
Under review as a conference paper at ICLR 2020

SDGM: SPARSE BAYESIAN CLASSIFIER BASED ON A
DISCRIMINATIVE GAUSSIAN MIXTURE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

In probabilistic classification, a discriminative model based on Gaussian mixture
exhibits flexible fitting capability. Nevertheless, it is difficult to determine the
number of components. We propose a sparse classifier based on a discriminative
Gaussian mixture model (GMM), which is named sparse discriminative Gaussian
mixture (SDGM). In the SDGM, a GMM-based discriminative model is trained
by sparse Bayesian learning. This learning algorithm improves the generalization
capability by obtaining a sparse solution and automatically determines the number
of components by removing redundant components. The SDGM can be embed-
ded into neural networks (NNs) such as convolutional NNs and can be trained in
an end-to-end manner. Experimental results indicated that the proposed method
prevented overfitting by obtaining sparsity. Furthermore, we demonstrated that the
proposed method outperformed a fully connected layer with the softmax function
in certain cases when it was used as the last layer of a deep NN.

1 INTRODUCTION

In supervised classification, probabilistic classification is an approach that assigns a class label c
to an input sample x by estimating the posterior probability P (c|x). This approach is primarily
categorized into two types of models: discriminative model and generative model. The former
optimizes the posterior distribution P (c|x) directly on a training set, whereas the latter finds the
class conditional distribution P (x|c) and class prior P (c) and subsequently derives the posterior
distribution P (c|x) using Bayes’ rule.

The discriminative model and generative model are mutually related (Lasserre et al., 2006; Minka,
2005). According to Lasserre et al. (2006), the only difference between these models is their sta-
tistical parameter constraints. Therefore, given a certain generative model, we can derive a corre-
sponding discriminative model. For example, the discriminative model corresponding to a unimodal
Gaussian distribution is logistic regression (see Appendix A for derivation). Several discriminative
models corresponding to the Gaussian mixture model (GMM) have been proposed (Axelrod et al.,
2006; Bahl et al., 1996; Klautau et al., 2003; Tsai & Chang, 2002; Tsuji et al., 1999; Tüske et al.,
2015; Wang, 2007). They indicate more flexible fitting capability than the generative GMM and
have been applied successfully in fields such as speech recognition (Axelrod et al., 2006; Tüske
et al., 2015; Wang, 2007).

The problem to address in mixture models such as the GMM is the determination of the number of
components M . Classically, Akaike’s information criterion and the Bayesian information criterion
have been used; nevertheless, they require a considerable computational cost because a likelihood
must be calculated for every candidate component number. In the generative GMM, methods that
optimize M during learning exist (Crouse et al., 2011; Štepánová & Vavrečka, 2018). However, in a
discriminative GMM, a method to optimize M simultaneously during learning has not been clearly
formulated.

In this paper, we propose a novel GMM having two important properties: sparsity and discriminabil-
ity, which is named sparse discriminative Gaussian mixture (SDGM). In the SDGM, a GMM-based
discriminative model is trained by sparse Bayesian learning. This learning algorithm improves the
generalization capability by obtaining a sparse solution and determines the number of components
automatically by removing redundant components. Furthermore, the SDGM can be embedded into

1

Under review as a conference paper at ICLR 2020

(a) 1 epoch
0

0

0.5 1.0-1.5 -1.0 -0.5

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 0.5 1.0-1.5 -1.0 -0.5

0

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) 100 epochs
0 0.5 1.0-1.5 -1.0 -0.5

0

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(c) 200 epochs
0 0.5 1.0-1.5 -1.0 -0.5

0

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(d) 250 epochs

Figure 1: Snapshots of the training process of SDGM. The black and green circles are training
samples from classes 1 and 2, respectively. The dashed black line is the decision boundary between
classes 1 and 2 and thus satisfies P (c = 1|x) = (c = 2|x) = 0.5. The dashed blue and red lines are
the boundaries between the posterior probabilities of components where P (c,m|x) = 0.5.

neural networks (NNs) such as convolutional NNs and trained in an end-to-end manner with an NN.
To the authors best knowledge, there is no GMM that has both of sparsity and discriminability.

