to compare at different data regimes. Due to the
complexity of comparing 58 scores in a syn-
thetic manner, we try to provide a single met-
ric to make an effective comparison. Mean and
median normalized scores to the records base-
line are computed over all games. Note that the
median is more relevant: the mean is highly im-
pacted by outliers, in particular by games where

the performance is superhuman. For the mean value, games with an infinite game time and score
are artificially capped to 200% of the records baseline. We propose to add a histogram of the nor-
malized score, to classify the games according to their performance. We define 5 classes: failing
(< 1%), poor (< 10%), medium (< 50%), fair (< 100%) and superhuman (> 100%). Medians,
means and histograms can be found in Section 5, and the fully detailed scores are available in the
supplementary materials.

4 RAINBOW-IQN

Two different approaches were combined to obtain an improvement over Rainbow (Hessel et al.,
2018): Rainbow itself and IQN (Dabney et al., 2018) because of its excellent performance. Im-

1on the TwinGalaxies website https://www.twingalaxies.com/games.php?platformid=5
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plementation details and hyper-parameters are described in the supplementary material. Both our
implementations of Rainbow and Rainbow-IQN are distributed 2, following Ape-X (Horgan et al.,
2018) and based on the implementation of (Castro et al., 2018).

IQN is an evolution of the C51 algorithm (Bellemare et al., 2017) which is one of the 6 components
of the full Rainbow, so this is a natural upgrade. After the implementation, preliminary tests high-
lighted the impact of PER (Schaul et al., 2015): taking the initial hyper-parameters for PER from
Rainbow resulted in poor performance. Transitions are sampled from the replay memory propor-
tionally to the training loss to the power of priority exponent ω. Reviewing the distribution of the
loss shows that it is significantly more spread for Rainbow-IQN than for Rainbow, thus making the
training unstable, because some transitions were over-sampled. To handle this issue, 4 values of ω
were tested on 5 games: 0.1, 0.15, 0.2, 0.25 instead of 0.5 for original Rainbow, with 0.2 giving the
best performance. The 5 games were Alien, Battle Zone, Chopper Command, Gopher and Space
Invaders. All other parameters were left as is. Rainbow-IQN is evaluated on SABER and compared
to Rainbow in the following section.

5 EXPERIMENTS

In this section, we describe the experiments performed on SABER. For all parameters not mentioned
in SABER (e.g. the action repeat, the network architecture, the image preprocessing, etc) we care-
fully followed the parameters used in Rainbow (Hessel et al., 2018) and IQN (Dabney et al., 2018)
papers. Those details and the scores for each agent and individual games can be found in the supple-
mentary materials. Training one agent takes slightly less than a week, which makes a full benchmark
use around 1 year-GPU. As a consequence, for each algorithm benchmark, trainings were run with
only one seed for the full benchmark, and 5 seeds for 14 of the 61 games. Details on the choice of
these games and the associated scores can be found in Section 5.3. The combined duration of all
experiments conducted for this article is more than 4 years-GPU. Agents are trained using SABER
guidelines on the 61 Atari games, and evaluated with the records baseline for 58 games. Scores at
both 5 minutes and 30 minutes are kept while training to compare to previous works.

5.1 RAINBOW EVALUATION

Algorithm Original Rainbow (Hessel et al., 2018) Following (Machado et al., 2018)
Median Mean Superhuman Median Mean Superhuman

Performance 4.20% 24.10% 2 2.61% 17.09% 1

Table 2: Median and mean human-normalized performance and number of superhuman scores
(> 100%). Scores are coming from the original Rainbow and from our re-evaluation of Rainbow
following recommendations of Machado et al. (30 minutes evaluation, at 200M training frames).

Benchmarking Rainbow makes it possible to measure the impact of the guidelines of Machado et
al.: sticky actions, ignore life signal and full action set. Table 2 compares the originally reported
performance of Rainbow (Hessel et al., 2018) to an evaluation following the recommendations of
Machado et al. The performance is measured with the records baseline, for a 30 minutes evaluation
at 200M training frames, to be as close as possible to the conditions of the original Rainbow. The
impact of the standardized training procedure is major: as shown in the following paragraph, the
difference in median (1.59%) is comparable to the difference between DQN and Rainbow (1.8%,
see Figure 5) when both are trained on same training procedures. This demonstrates the importance
of explicit and standardized training and evaluation procedures.

5.2 RAINBOW-IQN: EVALUATION AND COMPARISON

Influence of maximum episode length Table 3 studies the influence of the time limit for the
evaluation, by reporting performance for Rainbow and Rainbow-IQN depending on the evaluation
time. A significant difference can be seen between 5, 30 minutes and without limiting time of
evaluation, which confirms the discussion of Section 2.2.

2See supplementary materials for details
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Time 5 min 30 min No limit (SABER)
Median Mean Super. Median Mean Super. Median Mean Super.

Rainbow 2.35% 14.86% 0 2.61% 17.09% 1 2.83% 24.54% 3
Rainbow-IQN 2.61% 17.62% 0 2.81% 20.18% 1 3.13% 30.89% 4

Table 3: Evolution of performance with evaluation time (mean, median of normalized baseline and
number of superhuman agents) for Rainbow and Rainbow-IQN.

Figure 3: Comparison of Rainbow and Rainbow-IQN on SABER: Median normalized scores with
regards to training steps.

Comparison to Rainbow As introduced in Section 3.2, we compare Rainbow and Rainbow-IQN
with median and mean metrics on SABER conditions, and with a classification of the performance of
the agents in Figure 4. Figure 3 shows that Rainbow-IQN performance during training is consistently
higher than Rainbow. One can notice on Figure 4 that the majority of agents are in the poor and
failing categories, showing the gap that must be crossed to achieve superhuman performance on the
ALE.

Figure 4: Comparison of Rainbow and Rainbow-IQN on SABER: classifying performance of agents
relatively to the records baseline (at 200M training frames).

