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Abstract
Real-world applications require RL algorithms to
act safely. During learning process, it is likely that
the agent executes sub-optimal actions that may
lead to unsafe/poor states of the system. Explo-
ration is particularly brittle in high-dimensional
state/action space due to increased number of low-
performing actions. In this work, we consider
risk-averse exploration in approximate RL set-
ting. To ensure safety during learning, we pro-
pose the distributionally robust policy iteration
scheme that provides tight lower bound guarantee
on state-values. Our approach induces a dynamic
level of risk to prevent poor decisions and yet pre-
serves the convergence to the optimal policy. Our
formulation results in a tractable algorithm that
accounts for a simple re-weighting of policy ac-
tions in the standard policy iteration scheme. We
extend our approach to continuous state/action
space and present a practical algorithm, distribu-
tionally robust soft actor-critic, that implements
a different exploration strategy: it acts conserva-
tively at short-term and it explores optimistically
in a long-run. We provide promising experimental
results on continuous control tasks.

1. Introduction
At root of difficulties to deploy Reinforcement Learning in
the real-world is the problem of exploration. In all gener-
ality, in order to guarantee the optimality of a policy we
need to build estimates of all state-values that may result in
some occasional catastrophic outcomes. This is of course
unacceptable in many applications, such as real-world robot
tasks (Abbeel & Ng, 2005) or online recommendation sys-
tems (Theocharous et al., 2015). One strategy to avoid
disastrous events is to lower the risk in face of uncertainty.

In this work, we consider risk-averse exploration in the con-
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text of modified policy iteration (MPI) scheme (Puterman,
1994). MPI defines an iterative process that alternates be-
tween policy improvement and (partial) policy evaluation
steps. Applying this scheme to practical problems with
large state/action space and finite number of interactions
leads to errors at the policy evaluation step, resulting in the
approximate MPI scheme (Scherrer et al., 2015). In the ap-
proximate MPI the policy state-values are inexact, and thus,
exploration strategies, such as Boltzmann exploration, are
likely to execute poor actions (Garcıa & Fernández, 2015).

Prior works studied safety guarantees w.r.t. approximate
policy evaluation step. Risk-sensitive approach explicitly
modifies the policy’s long-term outcome to incorporate the
notion of risk, typically expressed as variance of return over
policy trajectories. In approximate dynamic programming,
risk-sensitive counterparts of value iteration and policy it-
eration have been developed (Tamar et al., 2013; Prashanth
& Ghavamzadeh, 2016), although they are known to result
in computationally difficult algorithms (Mannor & Tsitsik-
lis, 2011). In model-free setting, the proposed algorithms
are computationally extensive as they involve integration
over the state space and nonconvex parameter optimization.
To mitigate this issue, approximation schemes have been
proposed based on temporal differences (Mihatsch & Ne-
uneier, 2002), stochastic approximation (Borkar, 2002) and
recently, policy gradient (Tamar et al., 2015).

In this paper, we consider the inexact computation of policy
state-values due to the finite number of interactions with the
environment, called estimation errors. The risk-averse strat-
egy consists in lowering the risk of catastrophic outcome
under estimation errors. To implement risk-averse strategy,
we introduce a family of distributionally robust Bellman op-
erators that provide tight lower bound guarantee on policy
state-values. Using this operator instead of standard Bell-
man operator, we formulate a distributionally robust modi-
fied policy iteration scheme that places an adaptive level of
conservatism w.r.t estimation errors at policy evaluation step.
Differently from prior work, our proposed algorithms are
computationally tractable and preserve convergence to the
optimal policy at growing amount of collected experience.

Using the Legendre-Fenchel transform (Boyd & Vanden-
berghe, 2004), our formulation results in a simple modifica-
tion to the standard policy iteration scheme that consists in
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computing the evaluation step w.r.t. re-weighted policy state-
action probabilities. The proposed algorithm is applicable
to large state spaces since the additional computation scales
with the size of the action space. For continuous action
space, we derive an efficient approximation of our scheme
that only involves a constant-time reward modification.

We propose a practical algorithm for continuous control
tasks, called distributionally robust soft actor-critic, by
combining risk-averse policy evaluation under finite sam-
ple of data with optimistic exploration of Soft Actor-
Critic (Haarnoja et al., 2018b). Distributionally robust soft
actor-critic implements a different exploration strategy: it
acts conservatively at short-term to ensure the lower bound
on policy performance, and it explores optimistically at
long-term to preserve convergence to the optimal policy.

To summarize, our main contributions are as follows:

• We propose a principled and scalable modification of
MPI that ensures risk-averse policy evaluation w.r.t.
estimation errors, while preserving convergence to the
optimal policy. Convergence rate is analyzed.

• We apply this scheme to maximum entropy policies
that results in a risk-averse short-term and optimistic
long-term exploration strategy.

• We derive an extension of our scheme to the continuous
state/action space that only involves a modification of
reward. We provide promising experimental results on
continuous control tasks.

2. Preliminaries
We will use the following notation: ∆X is the set of prob-
ability distributions over a finite set X and Y X is a set of
mappings from set X to set Y .

