
Simulation-based reinforcement learning for autonomous driving

Christopher Galias * 1 2 Adam Jakubowski * 1 Henryk Michalewski * 1 3 Błażej Osiński * 1 3 Paweł Zięcina * 1

Abstract
We use synthetic data and a reinforcement learn-
ing algorithm to train a driving policy intended to
control steering of a full-size real-world vehicle
in a number of restricted driving scenarios. The
driving policy uses RGB images as input.

1. Introduction
The premise of this work is to verify whether a large number
of synthetic samples is enough to train a useful end-to-
end driving policy which takes RGB images as input and
outputs continuous steering commands. The experiment is
supported by one of the leading car manufacturers, which
provides an appropriately instrumented full-sized passenger
vehicle for testing.

The experiment is designed with mostly business considera-
tions in mind. In principle we may use real-world data, but
it must be already available or cheap to obtain. The driving
policy is evaluated only with regard to its real-world perfor-
mance at the speed of 30km per hour. Real-world scenarios
are limited to a number of fixed routes outlined in Section 3.
In order to complete a scenario the driving agent is expected
to execute from approximately 1000 to 8000 actions at 5 Hz.
For simplicity, in real-world and simulated scenarios we are
allowing only static objects. The input provided by the real
car is limited to an RGB image.

In this initial series of experiments we have decided to limit
intermediate human-designed or learned representations of
the real world only to semantic segmentation. Our driving
policies are trained directly on visual inputs, understood as
RGB images along with their segmentations and high-level
commands described in Section 3 and inspired by (Codevilla
et al., 2017).

Controversial at first glance, the decision of training a rein-
forcement learning policy directly on pixels was motivated

*Equal contribution 1deepsense.ai 2Jagiellonian University
3University of Warsaw. Correspondence to: Christopher Galias
<chris.galias@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

by a practical observation made by our team in experiment
(Kaiser et al., 2019), in which we have observed that learn-
ing world models of Atari games is a difficult task. Since
learning good representations of environments described in
Section 3 may be potentially even harder, we have decided
to base our initial experiments on pixel inputs. This deci-
sion, in turn, limited the number of applicable reinforcement
learning algorithms to a subfamily of actor-critic algorithms
known for state-of-the-art performance on RGB inputs (see
Section 4 for further discussion). Reward shaping is allowed
in our experiments, but we made an effort to use as simple
reward functions as possible (described in Section 3.2).

As stated in Section 5 of (Dosovitskiy et al., 2017): “when
using a realistic simulator, an extensive hyperparameters
search becomes infeasible”. We have decided to use the
same realistic simulator as in (Dosovitskiy et al., 2017)
— CARLA, based on Unreal Engine 4, and overcome the
infeasibility with a parallelized training architecture in-
spired by IMPALA (Espeholt et al., 2018), Ape-X (Horgan
et al., 2018), OpenAI Five (OpenAI et al., 2018), Horovod
(Sergeev & Del Balso, 2018), and DBA3C (Adamski et al.,
2018). Details of our parallelization approach are presented
in Section 5.4. With our current infrastructure and paral-
lelization methods in this experiment we are planning to
generate in total 100 years of simulated driving experience.

Because of business and legal considerations and certain
hardware limitations not all details of our experiments are re-
ported in this paper with full scientific rigor. In particular in
this release of our work we are able to provide only qualita-
tive description of real-world performance of our policies. In
the future we will add more quantitative details with regard
to real-world deployments along with appropriate ablations.
Section 5 contains experiments which can be presented at
this stage. Additional comments and videos are accessible
via a dedicated webpage: http://bit.ly/2JiQ9Ur.

2. Related work
Synthetic data and real-world robotics Synthetic im-
ages were used by Pomerleau (1988) in the ALVINN exper-
iment. Sadeghi & Levine (2016) proposed a training proce-
dure for drones and (James et al., 2017; Pinto et al., 2018;
Peng et al., 2018; Tobin et al., 2018; OpenAI et al., 2018)
proposed experiments with robotic manipulators where

http://bit.ly/2JiQ9Ur

Simulation-based reinforcement learning for autonomous driving

training was performed using only synthetic data. Pro-
gressive nets and data generated using the MuJoCo engine
(Todorov et al., 2012) were used by Rusu et al. (2016) to
learn policies in the domain of robot manipulation. A driv-
ing policy for a one-person vehicle was trained by Bewley
et al. (2018). The policy is reported to show good perfor-
mance on a rural road and the training used mostly synthetic
data generated by Unreal Engine 4. Our inclusion of seg-
mentation as described in Section 3.5 is inspired by sim2real
experiments presented in (James et al., 2018). Visual ser-
voing systems inspired by (Sadeghi & Levine, 2016) and
trained using synthetic data were presented in (Sadeghi et al.,
2017; Sadeghi, 2019).