The contributions of this study are as follows:

• We propose a novel sparse classifier based on a discriminative GMM. The proposed SDGM
has both sparsity and discriminability, and determines the number of components automat-
ically. The SDGM can be considered as the theoretical extension of the discriminative
GMM and the relevance vector machine (RVM) (Tipping, 2001).

• This study attempts to connect both fields of probabilistic models and NNs. From the
equivalence of a discriminative model based on Gaussian distribution to a fully connected
layer, we demonstrate that the SDGM can be used as a module of a deep NN. We also
show that the SDGM can show superior performance than the fully connected layer with a
softmax function via an end-to-end learning with an NN on the image recognition task.

2 SPARSE DISCRIMINATIVE GAUSSIAN MIXTURE (SDGM)

An SDGM takes a continuous variable x ∈ RD as its input and outputs its posterior probability
P (c|x) for each class c ∈ {1, . . . , C}. An SDGM acquires a sparse structure by removing redundant
components via sparse Bayesian learning.

Figure 1 shows how the SDGM is trained by removing unnecessary components while keeping
discriminability. The two-class training data are from Ripley’s synthetic data (Ripley, 2006), where
a Gaussian mixture model with two components is used for generating data of each class. In this
training, we set the initial number of components to three for each class. As the training progresses,
one of the components for each class becomes small gradually and is removed.

2.1 MODEL FORMULATION

The posterior probabilities for each class c is calculated as follows:

P (c|x) =

Mc∑
m=1

P (c,m|x), (1)

P (c,m|x) =
πcm exp[wT

cmφ]∑C
c=1

∑Mc

m=1 πcm exp[wT
cmφ]

, (2)

φ =
[
1,xT, x21, x1x2, . . . , x1xD, x

2
2, x2x3, . . . , x

2
D

]T
, (3)

where Mc is the number of components for class c and πcm is the mixture weight that is equivalent
to the prior of each component P (c,m). It should be noted that we use wcm ∈ RH , which is the
weight vector representing the m-th Gaussian component of class c. The dimension of wcm, i.e.,
H , is the same as that of φ; namely, H = 1 +D(D + 3)/2.

2

Under review as a conference paper at ICLR 2020

Algorithm 1: Weight updating
Input: Training data set X and teacher vector T.
Output: Trained weight w obtained by maximizing (11).
Initialize the weights w, hyperparameters α, mixture coefficients π, and posterior probabilities r;
while α have not converged do

Calculate J using (9);
while r have not converged do

while w have not converged do
Calculate gradients using (12);
Calculate Hessian (13);
Maximize (11) w.r.t. w;
Calculate P (c,m|xn) and P (c|xn);

end
rncm = P (c,m|xn)/P (c|xn);

end
Calculate Λ using (16);
Update α using (17);
Update π using (18);

end

Derivation. Utilizing Gaussian distribution as a conditional distribution of x given c and m,
P (x|c,m), the posterior probability of c given x, P (c|x), is calculated as follows:

P (c|x) =

Mc∑
m=1

P (c,m)P (x|c,m)∑C
c=1

∑Mc

m=1 P (c,m)P (x|c,m)
, (4)

P (x|c,m) =
1

(2π)
D
2 |Σcm|

1
2

exp

[
−1

2
(x− µcm)TΣ−1cm(x− µcm)

]
, (5)

where µcm ∈ RD and Σcm ∈ RD×D are the mean vector and the covariance matrix for component
m in class c. Since the calculation inside an exponential function in (5) is quadratic form, the
conditional distributions can be transformed as follows:

P (x|c,m) = exp[wT
cmφ], (6)

where

wcm=

−D
2

ln 2π − 1

2
ln |Σcm| −

1

2

D∑
i=1

D∑
j=1

scmijµcmiµcmj ,

D∑
i=1

scmi1µcmi, . . . ,

D∑
i=1

scmiDµcmi,−
1

2
scm11,−scm12, . . . ,−scm1D,−

1

2
scm22, . . . ,−

1

2
scmDD

]T
. (7)

Here, scmij is the (i, j)-th element of Σ−1cm.