Comparison to DQN Figure 5 provides a comparison between DQN, Rainbow and Rainbow-
IQN. The evaluation time is set at 5 minutes to be consistent with the reported score of DQN by
Machado et al. (2018). As expected, DQN is outperformed for all training steps. As aforementioned,
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the difference between DQN and Rainbow is in the same range as the difference coming from
divergent training procedures, showing again the necessity for standardization.

Figure 5: Median performance comparison for DQN, Rainbow and Rainbow-IQN with regards to
training frames. Evaluation time is set at 5 minutes to allow a comparison to DQN.

5.3 STABILITY OF BOTH RAINBOW AND RAINBOW-IQN

Machado et al. (2018) use 5 different seeds for training to check that the results are reproducible
and stable. For this article, these 5 runs are conducted on both Rainbow and Rainbow-IQN for
14 games (around 25% of the whole benchmark). It would be best to have the whole benchmark
on 5 seeds but this was way above our computational resources. Still, these 14 games allow us
to make a first step of stability studies. They are chosen according to the results of the first seed,
with the idea of prioritizing games on which scores were most notably different between Rainbow
and Rainbow-IQN. We also try to choose diverse games from different categories (from failing to
superhuman) and we removed the 5 games used for the hyperparameter tuning. Games that were
either too hard (such as Montezuma’s Revenge or Pitfall) or too simple (such as Pong or Atlantis) are
intentionally excluded to make the additional tests as significant as possible. For each game with 5
seeds conducted, we computed the median and mean human-normalized performance averaged over
the 5 trials. This way, we can both have a reasonable estimation of the stability of the trainings, and
a comparison as fair as possible between Rainbow and Rainbow-IQN.

Figure 6: Median normalized scores with regards to training steps averaged over 5 seeds for both
Rainbow and Rainbow-IQN. Only the 14 games on which 5 seeds have been conducted were used
for this figure.

Figure 6 shows the median averaged over 5 trials for both Rainbow and Rainbow-IQN. We also plot
each seed separately and the standard deviation over the 5 seeds. This has been computed only on
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the 14 games on which we succeeded to conduct 5 runs. This shows that standard deviations are
roughly similar for Rainbow and Rainbow-IQN, around 0.2 % on the world record baseline. As
these standard deviations are rather small for 25% of the Atari games, we can assume they would be
still small on the whole benchmark. We think that this reveals that both Rainbow and Rainbow-IQN
are quite stable on Atari and strengthens our confidence on Rainbow-IQN being the new state-of-
the-art on the Atari benchmark. In particular, Rainbow-IQN reaches infinite game time on Asteroids
on all 5 trials whereas Rainbow fails for each seed.

6 CONCLUSION: WHY IS RL THAT BAD AT ATARI GAMES?

In the current work, we confirm the impact of standardized guidelines for DRL evaluation, and
build a consolidated benchmark, SABER. The importance of the play time is highlighted: agents
should be trained and evaluated with no time limitation. To provide a more significant comparison,
a new baseline is built, based on human world records. Following these recommendations, we show
that the state-of-the-art Rainbow agent is in fact far from human world records performance. As a
further illustration, we provide an improvement, Rainbow-IQN, and use it to measure the impact of
the evaluation time over performance.

The striking information from these results is that general DRL algorithms are far from best human
performance. The median of world records human normalized score for Rainbow-IQN is 3,1%,
meaning that for half of the games, the agent is only 3% of the way from random play to the actual
best human play. There are many possible reasons for this failure, which we will briefly discuss here
to give an intuition of the current limitations of general DRL algorithm.

Reward clipping In some games the optimal play for the RL algorithm is not the same as for the
human player. Indeed, all rewards are clipped between -1 and 1 so RL agents will prefer to obtain
many small rewards over a single large one. This problem is well represented in the game Bowling:
the agent learns to avoid striking or sparing. Indeed the actual optimal play is to perform 10 strikes
in a row leading to one big reward of 300 (clipped to 1 for the RL agent) but the optimal play for
the RL agent is to knock off bowling pins one by one. This shows the need of a better way to handle
reward of different magnitude, by using an invertible value function as suggested by Pohlen et al.
(2018) or using Pop-Art normalization (van Hasselt et al., 2016).

Exploration Another common reason for failure is a lack of exploration, resulting in the agent
getting stuck in a local minimum. Random exploration or Noisy Networks (Fortunato et al., 2017)
are far from being enough to solve most of Atari games. In Kangaroo for example, the agent learns
to obtain rewards easily on the first level but never tries to go to the next level. This problem might
be exacerbated by the reward clipping: changing level may yield a higher reward, but for the RL
algorithm all rewards are the same. Exploration is one of the most studied field in Reinforcement
Learning, so possible solutions could rely on curiosity (Pathak et al., 2017) or count-based explo-
ration (Ostrovski et al., 2017).

Human basic knowledge Atari games are designed for human players, so they rely on implicit
prior knowledge. This will give a human player information on actions that are probably positive, but
with no immediate score reward (climbing a ladder, avoiding a skull etc). The most representative
example can be seen in Riverraid: shooting a fuel container gives an immediate score reward, but
taking it makes it possible to play longer. Current general RL agents do not identify it as a potential
bonus, and so die quickly. Even with smart exploration, this remains an open challenge for any
general agent.