We consider a Markov decision process M :=
(S,A, P, r, γ) where S is a finite state space, A is a fi-
nite action space, P ∈ ∆S×AS is the transition kernel
with transition probability p(s′|s, a), r(s, a) ∈ RS×A,
|r(s, a)| ≤ Rmax is a bounded reward function. We de-
fine a stochastic stationary policy π ∈ ∆SA and let Π be
the set of stochastic stationary policies. We consider the
discounted setting with discount factor γ ∈ [0, 1).

We define the Bellman operator T π for any function V ∈
RS , ∀s ∈ S as follows:

[T πV ](s) := Ea∼π(·|s)
[
r(s, a) + γEs′∼p(s′|s,a)[V (s′)]

]
(1)

This is a γ-contraction in `∞ norm and its unique fixed
point is V π: limk→∞(T π)kV = V π, where equality
holds component-wise. By denoting QV (s, a) := r(s, a) +

γEs′∼p(s′|s,a)[V (s′)], Eq. (1) can be re-written as:

[T πV ](s) = 〈π(·|s), QV (s, ·)〉. (2)

From (1), we define the Bellman optimality operator as
follows:

[T ?V ](s) := max
π(·|s)∈∆(A)

[T πV ](s) ∀s ∈ S, (3)

which is a γ-contraction in `∞ norm and its unique fixed
point is the optimal value function V ?. Further, the equali-
ties hold state-wise, so we will omit the per-state notation
and write T ?V = maxπ∈Π T πV .

We denote by G(V ) the set of optimal policies that achieve
the maximum of Eq. (3) state-wise:

G(V ) := {π : π ∈ arg max
π∈Π

TπV } (4)

Equivalently, this set coincides with the set of optimal poli-
cies: G(V ) = {π : T πV = T ?V }.

The Modified Policy Iteration (MPI) algorithm (Puterman,
1994) is the iterative process that alternates between policy
improvement and (partial) policy evaluation steps:

πt+1 ∈ G(Vt); Vt+1 = (T πt+1)mVt (5)

where m = 1 corresponds to Value Iteration and m =
∞ corresponds to Policy Iteration. Here Vt denotes an
approximation of V πt .

Finally, we will make use of the Legendre-Fenchel duality,
e.g. see Section 3.3.1 in (Boyd & Vandenberghe, 2004). For
a strongly convex function Ω : ∆(A)→ R its Fenchel dual
Ω? : RA → R is given by:

Ω?(QV ) = max
π∈∆(A)

〈π,QV 〉 − Ω(π). (6)

Using properties of the Fenchel transform at the maximum
of the of (6) we have for the gradient of the dual function:

∇Ω?(QV ) = arg max
π∈∆(A)

〈π,QV 〉 − Ω(π) (7)

Similarly to standard Bellman operators, we define the reg-
ularized Bellman operator (Geist et al., 2019) as follows:

T π,ΩV := T πV − Ω(π). (8)

and the set of optimal policies:

GΩ(V ) := {π : π ∈ arg max
π∈Π

T π,ΩV = ∇Ω?(QV )} (9)
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3. Distributionally robust policy iteration
We consider the Approximate Modified Policy Iteration
scheme (Scherrer et al., 2015), where the evaluation step
in (5) is subject to an estimation error δt due to finite sample
of transitions used to perform evaluation:

πt+1 ∈ G(Ṽt); Ṽt+1 = T πt+1 Ṽt + δt. (10)

This is indeed a practical scenario as state-of-the-art off-
policy algorithms sample a mini-batch of independent sam-
ples from a replay buffer to perform value update (Mnih
et al., 2013); on-policy algorithms directly draw a finite
number of trajectories from πt+1 (Schulman et al., 2015).

Due to the finite amount of collected experience, the value
Vt is uncertain. The uncertainty of empirical estimate is
captured by its variance and is known under parametric
uncertainty (Mannor et al., 2004). Optimistic exploration
strategies (Auer et al., 2002; Jaksch et al., 2010) are classi-
cally used under parametric uncertainty. They construct, at
any state, an optimistically biased value estimate and take
action with the highest value. If the selected action is not
near-optimal, i.e., the value estimates are overly-optimistic,
it may lead to unsafe states of the system. Therefore, to pre-
vent the exploration process from catastrophic outcomes, we
consider the notion of safety under finite sample estimates.

In Section 3.1 we introduce a family of Bellman operators
that guarantee policy performance with tight finite-sample
bounds. Section 3.2 describes their efficient computation
and the resulting policy iteration scheme. Theorem 1 estab-
lishes the asymptotic convergence of the proposed scheme
to the optimal policy, while reducing the chance of catas-
trophic failure. In Section 3.3 we apply this scheme to a
class of maximum entropy policies. The resulting algo-
rithm is expected to achieve, under parametric uncertainty,
a risk-averse behaviour at short-term time horizon and a
risk-seeking behaviour in a long-run.

3.1. Distributionally robust Bellman operator

We formalize the risk-averse strategy under estimation errors
in approximate MPI scheme (10). We define a family of
operators that represent a lower bound on the exact operator
given a sequence of convergent errors.

Definition 1 (Distributionally robust Bellman operator).
For a sequence of error vectors ε1, ε2, . . . , εt, . . . ∈ RS ,
we say that an operator T πtεt : RS → RS is distributionally
robust if

• T πtεt is a Bellman operator and provides a tight lower
bound on T πt at finite time:

T πtεt v ≤ T
πtv ≤ T πtεt v + εt, ∀v ∈ RS . (11)

• The errors εt are convergent:

lim sup
N→∞

N−1∑
t=1

γt‖εN−t‖∞ = 0. (12)

This Bellman operator provides robustness w.r.t finite sam-
ple of observations, represented by the estimation error εt
that should decrease with the amount of collected experi-
ence. Condition (12) on the sequence of errors εt implies an
asymptotic convergence to the exact evaluation step of (5).
The next lemma formally introduces this statement.