Synthetic data and simulated robotics Emergence of
high-quality general purpose physics engines such as Mu-
JoCo (Todorov et al., 2012), along with game engines such
as Unreal Engine 4 and Unity, and their specialized exten-
sions such as CARLA (Dosovitskiy et al., 2017) or AirSim
(Shah et al., 2017), allowed for creation of sophisticated
photo-realistic environments which can be used for training
and testing of autonomous vehicles. A deep reinforcement
learning framework for autonomous driving was proposed
by Sallab, Abdou, Perot, and Yogamani (2017) and tested
using the racing car simulator TORCS.

Reinforcement learning methods led to very good perfor-
mance in simulated robotics, see for example solution to
complicated walking tasks in Heess et al. (2017); Kidzinski
et al. (2018). In the context of CARLA, impressive driving
policies were trained using imitation learning (Codevilla
et al., 2017; Rhinehart et al., 2018b), affordance learning
(Sauer et al., 2018), reinforcement learning (Chen et al.,
2019), and a combination of model-based and imitation
learning methods proposed by Rhinehart, McAllister, and
Levine (2018a). However, as Bewley et al. (2018) state:
“training and evaluating methods purely in simulation is of-
ten ‘doomed to succeed‘ at the desired task in a simulated
environment” and indeed, in our suite of experiments de-
scribed in Section 3 most of simulated tasks can be relatively
easily solved, in particular when a given environment is de-
terministic and simulated observations are not perturbed.

Reinforcement learning and real-world robotics An
extensive survey of various applications of reinforcement
learning in robotics can be found in Deisenroth et al. (2013,
Section 2.5). The role of simulators and reinforcement
learning is discussed by Sünderhauf et al. (2018) in Sec-
tion IV. In Sadeghi & Levine (2016); Pinto et al. (2018);
Peng et al. (2018); Tobin et al. (2018); OpenAI et al. (2018);
James et al. (2018); Bewley et al. (2018); Rusu et al. (2016)
policies are deployed on real-world robots and training is
performed mostly using data generated by simulators. Kang,
Belkhale, Kahn, Abbeel, and Levine (2019) propose a sys-

tem where dynamics are trained using real-world data and
perception is trained using synthetic data. Training of a deep
reinforcement learning policy using the TORCS engine and
deployment on real-world data are presented in a recent
work by Tan, Xu, and Kong (2018).

3. Environment
3.1. Simulator

We use CARLA (Dosovitskiy et al., 2017),1 an open-source
simulator for autonomous driving research based on Un-
real Engine 4. CARLA features open assets (including two
built-in maps), 14 different weather settings, semantic seg-
mentation for the assets, as well as camera and LIDAR
sensors (in our experiments we only use RGB information).
Camera position, orientation and settings are customizable.
CARLA also features multiple vehicles with different phys-
ical parameters. Two visual quality levels (LOW and EPIC)
are supported.2

We have also recreated a real-world urban space. The space
is presented as two new CARLA maps which approximately
reflect the testing grounds for real-world deployments. We
use these maps along with maps provided in CARLA for
training, with a number of scenarios reserved for validation
only.

3.2. Scenarios and rewards

Our agent is trained on a number of fixed routes. Each route
is a separate training scenario. Scenarios can be arbitrar-
ily mixed in a training procedure. In the current stage of
the experiment the scenarios do not include any dynamic
obstacles. The number of timesteps for a given scenario
ranges from ∼1000 to ∼8000. Agents are expected to drive
on their own lanes, but other traffic rules are ignored. See
Figure 1 for an example route.

The goal of the agent in a given scenario is to drive along
a route from start to finish. The route is defined by a list
of checkpoints on the map. The agent receives reward in
proportion to its progress along the polygonal path spanned
by the checkpoints (see Figure 2), i.e.,

mt = proj(post)− proj(post−1),

where post is the position of the agent at timestep t and
where proj() denotes the orthogonal projection onto the
polygonal path spanned by the checkpoints3 (see Figure 2).

The agent also receives a center-line penalty for driving

1Version 0.8.4.
2The EPIC quality level adds shadows, water reflections, sun

flare effect, and antialiasing.
3When a given point’s projection falls outside of a given line

segment, it gets projected to the closer endpoint.

Simulation-based reinforcement learning for autonomous driving

Figure 1. Example route on CARLA built-in Town2 level. We use
few scenarios per each CARLA level and a number of scenarios
defined on our custom maps.

outside of a fixed-width band centered on the path, i.e.,

ct = max(‖post − proj(post)‖ − width/2, 0),

where ‖ · ‖ is the euclidean norm and width is the road
width. The whole reward at timestep t then is

rt = mt + αct,

where α is a hyperparameter set to 0.1. Furthermore, the
episode ends if the agent strays too far from the route, i.e., if

‖post − proj(post)‖ ≥ 10.