Loop on a sub-optimal policy Finally, we discovered that on some games the agent finds quickly
a loop continuously giving a small amount of reward and spends the whole training on this loop.
In Bank Heist for example, the agent understood that bonus were respawning when changing level.
Therefore the agent learned to just take over and over the same bonus until game timeout, failing to
reach a good score. A very similar behaviour was discovered on Elevator Action,Kangaroo, Krull
and Tutankham.
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A SUPPLEMENTARY MATERIALS: IMPLEMENTATION DETAILS

A.1 RAINBOW APE-X

Practically, we started with the PyTorch (Paszke et al., 2017) open source implementation of Rain-
bow coming from Kaikhin (Kaixhin, 2018). We tested this initial implementation on some games
with the exact same training conditions as in the original Rainbow to ensure our results were consis-
tent. After this sanity check, we implemented a distributed version of Rainbow following the paper
Distributed Prioritized Experience Replay (Ape-X) (Horgan et al., 2018). Ape-X (Horgan et al.,
2018) is a distributed version of Prioritized Experience Replay (PER) but which can be adapted
on any value-based RL algorithm including PER, e.g. Rainbow. There is no study of this in the
main article because we lacked time and computing resources to run experiments on whole Atari
set with distributed actors. However, some experiments were conducted to ensure our distributed
implementation was working as expected. These experiments are detailed in the next section. We
claim that our Ape-X implementation is an important practical improvement compared to the single
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agent implementation of both Dopamine (Castro et al., 2018) and Kaikhin (Kaixhin, 2018). It is
important to note that all the experiments detailed in the main paper have been made with a single
actor and thus do not really show the interest of distributed Rainbow Ape-X. A lock was added to
synchronize all single-agent experiments to ensure that one step of learner is done every 4 steps of
actor as in the original Rainbow (Hessel et al., 2018). All our hyperparameter values match closely
those reported in Rainbow (Hessel et al., 2018). There is still one difference coming from our Ape-X
implementation (even using a single actor). Indeed, we compute priorities before putting transitions
in memory instead of putting new transitions with the maximum priorities seen as in the original
Rainbow (Hessel et al., 2018). We argue that this should not have much impact on single-actor
setting and that it is straightforward to implement for each algorithm using Prioritized Experience
Replay (Schaul et al., 2015).

For the distributed memory implementation, we use a key-memory database with REDIS (Redis,
2019). The database is kept in RAM, which makes access faster and is possible for the ALE consid-
ering the size of the images and the replay memory size.

A.2 RAINBOW-IQN APE-X

We combined our Rainbow Ape-X implementation with IQN (Dabney et al., 2018) coming from the
TensorFlow (Abadi et al., 2016) open source implementation of Dopamine (Castro et al., 2018) to
obtain a PyTorch (Paszke et al., 2017) implementation of Rainbow-IQN Ape-X. All our hyperparam-
eter values match closely those reported in IQN. As indicated in the main paper, we had to tune the
priority exponent coming from Prioritized Experience Replay (Schaul et al., 2015) in order to make
the training stable. We tested both value of learning rate and epsilon of the adam optimizer from
Rainbow and from IQN. A minor improvement in performance was found with the learning rate of
IQN (Dabney et al., 2018) (tested only on 3 games for computational reasons), which was then used
for all our experiments.

B EXPERIMENTS

B.1 IMAGE PREPROCESSING AND ARCHITECTURE

We used the same preprocessing procedure used in Rainbow and IQN, i.e an action repeat of 4,
frames are converted to grayscale, resized to 84*84 with a bilinear interpolation 3 and max-pooled
over 2 adjacent frames. The actual input to our network consists in 4 stacked frames.

Our architecture followed carefully the one from the original DQN for the main branch which was
also used in Rainbow and IQN. The branch responsible of implicit quantiles is made exactly as the
one from the original implementation section of IQN (Dabney et al., 2018, p.g. 5)

B.2 TRAINING INFRASTRUCTURE

The training of the agents was split over several computers and GPUs, containing in total:

• 3 Nvidia Titan X and 1 Nvidia Titan V (training computer)

• 1 Nvidia 1080 Ti (local workstation)

• 2 Nvidia 1080 (local workstations)

• 3 Nvidia 2080 (training computer)

• 4 Nvidia P100 (in a remote supercomputer)

• 2 Nvidia V100 (in a remote supercomputer)

• 4 Nvidia Tesla V-100 (DGX station)

• 4 Nvidia Quadro M2000 (local workstations)
3for some experiments we made this interpolation using the Python image library PIL instead of OpenCV

because OpenCV was not available on the remote supercomputer. This was leading to small differences in the
final resized image.
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B.3 RAINBOW-IQN APE-X

To ascertain our distributed implementation of Rainbow-IQN was functional, 3 experiments were
conducted with multiple actors (10 actors instead of one). All locks and synchronization processes
are removed to let actors fill the replay memory as fast as possible. The experiments are stopped
when the learner reaches the same number of steps as in our single-agent experiments.

Table 4 reports the raw scores obtained by the agents on the selected games. Although the same
number of batches is used in the training, there is a huge improvement in performances for the
3 games tested over the single agent version. This confirms the results coming from the Ape-X
(Horgan et al., 2018) paper. Even at same learner step, the agent can benefit greatly from more
experiences coming from multiple actors. Thanks to PER, the learner focuses on the most important
transitions in the replay memory. Moreover this could avoid being stuck in a local minimum as
assumed in Ape-X (Horgan et al., 2018). For the 3 experiments done, all actors together played
around 6 times more than in our single-agent setup, leading to 1,2B frames instead of 200M.

Table 4: Raw agents scores after training Rainbow-IQN Ape-X with 10 actors or a single synchro-
nized actor

Raw score Multi-agent Single agent
Game

Asterix 274,491 28,015
Ms Pacman 9,901 6,090.74

Space Invaders 24,183 7,385.4

C GLITCH AND BUG IN THE ALE

Inconsistent game behaviors and bugs were encountered while benchmarking Rainbow and
Rainbow-IQN on all Atari games. The most damageable is the one described in the main arti-
cle: games getting stuck forever even doing random actions. This is one of the main reasons why
the maximum stuck length parameter is introduced.