Lemma 1 ( (Scherrer et al., 2015)). For any initial
value function V0 consider the approximate MPI Ṽt =
(T πt)mṼt−1 + δt (with Ṽ0 = V0); πt+1 ∈ G(Vt). Then,
one has

‖ṼN − V ∗‖∞ ≤
4Rmax

(1− γ)2
EN +

2γN

1− γ
‖V0 − V ∗‖∞,

where EN :=
∑N−1
t=1 γt‖δN−t‖∞.

Remark. By virtue of Def. 1, the approximate MPI
using distributionally robust operator is conver-
gent if the sum of discounted uncertainties satisfies
lim supN→∞

∑N−1
t=1 γt‖εN−t‖∞ = 0. This is because

|δt(s)| ≤ �εt(s) ∀s for some global constant �, and so
lim supN EN ≤ � lim supN

∑N−1
t=1 γt‖εN−t‖∞ = 0.

Later, we will consider specific constructions of the error
sequences in the form εt ∝ nt(s)

−η, for some η > 0,
where nt(s) is a state visitation count. We will show that
for this construction of error sequence, the approximate
MPI scheme with distributionally robust Bellman operator
converges to the optimal policy-value pair (see Theorem 1).

One way to implement the distributionally robust Bellman
operator is to consider the worst-case outcome of executing
each action. Indeed, placing adequate uncertainty around
action probabilities prevents the agent from selecting possi-
bly low-value actions. We implement this idea in a variant
of distributionally robust Bellman operator.

Definition 2 (Uncertainty set and adversarial Bellman op-
erator). Given a policy π and an error function ε ∈ RS ,
define the uncertainty set Uε(π) by

Uε(π) := {π̃ ∈ ∆SA | DKL(π̃(·|s)‖π(·|s)) ≤ ε(s), ∀s ∈ S},
(13)

Also define the (KL-based) adversarial Bellman operator
T πε : RS → RS by

T π
ε

V := min
π̃∈Uε(π)

T π̃V. (14)

Proposition 1. T πε is a valid Bellman operator (i.e a mono-
tone `∞-norm γ-contraction mapping on value functions)
T πε . Moreover, T πε is distributionally robust.
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Proof. Since mapping T πε is continuous in π and Uε is
compact, it follows from the Extreme Value Theorem that
there exists a policy πε ∈ Uε such that T πε = T πε . Thus,
T πε is a valid Bellman operator. In addition, from (14)
there exists a policy πε ∈ Uε such that T πε ≤ T π̃ ∀π̃ ∈
Uε(πt) including πt. This proves the left inequality in (11).
The right inequality follows from Lemma 2 (see Appendix)
using Pinsker’s inequality.

The minimization problem of adversarial Bellman opera-
tor defines an adversarial policy πε to π as the worst-case
realization from the uncertainty set defined in terms of
Kullback-Leibler (KL) divergence. The degree of adver-
sarial behaviour is controlled by the size of uncertainty set.

3.2. Distributionally robust policy evaluation

In the following, we derive an efficient computation scheme
of adversarial Bellman operator (14). We show that it results
in simple analytical expression for adversarial policy where
the robustification appears as re-weighting of samples based
on the adversarial distribution.

First, we note that the KL constraint in (13) is separable
by state and is strongly convex w.r.t. π̃. This makes possi-
ble to explicitly express the minimizer πε of (14), i.e. the
worst-case policy from the uncertainty set, thanks to the
Legendre-Fenchel transform (6). We proceed by applying
strong Lagrangian duality and re-writing as maximization
problem:

[T π
ε

V ](s) = max
λ(s)>0

min
π̃∈∆(A)

[T π̃V ](s)

+ λ(s)DKL(π̃(·|s)‖π(·|s))− λ(s)ε(s)

= min
λ(s)>0

max
π∈∆(A)

[−T πV ](s)

− λ(s)DKL(π̃(·|s)‖π(·|s)) + λ(s)ε(s)

(15)

where λ(s) is a per-state positive Lagrange multiplier.

Next, using Fenchel duality (6) in the case of KL-divergence,
the solution to the inner maximization problem of (15) is
given by the gradient of Fenchel convex conjugate (7) :

πε(a|s;λ) ∝ exp(−QV (s, a)/λ(s))π(a|s) (16)

The analytical expression for the adversarial policy has the
following interpretation: the adversarial policy re-weights
the sampling policy such that the worst-case actions are
taken more frequently to the extent determined by the ad-
versarial temperature λ(s). Infinitely small uncertainty set
ε → 0+ results in λ → +∞, i.e. the adversarial policy
taking the same actions as the optimizing policy. On the
other hand, a too large uncertainty set ε → +∞ leads to
conservative policies as λ→ 0+.

To connect the radius of uncertainty set ε to the optimal state-
dependent parameter λ?(s), we consider the solution to the

outer Lagrangian dual problem in (15). By representing the
inner maximization problem of (15) in terms of its Fenchel
dual (6), we obtain:

λ?(s) := arg min
λ(s)>0

Ω? (−QV /λ(s)) + λ(s)ε(s). (17)

This formulation is a 1-d convex optimization over a per-
state expression that defines the optimal level of adversarial
behaviour.