2.2 LEARNING ALGORITHM

Algorithm 1 shows the training of the SDGM. In this algorithm, the optimal weight is obtained as
maximum a posteriori solution. We can obtain a sparse solution by optimizing the prior distribution
set to each weight simultaneously with weight optimization.

A set of training data and target value {xn, tnc} (n = 1, · · · , N) is given. The target tnc is coded
in a one-of-K form, where tnc = 1 if the n-th sample belongs to class c, tnc = 0 otherwise. A
binary random variable zncm is introduced. The variable zncm = 1 when the n-th sample from
class c belongs to the m-th component. Otherwise, zncm = 0. This variable is required for the
optimization of the mixture weight πcm. We also define π and z as vectors that comprise πcm and
zncm as their elements, respectively. As the prior distribution of the weight wcmh, we employ a

3

Under review as a conference paper at ICLR 2020

Gaussian distribution with a mean of zero. Using a different precision parameter (inverse of the
variance) αcmh for each weight wcmh, the joint probability of all the weights is represented as
follows:

P (w|α) =

C∏
c=1

Mc∏
m=1

H∏
h=1

√
α
(c,m)
h

(2π)
exp

[
−1

2
wcmh

2αcmh

]
, (8)

where w and α are vectors with wcmh and αcmh as their elements, respectively. During learning,
we update not only w but also α. If αcmh → ∞, the prior (8) is 0; hence a sparse solution is
obtained by optimizing α.

Using these variables, the expectation of the log-likelihood function over z, J , is defined as follows:

J = Ez [lnP (T, z|X,w,π,α)] =

N∑
n=1

C∑
c=1

rncmtnc lnP (c,m|xn), (9)

where T is a matrix with tnc as its element. The training data matrix X contains xT
n in the n-th

row. The variable rncm in the right-hand side corresponds to P (m|c,xn) and can be calculated as
rncm = P (c,m|xn)/P (c|xn).

The posterior probability of the weight vector w is described as follows:

P (w|T, z,X,π,α) =
P (T, z|X,w,π,α)P (w|α)

P (T, z|X,α)
(10)

An optimal w is obtained as the point where (10) is maximized. The denominator of the right-hand
side in (10) is called the evidence term, and we maximize it with respect to α. However, this maxi-
mization problem cannot be solved analytically; therefore we introduce the Laplace approximation
described as the following procedure.

With α fixed, we obtain the mode of the posterior distribution of w. The solution is given by the
point where the following equation is maximized:

Ez [lnP (w|T, z,X,π,α)] = Ez [lnP (T, z|X,w,π,α)] + lnP (w|α) + const.

= J −wTAw + const., (11)
where A = diagαcmh. We obtain the mode of (11) via Newton’s method. The gradient and Hessian
required for this estimation can be calculated as follows:

∇Ez [lnP (w|T, z,X,π,α)] = ∇J −Aw, (12)
∇∇Ez [lnP (w|T, z,X,π,α)] = ∇∇J −A. (13)

Each element of∇J and∇∇J is calculated as follows:
∂J

∂wcmh
= (rncmtnc−P (c,m|xn))φh, (14)

∂2J

∂wcmh∂wc′m′h′
= P (c′,m′|xn)(P (c,m|xn)− δcc′mm′)φhφh′ , (15)

where δcc′mm′ is a variable that takes 1 if both c = c′ andm = m′, 0 otherwise. Hence, the posterior
distribution ofw can be approximated by a Gaussian distribution with a mean of ŵ and a covariance
matrix of Λ, where

Λ = −(∇∇Ez [lnP (ŵ|T, z,X,π,α)])−1. (16)

Because the evidence term can be represented using the normalization term of this Gaussian distri-
bution, we obtain the following updating rule by calculating its derivative with respect to αcmh.