Another issue is the buffer rollover: the emulator sends a reward of -1M when reaching 1M, effec-
tively making the agent goes to 0 score over and over. For example, for our first implementation of
Rainbow on Asterix, the scores were going up to 1M, then suddenly collapsing to random values
between 0 and 1M. However, the trained agent was in fact playing almost perfectly and was indeed
resolving the game many times before dying. This can also be observed in the reported score of
Asterix by both Ape-X (Horgan et al., 2018) and Rainbow (Hessel et al., 2018): the score goes up
to 1M and then varies randomly. This is an issue to compare agent, because a weaker agent could
actually be reported with a higher score. We found this kind of buffer rollover bug in 2 others games:
Video Pinball and Defender. To detect this in potential other games, we advocate to keep track of
really high negative rewards. Indeed on the 61 games evaluated, there are no game on which there
is reward inferior to -1000. And if it happens, most probably this is a buffer rollover and this reward
should be ignored.

Additionally, on many games (such as Breakout for example), a specific key must be pressed to start
the game (most of the time the Fire button). This means that agent can easily get stuck for long
time because it does not press the key. This impacts the stability of the training because the replay
memory is filled with useless transitions. We argue that this problem is exacerbated by not finishing
episode as loss of life. Indeed there are many games where a specific key must be pressed, but only
after losing a life to continue the game. Moreover this is probably harder to learn with the whole
action set available, because the number of actions to iterate on is higher than with the minimal
useful action set. This is definitely not a bug, and a general agent should learn to press fire to restart
or start game.
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D DETAILED EXPERIMENTAL FIGURES

In this section, we provide more detailed versions of the figures in the main article. The structure of
this section follows the one of Section 5 of the main article.

As a reminder, all normalized world record baseline scores s are reported according to the following
equation, where we note r the score of a random agent, w the score of the world record, and a the
score of the agent to be evaluated:

s =
a− r
|w − r|

(1)

D.1 RAINBOW EVALUATION

Figure 7 illustrates in more details the difference between the reported original performance of
(Hessel et al., 2018) (reported in the world record baseline), and the one obtained when applying
the recommendations of (Machado et al., 2018). In particular, the number of failing games is much
lower for the original implementation. Figure 8 gives the breakdown for each game of the ALE.

Figure 7: Agents performance comparison for the original Rainbow (Hessel et al., 2018) versus
Rainbow trained with (Machado et al., 2018) guidelines (30 minutes evaluation time to align with
original conditions)

D.2 RAINBOW-IQN: EVALUATION AND COMPARISON

Influence of maximum episode length Figure 9 details the influence of evaluation time over
the performance range of the agents. As expected and discussed in the main article, evaluation
time has a strong impact on the normalized performance of the agents. In particular, no agent
reaches superhuman performance before 30 minutes evaluation. More agents reach superhuman
performance when the evaluation time is not capped (in particular the ones that never stop playing,
see next paragraph).

Comparison of Rainbow and Rainbow-IQN Figure 10 details the difference in performance
between Rainbow and Rainbow-IQN on SABER conditions, at 200M training frames. Note that
superhuman, never ending scores are artificially capped at 200% of the baseline. The most drastic
difference is found on the game asteroids, which goes from failing to superhuman performance.

Some failing games are still significantly improved: for example, space invaders is increased of
roughly a factor of 3. To highlight these improvements, we compare Rainbow-IQN to Rainbow by
using a normalized baseline similar to the world record baseline, but using Rainbow scores as a
reference. So if we note r the score of a random agent, R the score of a Rainbow agent and I the
score of a Rainbow-IQN agent, then the normalized score s is:

14
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Figure 8: Performance comparison per game between the original Rainbow (Hessel et al., 2018)
versus Rainbow trained with (Machado et al., 2018) guidelines (30 minutes evaluation time to align
with original conditions)

Figure 9: Evolution of agents performance classification with evaluation time: Rainbow-IQN, 200M
training frames, evaluation time ranging from 5min to SABER conditions

s =
I − r
|R− r|

(2)

Note that we use the absolute value because in the game Skiing, the Rainbow agent is worse than
the random agent. The details per game can be found in Figure 11. Note that games that are already
superhuman in Rainbow are skipped, and that the Asteroids games, which is failing in Rainbow,
becomes superhuman and is skipped in the figure for visualization purposes.
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Figure 10: Performance comparison per game between Rainbow and Rainbow-IQN on SABER
conditions (200M training frames)

Figure 11: Rainbow-IQN normalized with regards to a Rainbow baseline for each game

D.3 STABILITY OF BOTH RAINBOW AND RAINBOW-IQN

The 14 games on which we ran 5 trials for both Rainbow and Rainbow-IQN are: Asteroids, Cen-
tipede, Demon Attack, Frostbite, Gravitar, Jamesbond, Krull, Kung Fu Master, Ms Pacman, Private
Eye, Seaquest, Up N Down, Yars Revenge and Zaxxon.

E RAW SCORES

For verification purposes, we provide tables containing all relevant agent scores used to build the
figures from the principal article.

Baseline scores Table 5 contains all raw game scores for ALE games, both for the previous human
baseline (Mnih et al., 2015) and the new proposed world record baseline from TwinGalaxies. Note
that some of the scores are missing for some games (marked as NA). For the world record baseline
scores, some of them were extrapolated from the reported world record and are marked with a ∗.
Indeed, some world records report the play time or other metrics (e.g. the distance travelled for
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Enduro) instead of the raw score of the game. Note that all agents are trained and reported on all
games of the ALE, even if the world record baseline is computed for 58 games.

SABER raw scores for Rainbow-IQN Table 6 contains all raw agents scores for ALE games
for Rainbow-IQN. A few of these games (Atlantis and Defender and Asteroids for Rainbow-IQN)
successfully keep playing with a positive score increase after 100 hours, so their raw scores are
infinite. They are marked as infinite gameplay in the table, and capped at 200% of the world record
baseline for the mean computation.

Evolution of scores with time Table 7 compares agents scores with increasing evaluation times
for Rainbow and Rainbow-IQN, at 200M training frames.