3.3. Actions

In our scenarios vehicles are controlled by two values —
throttle and steering. Our policy controls only the steering.
Throttle is controlled via a PID controller with the speed set
to a constant.

Even though expressing steering as a discrete value might
lead to easier training, in the current stage of the experiment
we decided to use continuous values in order to avoid a
somewhat arbitrary discretization step.

We model continuous actions with the Gaussian distribu-
tion. Since the Gaussian distribution is unimodal, it cannot
model bimodal situations like turn either left or
right. This is not a problem since we are passing an ex-
plicit high-level navigation command to the policy described
in detail in Section 3.4.

We report some of our findings on modelling continuous
actions in section 5.2.

Figure 2. Reward calculation.

3.4. Observations

The agent receives as its observation an RGB image from a
single front camera and car metrics such as speed and accel-
eration. The camera position and orientation was configured
to mimic the real-world setup.

The agent is also provided with high-level navigation com-
mand, which can be one of the following: LANE FOLLOW,
GO STRAIGHT, TURN RIGHT, TURN LEFT. As there is
inherent ambiguity in the environment (for example, at in-
tersections, where both turning left and turning right are
reasonable actions), this additional command is a conve-
nient design decision which does not conflict with practical
applications (see (Codevilla et al., 2017) for a broader dis-
cussion).

3.5. Semantic segmentation

In our standard experiment the input to the policy consists
of an RGB camera image concatenated with a semantic
segmentation mask. The semantic segmentation model is
trained in a supervised way outside of the reinforcement
learning loop. For our semantic segmentation model we
used the U-Net (Ronneberger et al., 2015) architecture. We
trained the semantic segmentation model on synthetic data
from CARLA and real-world labelled data provided by our
industry partner.

3.6. Domain randomization

Domain randomization is a technique aimed to improve
generalization of the learned policy. Similarly to many

Simulation-based reinforcement learning for autonomous driving

other sim2real experiments discussed in Section 2, it is
done via randomizing different aspects of observations and
is intended to prevent overfitting to idiosyncrasies of the
simulation. At the beginning of each episode we sample the
following parameters of the environment:

• the weather (out of 14 weather settings),
• the scenario,
• camera position, orientation and field of view,
• camera image brightness, blur, and noise,
• parameters of cutout patches,4

• parameters of car dynamics.

We apply some randomizations in a supervised manner to
improve sample efficiency. For more details see Section 5.3.

Figure 3. Top: RGB camera input with cutout randomization. Bot-
tom: semantic segmentation predictions.

4. Main algorithm
The main training loop is described in Algorithm 1. As the
reinforcement learning component we use Proximal Policy
Optimization (PPO) (Schulman et al., 2017) with a contin-
uous action space. A good alternative to PPO would be
TRPO (Schulman et al., 2015) or V-trace (Espeholt et al.,
2018), which we leave for future work. Supervised random-
izations mentioned in line 5 of Algorithm 1 and described
in Section 5.3 may be considered as a potentially more
sample-efficient variant of general domain randomizations.

We based our PPO implementation on OpenAI Baselines
(Dhariwal et al., 2017) ppo25. Policies provided by Ope-
nAI Baselines work only for observations that consists of
one tensor of some shape. In our case we operate on multi-

4Occluding parts of the image (see Figure 3 and (DeVries &
Taylor, 2017)).

5https://github.com/openai/baselines/
tree/master/baselines/ppo2

Algorithm 1 Training loop.
1: initialize policy π
2: for i = 1 to num_epochs do
3: collect data using policy π
4: calculate lossac using an actor-critic algorithm
5: calculate losssr using supervised randomizations
6: loss = lossac + losssr
7: update π using ∇loss
8: end for

ple tensors of multiple shapes — such us the front camera,
a high-level navigation command, car speed, and car accel-
eration. We use a custom policy that operates on multiple
input tensors coming from one observation (see Figure 4).

Figure 4. Network architecture.

5. Experiments
In Section 5.1 we describe saliency map generation, which
proved to be useful tool in debugging our RL pipeline.

In Section 5.2 we discuss different ways of modeling the
standard deviation parameter of the action distribution,
which turned out to be crucial when working with a contin-
uous action space.

In Section 5.3 we describe domain randomizations applied

https://github.com/openai/baselines/tree/master/baselines/ppo2
https://github.com/openai/baselines/tree/master/baselines/ppo2

Simulation-based reinforcement learning for autonomous driving

in a supervised manner, which allows for better sample
efficiency.

In section 5.4 we discuss our distributed training setup. Fi-
nally, in Section 5.5 we describe various failure cases.