αcmh ←
1− αcmhλcmh

ŵ2
cmh

, (17)

where λcmh is the diagonal component of Λ. The mixture weight πcm can be estimated using rncm
as follows:

πcm =
1

Nc

Nc∑
n=1

rncm, (18)

where Nc is the number of training samples belonging to class c. As described above, we obtain
a sparse solution by alternately repeating the update of hyper-parameters, as described in (17) and
(18) and the posterior distribution estimation of w using the Laplace approximation. During the
procedure, the {c,m}-th component is eliminated if πcm becomes 0 or all the weights wcmh corre-
sponding to the component become 0.

4

Under review as a conference paper at ICLR 2020

(a) 2 components

0

0

-1.0

-1.0

1.0

1.0

(c) 10 components

0

0

-1.0

-1.0

1.0

1.0

(d) 16 components

0

0

-1.0

-1.0

1.0

1.0

(b) 4 components

0

0

-1.0

-1.0

1.0

1.0

Figure 2: Changes in learned class boundaries according to number of initial components.

Training error Test error

2
0

10

20

30

40

50

60

of initial components

E
rr

o
r

ra
te

 [
%

]

4 6 8 10 12 14 16 18 20

(a) Error rate

0

8

12

16

4

20

2
of initial components

#
 o

f
fi

n
al

 c
o
m

p
o
n
en

ts

4 6 8 10 12 14 16 18 20

(b) Number of components

2
0

5

10

15

20

25

30

35

of initial components

(c) Number of non-zero weights

#
 n

o
n
-z

er
o
 w

ei
g
h
ts

4 6 8 10 12 14 16 18 20 2
of initial components

4 6 8 10 12 14 16 18 20
98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

(d) Weight reduction rate

W
ei

g
h
t

re
d
u
ct

io
n
 r

at
e

[%
]

Figure 3: Evaluation results using synthetic data. (a) recognition error rate, (b) number of compo-
nents after training, (c) number of nonzero weights after training, and (d) weight reduction ratio.

3 EXPERIMENTS

3.1 EVALUATION OF CHARACTERISTICS USING SYNTHETIC DATA

To evaluate the characteristics of the SDGM, we conducted classification experiments using syn-
thetic data. The dataset comprises two classes. The data were sampled from a Gaussian mixture
model with eight components for each class. The numbers of training data and test data were 320
and 1,600, respectively. The scatter plot of this dataset is shown in Figure 2.

In the evaluation, we calculated the error rates for the training data and the test data, the number of
components after training, the number of nonzero weights after training, and the weight reduction
ratio (the ratio of the number of the nonzero weights to the number of initial weights), by varying
the number of initial components as 2, 4, 8, . . . , 20.

Figure 2 displays the changes in the learned class boundaries according to the number of initial
components. When the number of components is small, such as that shown in Figure 2(a), the
decision boundary is simple; therefore, the classification performance is insufficient. However,
according to the increase in the number of components, the decision boundary fits the actual class
boundaries. It is noteworthy that the SDGM learns the GMM as a discriminative model instead of a
generative model; an appropriate decision boundary was obtained even if the number of components
for the model is less than the actual number (e.g., 2(c)).

Figure 3 shows the evaluation results of the characteristics. Figures 3(a), (b), (c), and (d) show
the recognition error rate, number of components after training, number of nonzero weights after
training, and weight reduction ratio, respectively. The horizontal axis shows the number of initial
components in all the graphs.

In Figure 3(a), the recognition error rates for the training data and test data are almost the same
with the few number of components, and decrease according to the increase in the number of initial
components while it is 2 to 6. This implied that the representation capability was insufficient when
the number of components was small, and that the network could not accurately separate the classes.
Meanwhile, changes in the training and test error rates were both flat when the number of initial
components exceeded eight, even though the test error rates were slightly higher than the training
error rate. In general, the training error decreases and the test error increases when the complexity of
the classifier is increased. However, the SDGM suppresses the increase in complexity using sparse
Bayesian learning, thereby preventing overfitting.