Evolution of scores with training frames Table 8 (resp. Table 9) contains all raw agents scores
for ALE games for Rainbow-IQN, with an evaluation time of 5 minutes (resp. 30 minutes), after
10M, 50M, 100M and finally 200M training frames.
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Agent Category
Game Name Random (Mnih et al., 2015) World Record

air raid 579.25 NA 23050.0
alien 211.9 7127.7 251916.0

amidar 2.34 1719.5 104159.0
assault 283.5 742.0 8647.0
asterix 268.5 8503.3 1000000.0

asteroids 1008.6 47388.7 10506650.0
atlantis 22188.0 29028.1 10604840.0

bank heist 14.0 753.1 82058.0
battle zone 3000.0 37187.5 801000.0
beam rider 414.32 16926.5 999999.0

berzerk 165.6 2630.4 1057940.0
bowling 23.48 160.7 300.0
boxing -0.69 12.1 100.0*

breakout 1.5 30.5 864.0
carnival 700.8 NA 2541440.0

centipede 2064.77 12017.0 1301709.0
chopper command 794.0 7387.8 999999.0

crazy climber 8043.0 35829.4 219900.0
defender 4142.0 18688.9 6010500.0

demon attack 162.25 1971.0 1556345.0
double dunk -18.14 -16.4 NA

elevator action 4387.0 NA NA
enduro 0.01 860.5 9500.0*

fishing derby -93.06 -38.7 71.0
freeway 0.01 29.6 38.0
frostbite 73.2 4334.7 454830.0
gopher 364.0 2412.5 355040.0
gravitar 226.5 3351.4 162850.0

hero 551.0 30826.4 1000000.0
ice hockey -10.03 0.9 36.0
jamesbond 27.0 302.8 45550.0

journey escape -19977.0 NA 4317804.0
kangaroo 54.0 3035.0 1424600.0

krull 1566.59 2665.5 104100.0
kung fu master 451.0 22736.3 1000000.0

montezuma revenge 0.0 4753.3 1219200.0
ms pacman 242.6 6951.6 290090.0

name this game 2404.9 8049.0 25220.0
phoenix 757.2 7242.6 4014440.0
pitfall -265.0 6463.7 114000.0
pong -20.34 14.6 21.0*

pooyan 371.2 NA 13025.0
private eye 34.49 69571.3 101800.0

qbert 188.75 13455.0 2400000.0
riverraid 1575.4 17118.0 1000000.0

road runner 7.0 7845.0 2038100.0
robotank 2.24 11.9 76.0
seaquest 88.2 42054.7 999999.0
skiing -16267.91 -4336.9 -3272.0*
solaris 2346.6 12326.7 111420.0

space invaders 136.15 1668.7 621535.0
star gunner 631.0 10250.0 77400.0

tennis -23.92 -8.3 NA
time pilot 3682.0 5229.2 65300.0
tutankham 15.56 167.6 5384.0
up n down 604.7 11693.2 82840.0

venture 0.0 1187.5 38900.0
video pinball 15720.98 17667.9 89218328.0
wizard of wor 534.0 4756.5 395300.0
yars revenge 3271.42 54576.9 15000105.0

zaxxon 8.0 9173.3 83700.0

Table 5: Raw scores for ALE games, for a random agent, the beginner baseline and the world
records. ∗ indicates games on which score has been extrapolated from the reported world record
(the time of visit was 25 July 2019). 18
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Training frames
Game name 10M 50M 100M 200M

air raid 7765.25 11690.0 13434.25 12289.75
alien 2740.6 1878.1 5223.0 7046.4

amidar 347.13 1554.84 2129.27 3092.05
assault 966.87 2783.49 4443.03 6372.7
asterix 3467.0 9280.0 16344.5 28015.0

asteroids 1194.16 (98.25) 3261.88 (2602.48) Infinite gameplay Infinite gameplay
atlantis Infinite gameplay Infinite gameplay Infinite gameplay Infinite gameplay

bank heist 756.4 1325.3 1402.2 1412.4
battle zone 33000.0 36730.0 33480.0 44410.0
beam rider 11510.78 11900.7 10042.74 9826.62

berzerk 546.7 697.0 640.2 892.9
bowling 29.64 30.0 29.86 29.92
boxing 92.71 98.62 98.92 98.7

breakout 53.77 121.83 132.56 175.47
carnival 5148.7 4824.1 4851.3 4566.3

centipede 2241.70 (251.56) 4099.89 (405.19) 4720.54 (626.31) 5260.96 (920.10)
chopper command 3018.0 6523.0 9053.0 11405.0

crazy climber 86310.0 118038.0 133114.0 144437.0
defender Infinite gameplay Infinite gameplay Infinite gameplay Infinite gameplay

demon attack 3433.13 (656.97) 6616.96 (2949.90) 8267.82 (3065.27) 24599.31 (17441.86)
double dunk -5.54 0.3 1.52 1.3

elevator action 2.0 0.0 43490.0 77010.0
enduro 1380.05 3867.42 5014.49 5146.73

fishing derby 22.11 34.82 48.11 49.08
freeway 32.65 33.9 33.95 33.96
frostbite 4351.54 (1456.01) 9135.10 (1611.78) 9768.28 (1742.88) 10002.78 (1752.75)
gopher 4798.4 15629.8 14136.0 15797.6
gravitar 283.70 (56.37) 1258.90 (228.31) 1725.90 (471.00) 1973.60 (614.80)

hero 13728.55 27450.65 28759.85 28957.4
ice hockey -2.43 1.8 -0.72 -0.07
jamesbond 445.70 (33.50) 609.70 (46.97) 605.00 (37.52) 870.80 (171.30)

journey escape -2096.0 -1116.0 -780.0 -736.0
kangaroo 1740.0 4416.0 7088.0 9567.0