5.1. Saliency maps

In order to gain some insight into the inner workings of
the policy we generate saliency maps that visualize pol-
icy output sensitivity to different parts of camera input.
Saliency maps were introduced early in the project as a
way to understand some results when deploying policies
in real life (example videos from training with saliency
maps can be seen in complementary materials at http:
//bit.ly/2ZYkRYH).

The first and simplest way to generate saliency map is to
utilize the calculation graph framework and calculate the
gradient of the output with respect to policy input. As
said in (Greydanus et al., 2017): “The simplest approach
is to take the Jacobian with respect to the output of inter-
est. Unfortunately, the Jacobian does not usually produce
human-interpretable saliency maps”. Such saliency maps
are very noisy on a single-pixel level. Results can be seen
on the left image in Figure 5.

Greydanus et al. (2017) proposed an alternative way to
calculate saliency maps. Their technique consists of blurring
different patches of the input image (effectively removing
some information from that patch) and measuring the output
difference. This second technique generated more easily
interpretable maps, but at the cost of generation time. The
policy network needs to be applied hundreds of times to
different perturbations of one image to generate the saliency
maps. In our case, generating a video with saliency maps
for a 17-minute piece of footage took about ∼2 hours on a
machine with a GPU.

Finally, we decided to use a hybrid approach — calculating
the gradient analytically, like in first approach, but using
patches instead of single pixels, like in second approach.
This results in a saliency map of acceptable quality with a
fast generation time (a few minutes for a 17-minute piece of
footage). An example can be seen on Figure 5.

5.2. Modelling standard deviation of a continuous
action distribution

The Gaussian distribution is described by two parameters
— the mean and the standard deviation. There are multiple
ways how to handle these parameters in the policy. Using
some approaches over the other turned out to be quite rele-
vant for the performance of agents. In this section we will
describe tried approaches and their results.

Figure 5. Left: Saliency map generated w.r.t. single pixels. Right:
Saliency map generated w.r.t. 5 × 5 pixel patches. Each pixel
encodes output sensitivity with regard to some input patch around
it. White denotes positive gradient and black denotes negative
gradient. Gray denotes gradient values close to zero. The saliency
maps show that the network is most sensitive to road curbs and
lane markings.

Figure 6. Different ways of modelling standard deviation.

5.2.1. LEARNABLE STANDARD DEVIATION VALUE
DETACHED FROM THE POLICY

In our first approach the mean of the distribution was defined
as the ouput of the policy network and the standard deviation
was provided by a global learnable variable (see the left of
figure 6), an approach used in the implementation of the
PPO algorithm presented in OpenAI Baselines.

Ideally, we would like to approach a deterministic policy at
convergence (the agent should drive steadily without any ex-
ploratory movements). With the above approach we noticed
that the policy entropy never goes down below a certain
point and the agent does not drive steadily. Furthermore,
even when initializing the standard deviation with a small
value the policy entropy still climbed back up. In our ex-
perience such policies perform poorly when deployed on
real-world cars.

The simulated (and real-world) car has its inertia: while
the policy can output any value for requested steering, it

http://bit.ly/2ZYkRYH
http://bit.ly/2ZYkRYH

Simulation-based reinforcement learning for autonomous driving

still takes some time for the car steering wheel to respond.
Additionally, there is a limit on how much the steering wheel
can rotate in one simulation step. If policy actions change
too rapidly between successive observations they effectively
get truncated by inertia (see Figure 7). We hypothesize that
this causes the phenomenon of entropy not going below a
certain point.

Figure 7. The policy can output any action in [−1, 1], but there is a
limit on how much the steering wheel can physically rotate during
one step.

Another issue is that different parts of scenarios have differ-
ent characteristics when it comes to exploration. Some parts
of scenarios (e.g. driving straight) are relatively simple,
whereas others (like intersections) require more exploration
to solve.

If we utilize one shared value for standard deviation for all
observations then those different modes compete with each
other during optimization.

An example video can be seen at http://bit.ly/
2vG1mpQ.

5.2.2. SMALL CONSTANT STANDARD DEVIATION

In our second approach the mean of the distribution was
output by the policy network (as previously), but the stan-
dard deviation was set to a small constant value (see the
center of figure 6). Because our reward function is not
sparse the amount of exploration was still sufficient for the
policy to solve the scenarios. Furthermore, because the stan-
dard deviation is small the policy never suffers from the
aforementioned truncation by the environment inertia.

The policy trained this way performed much better when
deployed on a real-world car. It handled reliably wide-
road scenarios, but struggled with narrow-road scenarios.
While the standard deviation was very small, it was still not
small enough to work decently in very precise scenarios like
narrow roads.

An example video can be seen at http://bit.ly/
2ZZI7Wk.

5.2.3. POLICY OUTPUTS BOTH MEAN AND STANDARD
DEVIATION

The most successful approach had the policy controlling
both the mean and the standard deviation (see the right of
figure 6). This approach also worked the best when deployed
on real-world car. The driving was steady and it handled
more narrow scenarios that previous approaches struggled
with.