We summarize the presented results in the following.

Corollary 1. The adversarial Bellman operator (14) can
be expressed as a regularized Bellman operator (8) w.r.t. ad-
versarial policy (16) with optimal λ?(s) defined in (17). The
associated distributionally robust modified policy iteration
scheme is given by:{

πt+1 ← G(Ṽt)

Ṽt+1 ← (T π
εt
t+1)mṼt

(18)

We now analyze the convergence of this scheme. Theorem 1
states than any convergent and consistent Bellman opera-
tor iteration can be made distributionally robust using (18)
and yet converges to the optimal policy in terms of the `∞
norm. The convergence rate of (18) is polynomial instead
of exponential in exact MPI (5).

Theorem 1 (Distributionally robust modified policy itera-
tion). For an integer m ∈ [1,∞], consider the distribution-
ally robust MPI scheme (18), where

εt(s) =

{
Cnt(s)

−η, if nt(s) ≥ t/S,
0, else,

for some constants C, η > 0 and S denotes the number of
states.

Let ˜̀
t := Ṽt − V ∗ ∈ RS be the loss at iteration t. Then

after N ≥ 2 iterations, we have

(A) Sub-optimality bound:

‖˜̀N‖∞ ≤
4Rmax

(1− γ)2
EN +

2γN

1− γ
‖˜̀0‖∞,

where

EN :=

N−1∑
t=1

γt‖δN−t‖∞ = ON
(

CSη

(1− γ)Nη

)
−→ 0.

(B) Safety guarantee:

Ṽt ≤ Vt ≤ V ∗, ∀t ∈ {1, . . . , N},

where Vt is the value function computed via exact eval-
uation step (5).



Distributionally robust reinforcement learning

Proof. See Appendix A.1.

Remark. Parameters C and η define the size of uncertainty
set, thus, the degree of robustness of the policy. The lower
levels imply higher robustness and slower convergence.

Remark. The condition nt(s) ≥ t/S ensures that states
with too few visits are not considered for the uncertainty set
construction. The choice η = 1/2 leads to the bound EN =

ON
( √

S
(1−γ)

√
N

)
. It is can be motivated by the general fact

that empirical means (obtained from finite samples) are
within O(1/

√
N) of their expected values.

The pseudo-code corresponding to scheme (18) is presented
in Algorithm 1. To implement this algorithm, it is sufficient
to learn on samples from adversarial policy. One possibility
to do so is to re-sample transitions based on the target distri-
bution, e.g., using importance sampling. Alternatively, one
can directly generate samples from the adversarial policy.

3.3. Extension to entropy-regularized policies

We apply the distributionally robust approach to the max-
imum entropy framework (Ziebart et al., 2008; Haarnoja
et al., 2017) that has been recently successful on a variety of
simulated and real-world tasks (Haarnoja et al., 2018b). The
maximum entropy objective modifies the standard RL ob-
jective by adding a per-state entropy bonus; it results in im-
proved exploration targeted at high-value actions (Haarnoja
et al., 2018a).

Differently, distributionally robust policy iteration
scheme (18) ensures a robust behaviour in face of uncer-
tainty. We combine the best of both worlds by applying the
proposed scheme (18) to the class of entropy-regularized
policies (Haarnoja et al., 2017).

We define soft adversarial Bellman operator as follows:

T π
ε,ΩV := min

π̃∈Uε(π)
T π̃,ΩV, (19)

where
Ω(π(·|s)) = αH(π(·|s)) ∀s ∈ S.

Proposition 2. T πε,Ω is a valid Bellman operator (i.e a
monotone `∞-norm γ-contraction mapping on value func-
tions). Moreover, T πε,Ω is distributionally robust.

Proof. T π,Ω is a γ-contraction w.r.t to the `∞-norm on
value functions (Geist et al., 2019). Analoguously to T πε ,
T πε,Ω has a solution in the set of policies since Uε(π) is
compact and T π,Ω is continuous in π.

The solution to regularized maximization problem (9) at the
policy improvement step is given by the gradient of Fenchel

dual (9), also referred in the literature to the Boltzmann
policy:

π(a|s) ∝ exp(QV (s, a)/α) (20)

where α > 0 is the exploration temperature. Thus, the
adversarial policy (16) takes the following form:

πε(a|s;α, λ) ∝ exp((1/α− 1/λ(s))QV (s, a)) (21)

The resulting soft distributionally robust modified policy
iteration scheme is given by:{

πt+1 ← GΩ(Ṽt)

Ṽt+1 ← (T π
εt
t+1,Ω)mṼt.

(22)

This is the counterpart of scheme (18) for regularized poli-
cies. The difference lies in the presence of the regularizer
Ω in both greedy and evaluation steps. Note that, as in (18),
the evaluation step is performed w.r.t adversarial policy (21),
while the greedy step is done w.r.t. Boltzmann policy (20).