krull 6780.10 (467.12) 8804.04 (97.77) 9132.15 (207.84) 9409.73 (98.14)
kung fu master 24102.80 (6513.61) 27867.00 (5783.19) 28905.80 (6570.13) 33312.00 (4119.74)

montezuma revenge 0.0 0.0 0.0 0.0
ms pacman 2276.30 (144.50) 5058.96 (602.27) 5871.52 (454.28) 6755.47 (555.18)

name this game 10702.2 9702.9 10094.5 9946.4
phoenix 4586.7 5145.4 5370.6 5505.8
pitfall 0.0 -3.95 -2.74 -21.34
pong 6.76 19.77 19.86 20.35

pooyan 4989.7 6334.05 6339.2 6776.7
private eye 99.40 (1.20) 144.64 (46.57) 173.02 (39.13) 164.31 (42.75)

qbert 4343.75 14809.5 16812.5 18736.25
riverraid 3955.9 15068.6 15891.3 15655.7

road runner 32737.0 51383.0 54599.0 67962.0
robotank 30.66 53.55 57.18 62.68
seaquest 3077.86 (131.08) 21853.50 (4243.86) 29694.50 (6157.97) 46735.26 (10631.30)
skiing -27031.73 -20930.88 -21053.79 -12295.78
solaris 2027.2 2770.2 2205.2 1495.4

space invaders 695.15 1748.45 3365.2 10110.4
star gunner 13345.0 52961.0 59574.0 72441.0

tennis -3.19 -0.02 -0.07 -0.03
time pilot 6501.0 11598.0 13550.0 19050.0
tutankham 128.7 177.96 284.42 288.41
up n down 18544.78 (3272.37) 44569.10 (12243.70) 56722.56 (9966.49) 110907.70 (10256.62)

venture 0.0 1046.0 1486.0 1679.0
video pinball 40107.82 1784770.52 3008620.51 1254569.69
wizard of wor 4133.0 7441.0 7466.0 9369.0
yars revenge 11077.61 (1366.42) 72860.33 (7560.21) 84238.64 (7721.16) 93144.71 (5251.19)

zaxxon 8319.00 (557.20) 12494.80 (282.63) 14077.60 (917.33) 13913.40 (585.68)

Table 6: Raw scores for ALE game agents trained with Rainbow-IQN on SABER at 10M, 50M,
100M and 200M training frames. For the 14 games ran on 5 seeds, we also show the standard
deviation. 19
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Rainbow Rainbow-IQN
Game name 5 minutes 30 minutes SABER 5 minutes 30 minutes SABER

air raid 10549 12308.25 12308.25 11107.25 12289.75 12289.75
alien 3458.5 3458.5 3458.5 7046.4 7046.4 7046.4

amidar 2835.53 2952.43 2952.43 2601.82 3092.05 3092.05
assault 3779.98 3986.1 3986.1 5178.41 6372.7 6372.7
asterix 29269 29269 29269 28015.0 28015.0 28015

asteroids 1716.90 (238) 1716.90 (238) 1716.90 (238) 30838.86 159426.4 Infinite gameplay
atlantis 129392 858765 Infinite gameplay 130475.0 839433.0 Infinite gameplay

bank heist 1563.2 1563.2 1563.2 1412.4 1412.4 1412.4
battle zone 45610 45610 45610 44410.0 44410.0 44410
beam rider 5437.14 5542.22 5542.22 8165.14 9826.62 9826.62

berzerk 1049.3 1049.3 1049.3 888.0 892.9 892.9
bowling 29.92 29.92 29.92 29.92 29.92 29.92
boxing 98.7 98.7 98.7 98.7 98.7 98.7

breakout 173.01 173.01 173.01 175.39 175.47 175.47
carnival 4163.5 4163.5 4163.5 4566.3 4566.3 4566.3

centipede 7267.82 (265) 7267.82 (265) 7267.82 (265) 5260.96 5260.96 5260.96
chopper command 7973 7973 7973 11405.0 11405.0 11405

crazy climber 133756 144373 144373 137299.0 144437.0 144437
defender 18524.71 30976.24 Infinite gameplay 19004.03 24926.15 Infinite gameplay

demon attack 10234.20 (415) 14617.11 (2215) 14617.11 (2215) 10294.51 24596.37 24599.31
double dunk 0 0 0 1.1 1.3 1.3

elevator action 13421 85499 85499 12455.0 77010.0 77010
enduro 369.87 2332.63 6044.36 373.3 2316.67 5146.73

fishing derby 43.57 43.57 43.57 49.08 49.08 49.08
freeway 33.96 33.96 33.96 33.96 33.96 33.96
frostbite 7075.14 (656) 7075.14 (656) 7075.14 (656) 10002.78 10002.78 10002.78
gopher 12405 16736.4 16736.4 11724.8 15797.6 15797.6
gravitar 2647.50 (398) 2647.50 (398) 2647.50 (398) 1973.6 1973.6 1973.6

hero 28911.15 28911.15 28911.15 28957.4 28957.4 28957.4
ice hockey -0.69 -0.69 -0.69 -0.07 -0.07 -0.07
jamesbond 1421.00 (502) 1434.00 (509) 1434.00 (509) 870.8 870.8 870.8

journey escape -645 -645 -645 -736.0 -736.0 -736
kangaroo 13242 13242 13242 9567.0 9567.0 9567

krull 4697.19 (273) 4697.19 (273) 4697.19 (273) 9409.73 9409.73 9409.73
kung fu master 32265.20 (6476) 32692.80 (6790) 32692.80 (6790) 32934.8 33312.0 33312

montezuma revenge 0 0 0 0.0 0.0 0
ms pacman 4738.30 (265) 4738.30 (265) 4738.30 (265) 6755.47 6755.47 6755.47