This approach allows the policy to adjust the degree of
exploration on a per-observation basis. In the supplementary
video material one can see an example of less exploration
in easy and solved straight sections of the scenario and
more exploration in harder and not-yet-mastered parts of
the scenario, such as intersections.

An important implementation detail was to enforce an up-
per boundary for the standard deviation. Without such a
boundary the standard deviation would sometime explode
and never go down below a certain point, similarly to the
first approach (see section 5.2.1).

An example video can be seen at http://bit.ly/
2VI6uZn.

5.3. Supervised randomizations

This section describes a supervised approach to domain
randomization, first mentioned in in Algorithm 1.

As each randomization introduces more variance to the ob-
servations, the amount of samples needed to estimate the
policy gradient increases rapidly. As (OpenAI et al., 2018)
write:

“Learning to rotate an object in simulation without random-
izations requires about 3 years of simulated experience,
while achieving the same performance in a fully random-
ized simulation requires about 100 years of experience”.

Some of our randomizations are applied only to visual cam-
era input (blur, cutout, noise, camera positions, camera
FOV) and some to car dynamics (car controller and physics
parameters).

One way of sidestepping the aforementioned sample effi-
ciency issue is moving the visual randomizations outside of
the policy gradient. This can be done as follows:

1. During policy rollouts, the network is fed with unper-
turbed visual input.

2. For each observation in the collected data batch a copy
with perturbed6 camera image is prepared.

3. We introduce an additional loss that conditions the
6We used the augmentation library (A. Buslaev & Kalinin,

2018) to perturb images.

http://bit.ly/2vG1mpQ
http://bit.ly/2vG1mpQ
http://bit.ly/2ZZI7Wk
http://bit.ly/2ZZI7Wk
http://bit.ly/2VI6uZn
http://bit.ly/2VI6uZn

Simulation-based reinforcement learning for autonomous driving

policy to output a similar distribution for the perturbed
and unperturbed images (line 5 in algorithm 1).

For this purpose we use the mean absolute error (MAE)
between the means of the distributions output by the agent,
i.e.,

MAE(π(obs).mean, π(obsperturbed).mean),

where π is the policy network outputting the mean and
standard deviation parameters, and obs is the input to the
agent. We have also experimented with different distribution
similarity measures, but MAE on distribution means worked
well enough in practice.

Heuristically, MAE seems a better choice than mean
squared error, as in the case of multimodality, we’d prefer
the output to collapse to one of the modes instead of taking
their average.

5.4. Parallelization and performance

We are training our agents using Horovod (Sergeev &
Del Balso, 2018), a distributed framework which allowed
for smooth integration with our main computation resource.
Our typical setup consists of running experiments on up to 8
nodes each equipped with 2 GPUs. On each node we run the
CARLA simulators on the first GPU and the training code
on the second GPU. Usually, we run 10 CARLA simula-
tions per node. For the experiments of our scale we observe
linear scaling in in the multi-node setup. FPS can vary a lot
depending on settings of an experiment, see Table 1.

We are using a homogeneous setup where each node is
running the same process (see Figure 8) — both policy
rollouts and policy updating is done on all nodes. Gradients
are averaged between nodes via Horovod. An interesting,
but more demanding solution would be a master-worker
setup used, for example, in (Espeholt et al., 2018; Adamski
et al., 2018).

Figure 8. All nodes execute the same code. Gradients are averaged
between nodes via Horovod.

7The quality level is sampled uniformly from {LOW, EPIC} on
a per episode basis.

Table 1. FPS per node with various settings

SETTINGS FPS

LOW QUALITY 140
LOW/EPIC7QUALITY 60
LOW/EPIC7 QUALITY + SUPERVISED RANDOMIZATION 20

5.5. Selected failure cases

5.5.1. PULSE-WIDTH MODULATION STEERING
STRATEGY

In one of the experiments we provided the policy with infor-
mation of the last action. Intuitively, introducing such an au-
toregressive feature seems very useful. At the time CARLA
did not expose information about exact in-simulation posi-
tion of the steering wheel, hence we used the last action as
a proxy for actual in-simulation position. As mentioned in
Section 5.2, the steering wheel has its inertia.

The trained policy took advantage of this fact and was
rapidly switching between two modes: extreme left and
extreme right, which amounts to driving forward (see the
video at http://bit.ly/2H4OWNQ).

5.5.2. SINGLE-LINE VERSUS DOUBLE-LINE ROAD
MARKINGS

Our first trained policies were trained on CARLA levels
which feature only double-line road markings. When evalu-
ated on real-world footage, such a policy was not sensitive
to single-line road markings, whereas it was sensitive to
double-line road markings in simulation.