5

Under review as a conference paper at ICLR 2020

Table 1: Recognition error rate (%) and number of nonzero weights
Error rate (%) Number of nonzero weights

SDGM Baselines SDGM Baselines
Dataset w/ sparse w/o sparse LR SVM RVM w/ sparse w/o sparse LR SVM RVM
Ripley 9.1 9.9 11.4 10.6 9.3 6 1255 2 38 4
Banana 10.6 10.8 47.0 10.9 10.8 11.1 2005 2 135.2 11.4

Waveform 10.1 9.5 13.5 10.3 10.9 11.0 2005 20.73 146.4 14.6
Titanic 22.7 23.3 22.7 22.1 23.0 74.5 755 2.98 93.7 65.3

Breast Cancer 29.4 35.1 27.5 26.9 29.9 15.73 1005 8.88 116.7 6.3
Normalized mean 1.00 1.05 1.79 1.02 1.03 1.00 129.35 0.60 8.11 0.86

In Figure 3(b), the number of components after training corresponds to the number of initial com-
ponents until the number of initial components is eight. When the number of initial components
exceeds ten, the number of components after training tends to be reduced. In particular, eight com-
ponents are reduced when the number of initial components is 20. The results above indicate the
SDGM can reduce unnecessary components.

From the results in Figure 3(c), we confirm that the number of nonzero weights after training in-
creases according to the increase in the number of initial components. This implies that the com-
plexity of the trained model depends on the number of initial components, and that the minimum
number of components is not always obtained.

Meanwhile, in Figure 3(d), the weight reduction ratio increases according to the increase in the
number of initial components. This result suggests that the larger the number of initial weights, the
more weights were reduced. Moreover, the weight reduction ratio is greater than 99 % in any case.
The results above indicate that the SDGM can prevent overfitting by obtaining high sparsity and can
reduce unnecessary components.

3.2 COMPARATIVE STUDY USING BENCHMARK DATA

To evaluate the capability of the SDGM quantitatively, we conducted a classification experiment
using benchmark datasets. The datasets used in this experiment were Ripley’s synthetic data (Ripley,
2006) (Ripley hereinafter) and four datasets cited from Rätsch et al. (2001); Banana, Waveform,
Titanic, and Breast Cancer. Ripley is a synthetic dataset that is generated from a two-dimensional
(D = 2) Gaussian mixture model, and 250 and 1,000 samples are provided for training and test,
respectively. The number of classes is two (C = 2), and each class comprises two components. The
remaining four datasets are all two-class (C = 2) datasets, which comprise different data size and
dimensionality. Since they contain 100 training/test splits, we repeated experiments for 100 times
and then calculated average statistics.

For comparison, we used three classifiers that can obtain a sparse solution: a linear logistic re-
gression (LR) with l1 constraint, a support vector machine (SVM) (Cortes & Vapnik, 1995) and a
relevance vector machine (RVM) (Tipping, 2001). In the evaluation, we compared the recognition
error rates for discriminability and number of nonzero weights for sparsity on the test data. The
results of SVM and RVM were cited from Tipping (2001). For ablation study, we also tested our
SDGM without sparse learning by omitting the update of α. By way of summary, the statistics were
normalized by those of the SDGM and the overall mean was shown.

Table 1 shows the recognition error rates and number of nonzero weights for each method. The
results in Table 1 show that the SDGM achieved an equivalent or greater accuracy compared with
the SVM and RVM on average. The SDGM is developed based a Gaussian mixture model and
is particularly effective for data where a Gaussian distribution can be assumed, such as the Ripley
dataset. On the number of nonzero weights, understandably, the LR showed the smallest number
since it is a linear model. Among the remaining nonlinear classifiers, the SDGM achieved relatively
small number of nonzero weights thanks to its sparse Bayesian learning. The results above indicated
that the SDGM demonstrated generalization capability and a sparsity simultaneously.