The scheme (22) different in nature from Soft Q-
learning (Haarnoja et al., 2017) and other entropy-based
approaches (Nachum et al., 2017; Haarnoja et al., 2018a).
Despite apparent similarity in automatic temperature tuning,
the scheme (22) adjusts temperature to provide a lower-
bound guarantee on policy state-values, while the above-
mentioned entropy-based approaches adjust temperature
to ensure a target entropy level alike a re-parametrization.
Moreover, the temperature adjustment in our scheme (22) is
only performed at the policy evaluation step.

Since approximate regularized MPI shares the same er-
ror propagation bounds as unregularized MPI according
to Corollary 1 of (Geist et al., 2019), the convergence of
scheme (22) is an adaptation of Theorem 1.

Algorithm 1 Distributionally Robust Policy Iteration
Initialize V , counters n = 0 . Initialize
Set C, η > 0
repeat

π ← G(V ) . Maximizing policy
ε← Cn−η . Size of uncertainty size
λ← optimization of (17) . Regularization parameter
πε ∝ exp(−QV /λ)π . Adversarial policy
V ← T πεV . Adversarial Bellman operator

until convergence

4. Continuous control
Real-world applications frequently operate in continuous
state/action space. To extend the distributionally robust
approach to continuous setup, we need to efficiently com-
pute the adversarial Bellman operator in (18). Thus, in
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Section 4.1 we derive an approximated scheme for KL-
regularized Bellman operators that only involves a modifica-
tion of reward. This allows us to formulate distributionally
robust soft actor-critic, a practical algorithm that applies the
soft distributional robustness scheme (22) to the soft actor-
critic algorithm (Haarnoja et al., 2018b) (see Section 4.2).

4.1. KL-regularized Bellman operator

The regularized Bellman operator can be written in terms of
its Fenchel conjugate (6): [T ΩV ](s) = Ω?(QV (s, ·)). De-
fine the regularization parameter λ such that Ωλ(π(·|s)) :=
λΩ(π(·|s)) and consider the case of KL-divergence based
regularization with respect to the prior policy µ ∈ ∆AS :
Ω(π(·|s)) = −DKL(π(·|s)||µ(·|s)). Then, the Fenchel con-
jugate is given by the smoothed maximum (minimum):

Ω?λ(QV (s, ·)) = λ logEa∼µ(·|s) exp(QV (s, a)/λ) (23)

for λ > 0 (λ < 0) respectively.

When the action space is continuous, the computation of the
dual function (23) is intractable. To overcome the problem,
we derive computationally feasible approximation of the
smoothed maximum (minimum) function. We notice that
smoothed maximum (minimum) can be seen as the loga-
rithm of moment-generating function of the dual variable.
By performing Taylor expansion of the moment-generating
function around λ → +∞ (λ → −∞) and keeping terms
up to the 1st order, we obtain:

Ω?λ(QV (s, ·)) = Ea∼µ[QV (s, a)]

+
1

2λ
Vara∼µ(QV (s, a)) +O

(
1

λ2

)
.

(24)

This approximation gives a new perspective on KL-
divergence regularized Bellman operators as encouraging
(λ > 0) or penalizing variance (λ < 0) of Q-values under
action distribution induced by the prior policy. The param-
eter λ controls the amount of the regularization. In this
view, distributionally robust Bellman operator can be seen
as data-driven per-state variance penalization that adapts to
the degree of uncertainty over the finite sample of data.

Approximation (24) provides an efficient way to compute
the regularized Bellman operator through a simple modifica-
tion of reward. Indeed, define potential function Φ(s) ∈ RS
as weighted variance of Q-values under the prior policy

Φ(s) :=
1

2λ
Vara∼µ(QV (s, a))

and a reward shaping function rΩ(s, a, s′) ∈ RS×A×S as

rΩ(s, a, s′) := r(s, a) + γΦ(s′)− Φ(s). (25)

Then, by applying Corollary 2 of (Ng et al., 1999) Eq. (24)
can be expressed using potential-based reward shaping:

Ω?λ(QV (s, ·)) ' QV (s, a) +
1

2λ
Vara∼µ(QV (s, a))

= Ea∼µ,s′∼p(·|s,a)[r
Ω(s, a, s′) + γV (s′)].

(26)

For λ < 0, the reward shaping function (25) encourages the
policy to visit states with less variance over Q-values, i.e.
expected to be ”safer” states.

4.2. Distributionally robust soft actor-critic

We consider the class of entropy-regularized policies over
continuous state/action space (Haarnoja et al., 2018a).
We apply the soft distributionally robust policy iteration
scheme (22) using reward modification (26) to approximate
the computation of regularized Bellman operator over con-
tinuous action space.

As in (Haarnoja et al., 2018a), we consider parametrized
Gaussian policies πθ(a|s) = N (µθ(s),Σ

2
θ(s)). To compute

a modified reward (26), we approximate the variance of Q-
values in (26) using the 1st order Taylor approximation of
Q-values around the mean action:

Vara∼πθ (Q(s, a)) ' g0(s)TΣθ(s)g0(s) (27)

where g0(s) = ∇aQ(s, a)|a=µθ(s). This approximation
involves computing the gradient of Q-values w.r.t. action
evaluated at the mean action. When actions are independent
Σθ(s) = diag(σ1,θ(s), . . . , σK,θ(s)), the expression (27)
simplifies to computing the norm of the gradient weighted
by the variance of corresponding action dimension:

Vara∼πθ (Q(s, a)) ' ||g0(s)||2diag(σ1,θ(s),...,σK,θ(s)) (28)

We summarize the above steps in Algorithm 2.