This problem was fixed was fixed after introducing our
custom CARLA level which features double-line road mark-
ings. For visualizations see our complementary site at
http://bit.ly/2DNWsfa.

6. Conclusions and future work
We have presented a qualitative overview of a series of
experiments intended to train an end-to-end driving policy
using the CARLA simulator. Policies were deployed on a
full-size car.

In a future release of this work we will provide quantitative
analysis of our experiments, including ablations. We are also
planning to include results on memory-augmented policies,
the V-trace algorithm (Espeholt et al., 2018), asymmetric
actor-critic architecture resented by Pinto et al. (2018), and
our own generator-discriminator pair inspired by (Bousmalis
et al., 2017). Another interesting and challenging direction
is integration of an intermediate representation layer — for
example a 2D-map or a bird’s-eye view, as proposed in

http://bit.ly/2H4OWNQ
http://bit.ly/2DNWsfa

Simulation-based reinforcement learning for autonomous driving

(Chen et al., 2019; Rhinehart et al., 2018a; Djuric et al.,
2018; Bansal et al., 2018). It would be also interesting to
focus reinforcement learning training on part of scenarios
with the highest uncertainty, see e.g. (Kendall et al., 2017).
Integration of a model-based method similar to presented
by Lowrey et al. (2018) would be a desirable step towards
better sample efficiency.

7. Acknowledgments
This was work was supported by the Academic Computer
Center Cyfronet at the AGH University of Science and Tech-
nology in Kraków, Poland.

References
A. Buslaev, A. Parinov, E. K. V. I. I. and Kalinin, A. A.

Albumentations: fast and flexible image augmentations.
ArXiv e-prints, 2018.

Adamski, I., Adamski, R., Grel, T., Jedrych, A., Kaczmarek,
K., and Michalewski, H. Distributed deep reinforcement
learning: Learn how to play atari games in 21 minutes.
CoRR, abs/1801.02852, 2018. URL http://arxiv.
org/abs/1801.02852.

Bansal, M., Krizhevsky, A., and Ogale, A. S. Chauffeurnet:
Learning to drive by imitating the best and synthesizing
the worst. CoRR, abs/1812.03079, 2018. URL http:
//arxiv.org/abs/1812.03079.

Bewley, A., Rigley, J., Liu, Y., Hawke, J., Shen, R., Lam,
V., and Kendall, A. Learning to drive from simulation
without real world labels. CoRR, abs/1812.03823, 2018.
URL http://arxiv.org/abs/1812.03823.

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M.,
Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Kono-
lige, K., Levine, S., and Vanhoucke, V. Using simulation
and domain adaptation to improve efficiency of deep
robotic grasping. CoRR, abs/1709.07857, 2017. URL
http://arxiv.org/abs/1709.07857.

Chen, J., Yuan, B., and Tomizuka, M. Model-free deep
reinforcement learning for urban autonomous driving.
CoRR, abs/1904.09503, 2019. URL http://arxiv.
org/abs/1904.09503.

Codevilla, F., Müller, M., Dosovitskiy, A., López, A., and
Koltun, V. End-to-end driving via conditional imitation
learning. CoRR, abs/1710.02410, 2017. URL http:
//arxiv.org/abs/1710.02410.

Deisenroth, M. P., Neumann, G., and Peters, J. A sur-
vey on policy search for robotics. Foundations and
Trends in Robotics, 2(1-2):1–142, 2013. doi: 10.1561/

2300000021. URL https://doi.org/10.1561/
2300000021.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. OpenAI Baselines. https://github.
com/openai/baselines, 2017.

Djuric, N., Radosavljevic, V., Cui, H., Nguyen, T., Chou,
F., Lin, T., and Schneider, J. Motion prediction of traffic
actors for autonomous driving using deep convolutional
networks. CoRR, abs/1808.05819, 2018. URL http:
//arxiv.org/abs/1808.05819.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. Carla: An open urban driving simulator. arXiv
preprint arXiv:1711.03938, 2017.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dun-
ning, I., Legg, S., and Kavukcuoglu, K. IMPALA: scal-
able distributed deep-rl with importance weighted actor-
learner architectures. CoRR, abs/1802.01561, 2018. URL
http://arxiv.org/abs/1802.01561.

Greydanus, S., Koul, A., Dodge, J., and Fern, A. Visualizing
and understanding atari agents, 2017.

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J.,
Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S.
M. A., Riedmiller, M. A., and Silver, D. Emergence
of locomotion behaviours in rich environments. CoRR,
abs/1707.02286, 2017. URL http://arxiv.org/
abs/1707.02286.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., van Hasselt, H., and Silver, D. Distributed prioritized
experience replay. CoRR, abs/1803.00933, 2018. URL
http://arxiv.org/abs/1803.00933.