name this game 8187.4 11787.7 11787.7 7579.8 9946.4 9946.4
phoenix 5943.9 5943.9 5943.9 5505.8 5505.8 5505.8
pitfall 0 0 0 -11.11 -21.34 -21.34
pong 20.35 20.35 20.35 20.35 20.35 20.35

pooyan 4766.3 4788.5 4788.5 6466.6 6776.7 6776.7
private eye 100.00 (0) 100.00 (0) 100.00 (0) 164.31 164.31 164.31

qbert 26116 26171.75 26171.75 18736.25 18736.25 18736.25
riverraid 18456 18456 18456 15655.7 15655.7 15655.7

road runner 66593 66593 66593 67962.0 67962.0 67962
robotank 52.34 62.99 62.99 51.35 62.68 62.68
seaquest 12281.82 (7018) 20670.40 (17377) 20670.40 (17377) 28554.0 46735.26 46735.26
skiing -28105.83 -28134.23 -28134.23 -12294.58 -12295.78 -12295.78
solaris 2299.4 2779.4 2779.4 819.0 1495.4 1495.4

space invaders 2764.55 2764.55 2764.55 4718.2 10110.4 10110.4
star gunner 72944 73331 73331 71705.0 72441.0 72441

tennis 0 0 0 -0.03 -0.03 -0.03
time pilot 20198 20198 20198 19050.0 19050.0 19050
tutankham 177.17 177.42 177.42 288.41 288.41 288.41
up n down 52599 (4454) 105213 (23843) 105213 (23843) 56646.0 110655.76 110907.7

venture 1781 1781 1781 1679.0 1679.0 1679
video pinball 96345.36 656571.52 2197677.95 76587.14 465419.66 1254569.69
wizard of wor 9913 9943 9943 9369.0 9369.0 9369
yars revenge 60913 (2342) 60913 (2342) 60913 (2342) 93144.71 93144.71 93144.71

zaxxon 19017 (1228) 19060 (1238) 19060 (1238) 13913.4 13913.4 13913.4

Table 7: Agent scores for Rainbow and Rainbow-IQN at 200M training frames, reported for 5min,
30min and SABER (no limit) evaluation time. Standard deviation are showed for Rainbow (for
Rainbow-IQN it can be found on next tables). 20
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Training frames
Game name 10M 50M 100M 200M

air raid 7549.0 9168.75 10272.75 11107.25
alien 2740.6 1878.1 5223.0 7046.4

amidar 347.13 1554.84 2129.27 2601.82
assault 966.87 2783.49 4103.89 5178.41
asterix 3467.0 9280.0 16344.5 28015.0

asteroids 1194.16 (98.25) 3251.64 (2582.07) 12261.36 (12251.18) 30838.86 (5427.63)
atlantis 101945.0 118844.0 125696.0 130475.0

bank heist 756.4 1325.3 1402.2 1412.4
battle zone 33000.0 36730.0 33480.0 44410.0
beam rider 6764.82 8554.82 7818.72 8165.14

berzerk 546.7 697.0 640.2 888.0
bowling 29.64 30.0 29.86 29.92
boxing 92.71 98.62 98.92 98.7

breakout 53.77 121.83 132.56 175.39
carnival 5148.7 4824.1 4851.3 4566.3

centipede 2241.70 (251.56) 4099.89 (405.19) 4720.54 (626.31) 5260.96 (920.10)
chopper command 3018.0 6523.0 9053.0 11405.0

crazy climber 86085.0 117582.0 130559.0 137299.0
defender 36353.98 19608.36 18915.17 19004.03

demon attack 3383.66 (648.57) 5833.77 (1542.65) 7161.13 (1364.32) 10294.51 (1868.54)
double dunk -5.24 0.3 1.52 1.1

elevator action 2.0 0.0 7360.0 12455.0
enduro 340.68 379.34 382.91 373.3

fishing derby 22.11 34.82 48.11 49.08
freeway 32.65 33.9 33.95 33.96
frostbite 4351.54 (1456.01) 9135.10 (1611.78) 9768.28 (1742.88) 10002.78 (1752.75)
gopher 4798.4 11561.0 10944.4 11724.8
gravitar 283.70 (56.37) 1258.90 (228.31) 1725.90 (471.00) 1973.60 (614.80)

hero 13728.55 27450.65 28759.85 28957.4
ice hockey -2.43 1.8 -0.72 -0.07
jamesbond 445.70 (33.50) 609.70 (46.97) 605.00 (37.52) 870.80 (171.30)

journey escape -2096.0 -1116.0 -780.0 -736.0
kangaroo 1740.0 4416.0 7088.0 9567.0

krull 6780.10 (467.12) 8804.04 (97.77) 9132.15 (207.84) 9409.73 (98.14)
kung fu master 23970.80 (6513.13) 27701.20 (5814.09) 28708.80 (6580.12) 32934.80 (4170.04)

montezuma revenge 0.0 0.0 0.0 0.0
ms pacman 2276.30 (144.50) 5058.96 (602.27) 5871.52 (454.28) 6755.47 (555.18)

name this game 8212.4 7790.3 7754.6 7579.8
phoenix 4586.7 5145.4 5370.6 5505.8
pitfall 0.0 -3.95 -2.58 -11.11
pong 6.29 19.77 19.86 20.35

pooyan 4956.6 6233.55 6183.95 6466.6
private eye 99.40 (1.20) 144.64 (46.57) 173.02 (39.13) 164.31 (42.75)

qbert 4343.75 14809.5 16812.5 18736.25
riverraid 3955.9 15068.6 15891.3 15655.7

road runner 32737.0 51383.0 54426.0 67962.0
robotank 25.0 42.14 45.56 51.35
seaquest 3077.86 (131.08) 18200.66 (2114.98) 21750.36 (1891.98) 28554.00 (3617.42)
skiing -27012.53 -20923.28 -21046.99 -12294.58
solaris 1210.6 1552.4 1338.0 819.0

space invaders 695.15 1748.45 3347.25 4718.2
star gunner 13345.0 52961.0 59572.0 71705.0

tennis -3.19 -0.02 -0.04 -0.03
time pilot 6501.0 11598.0 13550.0 19050.0
tutankham 128.7 177.71 284.42 288.41
up n down 14722.22 (2551.46) 35663.92 (7724.72) 42380.48 (4978.69) 56646.00 (2541.90)

venture 0.0 1046.0 1486.0 1679.0
video pinball 29524.06 122029.58 79508.52 76587.14
wizard of wor 4133.0 7441.0 7466.0 9369.0
yars revenge 11077.61 (1366.42) 72860.33 (7560.21) 84238.64 (7721.16) 93144.71 (5251.19)

zaxxon 8319.00 (557.20) 12494.80 (282.63) 14073.20 (910.64) 13913.40 (585.68)