5. Related work
Robust MDP In model-based setting, robust MDP frame-
work has been proposed (Nilim & El Ghaoui, 2004; Iyen-
gar, 2005) that optimizes over the worst-case realization
of uncertain MDP parameters. Specifically, the dynamic
programming approach is used to optimize a minimax cri-
terion over an uncertainty set that contains possible MDPs
defined in terms of their transition matrices. Multiple works
report the worst-case criterion may lead to overly conserva-
tive policies (Mihatsch & Neuneier, 2002; Gaskett, 2003).
Variants of robust MDP formulations have been proposed to
mitigate the conservativeness when additional information
on parameter distribution is present (Mannor et al., 2012;
Xu & Mannor, 2010; Tirinzoni et al., 2018). Differently, in
this work, we employ adaptive uncertainty sets that reflect
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Algorithm 2 Distributionally Robust Soft Actor-Critic
Initialize: actor πθ, critic Q
Set entropy levelH
Set C, η > 0
Initialize s
for number of epochs do

for number of samples do
a ∼ πθ(s), s′ ∼ p(s′|s, a)
D ← D ∪ {(s, a, r, s′)}

end for
for number of updates do

(s, a, r, s′) ∼ D
ε← Cn−η(s)
λ← 1-d optimization of Eq. (17)
σ2
Q(s)←

∑K
i=1 g0(s)2 ∗ σ2

i,θ, see Eq. (28)
rΩ(s, a)← r(s, a) + 1

2λ (γσ2
Q(s′)− σ2

Q(s)), see
Eq. (25)

Q(s, a) ← rΩ(s, a) + γ(Q(s′, πθ(s
′)) −

α log πθ(s
′)), see Eq. (26)

Update πθ, α as in Alg. 1 of (Haarnoja et al.,
2018a)

end for
end for

the amount of uncertainty associated with the finite sample
size. We define our uncertainty set in terms of policies that
arise naturally in stochastic iterative schemes and result in
computationally efficient algorithms.

Risk-sensitive MDP The framework of risk-sensitive
MDP optimizes a modified objective expressed using a risk-
sensitive criterion, such as the expected exponential utility or
variance-related measure, w.r.t. to the long-term policy per-
formance. In the model-free context, risk-sensitive RL for
expected exponential utility has been proposed in (Borkar,
2002) and for coherent risk measures (Tamar et al., 2015).
The proposed algorithms are computationally extensive as
they involve integration over state space and nonconvex pa-
rameter optimization. Differently, we consider a short-term
dynamic risk that shrinks with the amount of collected data,
and thus, preserves the desired level of long-term risk.

Adversarial RL Adversarial robustness in RL has been a
focus of recent works. (Pinto et al., 2017) studied robustness
to model parameters perturbations by manually engineer-
ing adversarial forces for a set of continuous control tasks.
(Tessler et al., 2019) integrates the adversarial policy into
the agent’s policy definition through a convex combination
or a noisy action perturbation. The proposed methods are
formulated as instances of two-player zero-sum Markov
game (Littman, 1994; Perolat et al., 2015). The distribu-
tionally robust approach is related to a regularized zero-sum
Markov game (Geist et al., 2019), where the adversary is

Hopper Walker2D
Return Avg -1.7%±89 -0.4%±48
Return Std -76%±21 -78%±48
Episode Len Avg +8%±82 +4.8%±89
Episode Len Std -76%±13 -77%±42

Table 1. Percent change of DR-SAC vs. SAC metrics computed
over 100 test trajectories of the final policy. DR-SAC policies
generate trajectories with smaller variance of return and episode
length and similar average values.

regularized against the optimizing policy with a dynamic
data-driven factor. Differently, it defines a multi-stage game
where the first m steps are played by the adversary.

6. Experiments
We compare the robustness w.r.t. estimation errors of dis-
tributionally robust soft actor-critic (DR-SAC) algorithm
(Alg. 2) against soft actor-critic (SAC) (Haarnoja et al.,
2018b). We experiment on continuous control tasks from
PyBullet simulation module (Coumans & Bai, 2016–2019).
In particular, we focus on Hopper and Walker2D domain
that exhibit the most variance during training. We note
that our scores are not directly comparable to the ones re-
ported in (Haarnoja et al., 2018b) since the Roboschool
environments behind the PyBullet module are harder than
the MuJoCo Gym environments.

We build our implementation on top of the Softlearning
package1. We use the same hyperparameters as described
in (Haarnoja et al., 2018b). In addition, we set parameters
C = 1 and η = 0.5. We plan to study the impact of
hyperparameter choice in future work.

To implement per-state counter nt(s), we discretize the state
space as follows. First, we discretize each dimension into
ten equal-size bins, since each dimension takes values from
a bounded range. Then, the state representation is given
by a joint representation of its dimensions. We count the
number of times the state representation appears along the
policy trajectory. We leave the question of finding good
state representation for future research.