James, S., Davison, A. J., and Johns, E. Transferring end-to-
end visuomotor control from simulation to real world for
a multi-stage task. CoRR, abs/1707.02267, 2017. URL
http://arxiv.org/abs/1707.02267.

James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D.,
Irpan, A., Ibarz, J., Levine, S., Hadsell, R., and Bous-
malis, K. Sim-to-real via sim-to-sim: Data-efficient
robotic grasping via randomized-to-canonical adapta-
tion networks. CoRR, abs/1812.07252, 2018. URL
http://arxiv.org/abs/1812.07252.

http://arxiv.org/abs/1801.02852
http://arxiv.org/abs/1801.02852
http://arxiv.org/abs/1812.03079
http://arxiv.org/abs/1812.03079
http://arxiv.org/abs/1812.03823
http://arxiv.org/abs/1709.07857
http://arxiv.org/abs/1904.09503
http://arxiv.org/abs/1904.09503
http://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1710.02410
https://doi.org/10.1561/2300000021
https://doi.org/10.1561/2300000021
https://github.com/openai/baselines
https://github.com/openai/baselines
http://arxiv.org/abs/1808.05819
http://arxiv.org/abs/1808.05819
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1707.02267
http://arxiv.org/abs/1812.07252

Simulation-based reinforcement learning for autonomous driving

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., Sepassi, R., Tucker, G., and
Michalewski, H. Model-based reinforcement learning
for atari. CoRR, abs/1903.00374, 2019. URL http:
//arxiv.org/abs/1903.00374.

Kang, K., Belkhale, S., Kahn, G., Abbeel, P., and Levine, S.
Generalization through simulation: Integrating simulated
and real data into deep reinforcement learning for vision-
based autonomous flight. CoRR, abs/1902.03701, 2019.
URL http://arxiv.org/abs/1902.03701.

Kendall, A., Badrinarayanan, V., and Cipolla, R. Bayesian
segnet: Model uncertainty in deep convolutional
encoder-decoder architectures for scene understand-
ing. In British Machine Vision Conference 2017,
BMVC 2017, London, UK, September 4-7, 2017,
2017. URL https://www.dropbox.com/s/
jgozsaobbk98azy/0205.pdf?dl=1.

Kidzinski, L., Mohanty, S. P., Ong, C. F., Huang, Z., Zhou,
S., Pechenko, A., Stelmaszczyk, A., Jarosik, P., Pavlov,
M., Kolesnikov, S., Plis, S. M., Chen, Z., Zhang, Z., Chen,
J., Shi, J., Zheng, Z., Yuan, C., Lin, Z., Michalewski, H.,
Milos, P., Osinski, B., Melnik, A., Schilling, M., Ritter,
H. J., Carroll, S. F., Hicks, J. L., Levine, S., Salathé,
M., and Delp, S. L. Learning to run challenge solutions:
Adapting reinforcement learning methods for neuromus-
culoskeletal environments. CoRR, abs/1804.00361, 2018.
URL http://arxiv.org/abs/1804.00361.

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., and
Mordatch, I. Plan online, learn offline: Efficient learn-
ing and exploration via model-based control. CoRR,
abs/1811.01848, 2018. URL http://arxiv.org/
abs/1811.01848.

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Joze-
fowicz, R., McGrew, B., Pachocki, J., Petron, A., Plap-
pert, M., Powell, G., Ray, A., et al. Learning dexterous
in-hand manipulation. arXiv preprint arXiv:1808.00177,
2018.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel,
P. Sim-to-real transfer of robotic control with dynam-
ics randomization. In 2018 IEEE International Con-
ference on Robotics and Automation, ICRA 2018, Bris-
bane, Australia, May 21-25, 2018, pp. 1–8, 2018. doi:
10.1109/ICRA.2018.8460528. URL https://doi.
org/10.1109/ICRA.2018.8460528.

Pinto, L., Andrychowicz, M., Welinder, P., Zaremba,
W., and Abbeel, P. Asymmetric actor critic
for image-based robot learning. In Robotics:

Science and Systems XIV, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, USA, June 26-
30, 2018, 2018. doi: 10.15607/RSS.2018.XIV.
008. URL http://www.roboticsproceedings.
org/rss14/p08.html.

Pomerleau, D. ALVINN: an autonomous land vehicle in a
neural network. In Advances in Neural Information Pro-
cessing Systems 1, [NIPS Conference, Denver, Colorado,
USA, 1988], pp. 305–313, 1988.

Rhinehart, N., McAllister, R., and Levine, S. Deep imita-
tive models for flexible inference, planning, and control.
CoRR, abs/1810.06544, 2018a. URL http://arxiv.
org/abs/1810.06544.