3.3 IMAGE CLASSIFICATION

In this experiment, the SDGM is embedded into a deep neural network. Since the SDGM is differ-
entiable with respect to the weights, SDGM can be embedded into a deep NN as a module and is

6

Under review as a conference paper at ICLR 2020

Table 2: Recognition error rates (%) on image classification
MNIST (D = 2) MNIST (D = 10) Fashion-MNIST CIFAR-10

Softmax 3.19 1.01 8.78 11.07
SDGM 2.43 0.72 8.30 10.05

trained in an end-to-end manner. In particular, the SDGM plays the same role as the softmax func-
tion since the SDGM calculates the posterior probability of each class given an input vector. We can
show that a fully connected layer with the softmax is equivalent to the discriminative model based
on a single Gaussian distribution for each class by applying a simple transformation (see Appendix
A), whereas the SDGM is based on the Gaussian mixture model.

To verify the difference between them, we conducted image classification experiments. Using a
CNN with a softmax function as a baseline, we evaluated the capability of SDGM by replacing
softmax with the SDGM.

3.3.1 DATASETS AND EXPERIMENTAL SETUPS

We used the following datasets and experimental settings in this experiment.

MNIST: This dataset includes 10 classes of handwritten binary digit images of size 28×28 (LeCun
et al., 1998). We used 60,000 images as training data and 10,000 images as testing data. As a feature
extractor, we used a simple CNN that consists of five convolutional layers with four max pooling
layers between them and a fully connected layer. To visualize the learned CNN features, we first set
the output dimension of the fully connected layer of the baseline CNN as two (D = 2). Furthermore,
we tested by increasing the output dimension of the fully connected layer from two to ten (D = 10).

Fashion-MNIST: Fashion-MNIST (Xiao et al., 2017) includes 10 classes of binary fashion images
with a size of 28 × 28. It includes 60,000 images for training data and 10,000 images for testing
data. We used the same CNN as in MNIST with 10 as the output dimension.

CIFAR-10: CIFAR-10 (Krizhevsky & Hinton, 2009) is the labeled subsets of an 80 million tiny
image dataset. This dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images
per class. There are 50,000 training images and 10,000 test images. For CIFAR-10, we trained
DenseNet (Huang et al., 2017) with a depth of 40 and a growth rate of 12.

For each dataset, the network was trained with a batch size of 64 for 100 epochs with a learning rate
of 0.01 We used a weight decay of 1.0× 10−5 and the Nesterov optimization algorithm (Sutskever
et al., 2013) with a momentum of 0.9. The network weights were initialized using the Glorot uniform
(Glorot & Bengio, 2010).

3.3.2 RESULTS

Figure 4 shows the two-dimensional feature embeddings on the MNIST dataset. Different feature
embeddings were acquired for each method. When softmax was used, the features spread in a fan
shape and some part of the distribution overlapped around the origin. However, when the SDGM
was used, the distribution for each class exhibited an ellipse shape and margins appeared between the
class distributions. This is because the SDGM is based on a Gaussian mixture model and functions
to push the samples into a Gaussian shape.

Table 2 shows the recognition error rates on each dataset. SDGM achieved better performance than
softmax. As shown in Figure 4, SDGM can create margins between classes by pushing the features
into a Gaussian shape. This phenomenon positively affected the classification capability.

4 RELATED WORK AND POSITION OF THIS STUDY

Figure 5 illustrates the relationship of our study with other studies. This study is primarily consists
of three factors: discriminative model, Gaussian mixture model, and Sparse Bayesian learning. This
study is the first that combines these three factors and expands the body of knowledge in these fields.