First, we analyze robustness during training. Fig. 1 shows
mean and standard deviation of metrics computed over 5
evaluation rollouts at each training step using stochastic pol-
icy. Each evaluation rollout spans over 1000 environment
steps. We perform 5 runs of each algorithm with different
random seed. The solid curves corresponds to the mean
and the shaded region to the minimum and maximum re-
turns over the 5 trials. As expected, the DR-SAC algorithm
greatly reduces variance during training in terms of standard

1https://github.com/rail-berkeley/
softlearning

https://github.com/rail-berkeley/softlearning
https://github.com/rail-berkeley/softlearning
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Figure 1. Average and standard deviation of return and episode length during training on Hopper and Walker2D domains. DR-SAC shows
significant reduction of variance of return and episode length.

deviation of return and episode length. We note that the
absolute value of average return is similar to the one of SAC
algorithm, but the upper confidence bound shows clearly
lower. This empirically confirms the safety guarantee pro-
vided by the DR-SAC.

Next, we analyze the final policy performance. Table 1
presents evaluation results computed across 100 test trajec-
tories over stochastic policies. The policies produced using
DR-SAC algorithm generate trajectories with significantly
smaller variance of return and episode length. The mean
performance and episode length do not show statistically
significant difference. Thus, DR-SAC achieves smaller vari-
ance of performance without decreasing the average value.

Finally, the video demonstrations of learned policies are
available online2. Qualitatively, the movements of DR-SAC
policies are slower and less abrupt than the ones of SAC
policies.

7. Conclusion
We study the risk-averse exploration in approximate RL set-
ting. We propose the distributionally robust modified policy
iteration scheme that implements safety in policy evaluation
step w.r.t. estimation errors. The proposed scheme is based
on a family of distributionally robust Bellman operators that
provide tight lower bound guarantee on policy state-values.
From a theoretical perspective, we establish the convergence
of our scheme to the optimal policy. Practically, the pro-
posed scheme results in tractable algorithms both in the

2https://drive.google.com/open?id=1L63_
52yJQsuZXpG6qFSz2P1MWiZFStR6

discrete and continuous settings. The proposed practical
algorithm implements a mixed exploration strategy that en-
sures safety at short-term and encourages exploration at
long-term. Our experimental results show that distributional
robustness is a promising direction for improving stability
of training and ensuring the safe behaviour RL algorithms.
In future work, we plan to extend the experimental evalu-
ation to more tasks and provide guidance on the choice of
hyperparameters.

References
Abbeel, P. and Ng, A. Y. Exploration and apprenticeship

learning in reinforcement learning. In Proceedings of the
22nd international conference on Machine learning, pp.
1–8. ACM, 2005.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
Analysis of the Multiarmed Bandit Problem. Machine
Learning, 47(2/3):235–256, 2002. ISSN 08856125.

Borkar, V. S. Q-learning for risk-sensitive control. Math.
Oper. Res., 27(2):294–311, May 2002. ISSN 0364-765X.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016–2019.

Garcıa, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437–1480, 2015.

 https://drive.google.com/open?id=1L63_52yJQsuZXpG6qFSz2P1MWiZFStR6
 https://drive.google.com/open?id=1L63_52yJQsuZXpG6qFSz2P1MWiZFStR6
http://pybullet.org


Distributionally robust reinforcement learning

Gaskett, C. Reinforcement learning under circumstances
beyond its control. International Conference on Computa-
tional Intelligence for Modelling Control and Automation,
2003.

Geist, M., Scherrer, B., and Pietquin, O. A theory of
regularized markov decision processes. arXiv preprint
arXiv:1901.11275, 2019.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1352–1361, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(Apr):1563–1600, 2010.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Machine learning pro-
ceedings 1994, pp. 157–163. Elsevier, 1994.

Mannor, S. and Tsitsiklis, J. Mean-variance optimiza-
tion in markov decision processes. arXiv preprint
arXiv:1104.5601, 2011.

Mannor, S., Simester, D., Sun, P., and Tsitsiklis, J. N. Bias
and variance in value function estimation. In Proceedings
of the twenty-first international conference on Machine
learning, pp. 72. ACM, 2004.

Mannor, S., Mebel, O., and Xu, H. Lightning does not strike
twice: Robust mdps with coupled uncertainty. arXiv
preprint arXiv:1206.4643, 2012.

Mihatsch, O. and Neuneier, R. Risk-sensitive reinforcement
learning. Machine learning, 49(2-3):267–290, 2002.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D.
Trust-pcl: An off-policy trust region method for continu-
ous control. arXiv preprint arXiv:1707.01891, 2017.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, volume 99, pp. 278–287, 1999.

Nilim, A. and El Ghaoui, L. Robustness in markov decision
problems with uncertain transition matrices. In Advances
in Neural Information Processing Systems, pp. 839–846,
2004.

Perolat, J., Scherrer, B., Piot, B., and Pietquin, O. Approx-
imate dynamic programming for two-player zero-sum
markov games. In International Conference on Machine
Learning (ICML 2015), 2015.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-
bust adversarial reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 2817–2826. JMLR. org, 2017.

Prashanth, L. and Ghavamzadeh, M. Variance-constrained
actor-critic algorithms for discounted and average reward
mdps. Machine Learning, 105(3):367–417, 2016.

Puterman, M. L. Markov decision processes. Wiley, New
York, 1994.

Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B.,
and Geist, M. Approximate modified policy iteration and
its application to the game of tetris. Journal of Machine
Learning Research, 16:1629–1676, 2015.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Tamar, A., Di Castro, D., and Mannor, S. Temporal dif-
ference methods for the variance of the reward to go.
In International Conference on Machine Learning, pp.
495–503, 2013.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S.
Policy gradient for coherent risk measures. In Advances in
Neural Information Processing Systems, pp. 1468–1476,
2015.