Rhinehart, N., McAllister, R., and Levine, S. Deep imita-
tive models for flexible inference, planning, and con-
trol. CoRR, abs/1810.06544, 2018b. URL http:
//arxiv.org/abs/1810.06544.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation,
2015.

Rusu, A. A., Vecerik, M., Rothörl, T., Heess, N., Pascanu,
R., and Hadsell, R. Sim-to-real robot learning from pixels
with progressive nets. CoRR, abs/1610.04286, 2016. URL
http://arxiv.org/abs/1610.04286.

Sadeghi, F. Divis: Domain invariant visual servoing for
collision-free goal reaching. CoRR, abs/1902.05947,
2019. URL http://arxiv.org/abs/1902.
05947.

Sadeghi, F. and Levine, S. (cad)$ˆ2$rl: Real single-
image flight without a single real image. CoRR,
abs/1611.04201, 2016. URL http://arxiv.org/
abs/1611.04201.

Sadeghi, F., Toshev, A., Jang, E., and Levine, S. Sim2real
view invariant visual servoing by recurrent control. CoRR,
abs/1712.07642, 2017. URL http://arxiv.org/
abs/1712.07642.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S.
Deep reinforcement learning framework for autonomous
driving. CoRR, abs/1704.02532, 2017. URL http:
//arxiv.org/abs/1704.02532.

Sauer, A., Savinov, N., and Geiger, A. Conditional affor-
dance learning for driving in urban environments. In
2nd Annual Conference on Robot Learning, CoRL 2018,
Zürich, Switzerland, 29-31 October 2018, Proceedings,
pp. 237–252, 2018. URL http://proceedings.
mlr.press/v87/sauer18a.html.

http://arxiv.org/abs/1903.00374
http://arxiv.org/abs/1903.00374
http://arxiv.org/abs/1902.03701
https://www.dropbox.com/s/jgozsaobbk98azy/0205.pdf?dl=1
https://www.dropbox.com/s/jgozsaobbk98azy/0205.pdf?dl=1
http://arxiv.org/abs/1804.00361
http://arxiv.org/abs/1811.01848
http://arxiv.org/abs/1811.01848
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1109/ICRA.2018.8460528
http://www.roboticsproceedings.org/rss14/p08.html
http://www.roboticsproceedings.org/rss14/p08.html
http://arxiv.org/abs/1810.06544
http://arxiv.org/abs/1810.06544
http://arxiv.org/abs/1810.06544
http://arxiv.org/abs/1810.06544
http://arxiv.org/abs/1610.04286
http://arxiv.org/abs/1902.05947
http://arxiv.org/abs/1902.05947
http://arxiv.org/abs/1611.04201
http://arxiv.org/abs/1611.04201
http://arxiv.org/abs/1712.07642
http://arxiv.org/abs/1712.07642
http://arxiv.org/abs/1704.02532
http://arxiv.org/abs/1704.02532
http://proceedings.mlr.press/v87/sauer18a.html
http://proceedings.mlr.press/v87/sauer18a.html

Simulation-based reinforcement learning for autonomous driving

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. CoRR,
abs/1502.05477, 2015. URL http://arxiv.org/
abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. Airsim: High-
fidelity visual and physical simulation for autonomous
vehicles. CoRR, abs/1705.05065, 2017. URL http:
//arxiv.org/abs/1705.05065.

Sünderhauf, N., Brock, O., Scheirer, W. J., Hadsell, R.,
Fox, D., Leitner, J., Upcroft, B., Abbeel, P., Burgard, W.,
Milford, M., and Corke, P. The limits and potentials of
deep learning for robotics. CoRR, abs/1804.06557, 2018.
URL http://arxiv.org/abs/1804.06557.

Tan, B., Xu, N., and Kong, B. Autonomous driving in reality
with reinforcement learning and image translation. CoRR,
abs/1801.05299, 2018. URL http://arxiv.org/
abs/1801.05299.

Tobin, J., Biewald, L., Duan, R., Andrychowicz, M., Handa,
A., Kumar, V., McGrew, B., Ray, A., Schneider, J.,
Welinder, P., Zaremba, W., and Abbeel, P. Domain
randomization and generative models for robotic grasp-
ing. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2018, Madrid,
Spain, October 1-5, 2018, pp. 3482–3489, 2018. doi:
10.1109/IROS.2018.8593933. URL https://doi.
org/10.1109/IROS.2018.8593933.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, IROS 2012, Vilamoura, Algarve, Portugal, Octo-
ber 7-12, 2012, pp. 5026–5033, 2012. doi: 10.1109/
IROS.2012.6386109. URL https://doi.org/10.
1109/IROS.2012.6386109.

http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1804.06557
http://arxiv.org/abs/1801.05299
http://arxiv.org/abs/1801.05299
https://doi.org/10.1109/IROS.2018.8593933
https://doi.org/10.1109/IROS.2018.8593933
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109