From the perspective of the sparse Bayesian classifier, the RVM (Tipping, 2001) is the most impor-
tant related study. An RVM is combines logistic regression and sparse Bayesian learning. Since

7

Under review as a conference paper at ICLR 2020

0

0 50

50

100

100

150

150

200

200

0 50 100 150 200

0

50

100

150

200

0

0

10

10

20

20

5

5

15

15

25

25

0

0

10

10

20

20

5

5

15

15

25

25Training data

(a) Softmax (b) Ours

Test data Training data Test data

Figure 4: Visualization of CNN features on MNIST after end-to-end learning. In this visualization,
five convolutional layers with four max pooling layers between them and a fully connected layer
with a two-dimensional output are used. (a) results when a fully connected layer with the softmax
function is used as the last layer. (b) when SDGM is used as the last layer instead. The colors red,
blue, yellow, pink, green, tomato, saddlebrown, lightgreen, cyan, and black represent classes from 0
to 9, respectively. Note that the ranges of the axis are different between (a) and (b).

Unimodal
Gaussian

Gaussian
mixture model

Logistic regression

FC layer + softmax

Ours
Relevance vector
machine (RVM)

Sparse Gaussian
Sparse GMM
(Gaiffas, 2014)

Discriminative GMM
(Klautau, 2003)

Mixture model

D
is

cr
im

in
a
ti

ve

Sparse
Bayes

Figure 5: Relationship of our study with other studies.

the logistic regression is equivalent to the discriminative model of a unimodal Gaussian model, the
SDGM can be considered as an extended RVM using a GMM. furthermore, from the perspective of
the probabilistic model, the SDGM is considered as the an extended discriminative GMM (Klautau
et al., 2003) using sparse Bayesian learning, and an extended sparse GMM (Gaiffas & Michel, 2014)
using the discriminative model.

Sparse methods have often been used in machine learning. Three primary merits of using sparse
learning are as follows: improvements in generalization capability, memory reduction, and inter-
pretability. Several attempts have been conducted to adapt sparse learning to deep NNs. Graham
(2014) proposed a spatially-sparse convolutional neural network. Liu et al. (2015) proposed a sparse
convolution neural network. Additionally, sparse Bayesian learning has been applied in many fields.
For example, an application to EEG classification has been reported (Zhang et al., 2017).

5 CONCLUSION

In this paper, we proposed a sparse classifier based on a GMM, which is named SDGM. In the
SDGM, a GMM-based discriminative model was trained by sparse Bayesian learning. This learning
algorithm improved the generalization capability by obtaining a sparse solution and automatically
determined the number of components by removing redundant components. The SDGM could be
embedded into NNs such as convolutional NNs and could be trained in an end-to-end manner.

In the experiments, we demonstrated that the SDGM could reduce the amount of weights via
sparse Bayesian learning, thereby improving its generalization capability. The comparison using
benchmark datasets suggested that SDGM outperforms the conventional sparse classifiers. We also
demonstrated that SDGM outperformed the fully connected layer with the softmax function when it
was used as the last layer of a deep NN.

One of the limitations of this study is that sparse Bayesian learning was applied only when the
SDGM was trained stand-alone. In future work, we will develop a sparse learning algorithm for a
whole deep NN structure including the feature extraction part. This will improve the ability of the
CNN for larger data classification.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Scott Axelrod, Vaibhava Goel, Ramesh Gopinath, Peder Olsen, and Karthik Visweswariah. Dis-
criminative estimation of subspace constrained Gaussian mixture models for speech recognition.
IEEE Transactions on Audio, Speech, and Language Processing, 15(1):172–189, 2006.

Lalit R Bahl, Mukund Padmanabhan, David Nahamoo, and PS Gopalakrishnan. Discriminative
training of Gaussian mixture models for large vocabulary speech recognition systems. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing Con-
ference Proceedings (ICASSP), volume 2, pp. 613–616, 1996.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

David F Crouse, Peter Willett, Krishna Pattipati, and Lennart Svensson. A look at Gaussian mixture
reduction algorithms. In Proceedings of the 14th International Conference on Information Fusion,
pp. 1–8, 2011.