Tessler, C., Efroni, Y., and Mannor, S. Action robust rein-
forcement learning and applications in continuous control.
arXiv preprint arXiv:1901.09184, 2019.

Theocharous, G., Thomas, P. S., and Ghavamzadeh, M.
Personalized ad recommendation systems for life-time
value optimization with guarantees. In Twenty-Fourth
International Joint Conference on Artificial Intelligence,
2015.



Distributionally robust reinforcement learning

Tirinzoni, A., Petrik, M., Chen, X., and Ziebart, B. Policy-
conditioned uncertainty sets for robust markov decision
processes. In Advances in Neural Information Processing
Systems, pp. 8939–8949, 2018.

Xu, H. and Mannor, S. Distributionally robust markov
decision processes. In Advances in Neural Information
Processing Systems, pp. 2505–2513, 2010.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.



Distributionally robust reinforcement learning

A. Appendix
A.1. Convergence of distributionally robust MPI

Lemma 2. Let π and π′ be two policies, and define ∆π :=
π′(·|s)− π(·|s), for every state s ∈ S. Then

|(T π
′
V )(s)−(T πV )(s)| ≤ (Rmax+γ‖V ‖∞)‖∆π(·|s)‖1.

Proof. We first note that π 7→ T π is Lipschitz w.r.t the TV
distance on policies. By direct computation, one has

|(T π′
V )(s)− (T πV )(s)|

= |rπ′
(s) + γPπ

′
(s, ·)TV − rπ(s)− γPπ(s, ·)TV |

= |(π′(·|s)− π(·|s))T r(s, ·) + (Pπ
′
(s|·)− Pπ(·|s))TV |

≤ |(π′(·|s)− π(·|s))T r(s, ·)|+ |∆π(·|s)P (·|s, ·)V |
≤ ‖∆π(·|s)‖1‖r(s, ·)‖∞ + ‖∆π(·|s)‖1‖P (·|s, ·)TV ‖∞

≤ (Rmax + γ‖V ‖∞)‖∆π(·|s)‖1.

where in the last but one inequality, we have used the
fact that ‖P (·|s, ·)V ‖∞ := maxa∈A |P (·|s, a)TV | ≤
maxa∈A ‖P (·|s, a)TV ‖1‖V ‖∞ = ‖V ‖∞, because
‖P (·|, s, a)‖1 = 1 for all a ∈ A since P is a transition
matrix.

Theorem 1 (Distributionally robust modified policy itera-
tion). For an integer m ∈ [1,∞], consider the distribution-
ally robust MPI scheme (18), where

εt(s) =

{
Cnt(s)

−η, if nt(s) ≥ t/S,
0, else,

for some constants C, η > 0 and S denotes the number of
states.

Let ˜̀
t := Ṽt − V ∗ ∈ RS be the loss at iteration t. Then

after N ≥ 2 iterations, we have

(A) Sub-optimality bound:

‖˜̀N‖∞ ≤
4Rmax

(1− γ)2
EN +

2γN

1− γ
‖˜̀0‖∞,

where

EN :=

N−1∑
t=1

γt‖δN−t‖∞ = ON
(

CSη

(1− γ)Nη

)
−→ 0.

(B) Safety guarantee:

Ṽt ≤ Vt ≤ V ∗, ∀t ∈ {1, . . . , N},

where Vt is the value function computed via exact eval-
uation step (5).

Proof. Part (A) Let π and π′ be two policies, and set ∆π :=
π′(·|s)−π(·|s), for every state s ∈ S . Then, given any value
function v ∈ RS and applying Lemma 2, one has

|(T π
′
V )(s)−(T πV )(s)| ≤ (Rmax+γ‖V ‖∞)‖∆π(·|s)‖1.

Further, using Pinsker’s inequality, one has

|(T π
′
V )(s)− (T πV )(s)| ≤ (Rmax + γ‖V ‖∞)

√
DKL(π′‖π). (29)

Now, using the inequality (29) and the definition of Ṽt

0 ≤ ((Tπ
εt
t )mṼt−1)(s)− Ṽt(s)

= ((T π
εt
t )mṼt−1)(s)− ((Tπt)mṼt−1)(s)

≤ (Rmax + γ‖Ṽt−1‖∞)
√
DKL(πεtt (·|s)‖πt(·|s))

≤ ‖Ṽt−1‖∞(1− γ)−1Rmaxεt(s),

where, in the last inequality we have used the fact that
‖Ṽt−1‖∞ ≤ (1 − γ)−1Rmax. On the other hand, by con-
struction of the errors εt, one has

‖εt‖∞ = max
s
εt(s) = max

s|nt(s)≥t/S
Cnt(s)

−η ≤ CSηt−η.

Thus, setting � := (1 − γ)−1Rmax, for large N , one can
bound EN as follows:

EN =
∑N−1
t=1 γt‖δN−t‖∞ ≤ �

∑N−1
t=1 γN−t‖εt‖∞

≤ �CSηγN
∑N−1
t=1 γ−tt−η ∼ CSη

(1−γ)Nη ,

where the last asymptote is via this MathOverflow post
https://mathoverflow.net/q/329893. The de-
sired result then follows from Lemma 1.

Part (B). Follows from definition of πεt .

https://mathoverflow.net/q/329893