Table 8: Raw scores for ALE game agents trained for Rainbow-IQN at 10M, 50M, 100M and 200M
training frames for 5 minutes evaluation. For the 14 games ran on 5 seeds, we also show the standard
deviation. 21
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Training frames
Game name 10M 50M 100M 200M

air raid 7765.25 11690.0 13434.25 12289.75
alien 2740.6 1878.1 5223.0 7046.4

amidar 347.13 1554.84 2129.27 3092.05
assault 966.87 2783.49 4443.03 6372.7
asterix 3467.0 9280.0 16344.5 28015.0

asteroids 1194.16 (98.25) 3261.88 (2602.48) 48027.06 (56599.58) 159426.40 (56987.42)
atlantis 261697.0 788006.0 817118.0 839433.0

bank heist 756.4 1325.3 1402.2 1412.4
battle zone 33000.0 36730.0 33480.0 44410.0
beam rider 11510.78 11900.7 10042.74 9826.62

berzerk 546.7 697.0 640.2 892.9
bowling 29.64 30.0 29.86 29.92
boxing 92.71 98.62 98.92 98.7

breakout 53.77 121.83 132.56 175.47
carnival 5148.7 4824.1 4851.3 4566.3

centipede 2241.70 (251.56) 4099.89 (405.19) 4720.54 (626.31) 5260.96 (920.10)
chopper command 3018.0 6523.0 9053.0 11405.0

crazy climber 86310.0 118038.0 133114.0 144437.0
defender 49409.81 35899.7 24663.27 24926.15

demon attack 3433.13 (656.97) 6616.96 (2949.90) 8267.82 (3065.27) 24596.37 (17442.46)
double dunk -5.54 0.3 1.52 1.3

elevator action 2.0 0.0 43490.0 77010.0
enduro 1378.3 2242.11 2307.42 2316.67

fishing derby 22.11 34.82 48.11 49.08
freeway 32.65 33.9 33.95 33.96
frostbite 4351.54 (1456.01) 9135.10 (1611.78) 9768.28 (1742.88) 10002.78 (1752.75)
gopher 4798.4 15629.8 14136.0 15797.6
gravitar 283.70 (56.37) 1258.90 (228.31) 1725.90 (471.00) 1973.60 (614.80)

hero 13728.55 27450.65 28759.85 28957.4
ice hockey -2.43 1.8 -0.72 -0.07
jamesbond 445.70 (33.50) 609.70 (46.97) 605.00 (37.52) 870.80 (171.30)

journey escape -2096.0 -1116.0 -780.0 -736.0
kangaroo 1740.0 4416.0 7088.0 9567.0

krull 6780.10 (467.12) 8804.04 (97.77) 9132.15 (207.84) 9409.73 (98.14)
kung fu master 24102.80 (6513.61) 27867.00 (5783.19) 28905.80 (6570.13) 33312.00 (4119.74)

montezuma revenge 0.0 0.0 0.0 0.0
ms pacman 2276.30 (144.50) 5058.96 (602.27) 5871.52 (454.28) 6755.47 (555.18)

name this game 10702.2 9702.9 10094.5 9946.4
phoenix 4586.7 5145.4 5370.6 5505.8
pitfall 0.0 -3.95 -2.74 -21.34
pong 6.76 19.77 19.86 20.35

pooyan 4989.7 6334.05 6339.2 6776.7
private eye 99.40 (1.20) 144.64 (46.57) 173.02 (39.13) 164.31 (42.75)

qbert 4343.75 14809.5 16812.5 18736.25
riverraid 3955.9 15068.6 15891.3 15655.7

road runner 32737.0 51383.0 54599.0 67962.0
robotank 30.66 53.55 57.18 62.68
seaquest 3077.86 (131.08) 21853.50 (4243.86) 29694.50 (6157.97) 46735.26 (10631.30)
skiing -27031.73 -20930.88 -21053.79 -12295.78
solaris 2027.2 2770.2 2205.2 1495.4

space invaders 695.15 1748.45 3365.2 10110.4
star gunner 13345.0 52961.0 59574.0 72441.0

tennis -3.19 -0.02 -0.07 -0.03
time pilot 6501.0 11598.0 13550.0 19050.0
tutankham 128.7 177.96 284.42 288.41
up n down 18516.40 (3286.13) 44569.10 (12243.70) 56722.56 (9966.49) 110655.76 (10325.07)

venture 0.0 1046.0 1486.0 1679.0
video pinball 40107.82 798642.24 565903.18 465419.66
wizard of wor 4133.0 7441.0 7466.0 9369.0
yars revenge 11077.61 (1366.42) 72860.33 (7560.21) 84238.64 (7721.16) 93144.71 (5251.19)

zaxxon 8319.00 (557.20) 12494.80 (282.63) 14077.60 (917.33) 13913.40 (585.68)

Table 9: Raw scores for ALE game agents trained for Rainbow-IQN at 10M, 50M, 100M and 200M
training frames for 30 minutes evaluation. For the 14 games ran on 5 seeds, we also show the
standard deviation. 22
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