Stephane Gaiffas and Bertrand Michel. Sparse bayesian unsupervised learning. arXiv preprint
arXiv:1401.8017, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 249–256, 2010.

Benjamin Graham. Spatially-sparse convolutional neural networks. arXiv preprint arXiv:1409.6070,
2014.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, pp. 3, 2017.

Aldebaro Klautau, Nikola Jevtic, and Alon Orlitsky. Discriminative Gaussian mixture models: A
comparison with kernel classifiers. In Proceedings of the 20th International Conference on Ma-
chine Learning (ICML), pp. 353–360, 2003.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled hybrids of genera-
tive and discriminative models. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 87–94, 2006.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 806–814, 2015.

Tom Minka. Discriminative models, not discriminative training. Technical report, Technical Report
MSR-TR-2005-144, Microsoft Research, 2005.

Gunnar Rätsch, Takashi Onoda, and K-R Müller. Soft margins for adaboost. Machine learning, 42
(3):287–320, 2001.

Brian D Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 2006.

Karla Štepánová and Michal Vavrečka. Estimating number of components in Gaussian mixture
model using combination of greedy and merging algorithm. Pattern Analysis and Applications,
21(1):181–192, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Proceedings of International Conference on Mchine
Learning (ICML), volume 28, pp. 1139–1147, 2013.

9

Under review as a conference paper at ICLR 2020

Michael E Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning research, 1(Jun):211–244, 2001.

Wuei-He Tsai and Wen-Whei Chang. Discriminative training of Gaussian mixture bigram mod-
els with application to Chinese dialect identification. Speech Communication, 36(3-4):317–326,
2002.

Toshio Tsuji, Osamu Fukuda, Hiroyuki Ichinobe, and Makoto Kaneko. A log-linearized Gaussian
mixture network and its application to EEG pattern classification. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 29(1):60–72, 1999.

Zoltán Tüske, Muhammad Ali Tahir, Ralf Schlüter, and Hermann Ney. Integrating Gaussian mix-
tures into deep neural networks: Softmax layer with hidden variables. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4285–4289,
2015.

Jue Wang. Discriminative Gaussian mixtures for interactive image segmentation. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
volume 1, pp. I–601, 2007.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yu Zhang, Yu Wang, Jing Jin, and Xingyu Wang. Sparse Bayesian learning for obtaining sparsity of
EEG frequency bands based feature vectors in motor imagery classification. International Journal
of Neural Systems, 27(2):1650032, 2017.

A APPENDIX

We explain that a fully connected layer with the softmax function, or logistic regression, can be
regarded as a discriminative model based on a Gaussian distribution by utilizing transformation of
the equations. Let us consider a case in which the class-conditional probability P (x|c) is a Gaussian
distribution. In this case, we can omit m from the equations (4)–(7).

If all classes share the same covariance matrix and the mixture weight πcm, the terms πcm in (2),
x21, x1x2, · · · , x1xD, x22, x2x3, · · · , x2xD, · · · , x2D in (3), and − 1

2sc11, · · ·,−
1
2scDD in (7) can be

canceled; hence the calculation of the posterior probability P (c|x) is also simplified as

P (c|x) =
exp(wc

Tφ)∑C
c=1 exp(wc

Tφ)
,

where

wc = [logP (c)− 1

2

D∑
i=1

D∑
j=1

scijµciµcj +
D

2
log 2π +

1

2
log |Σc|,

D∑
i=1

sci1µci, · · ·,
D∑
i=1

sciDµci]
T,

φ =
[
1,xT

]T
.

This is equivalent to a fully connected layer with the softmax function.

10

	Introduction
	Sparse Discriminative Gaussian Mixture (SDGM)
	Model formulation
	Learning algorithm

	Experiments
	Evaluation of characteristics using synthetic data
	Comparative study using benchmark data
	Image classification
	Datasets and experimental setups
	Results

	Related Work and Position of This Study
	Conclusion
	Appendix

