
GRIP: Multi-Store Capacity-Optimized High-Performance
Nearest Neighbor Search for Vector Search Engine

Minjia Zhang
Microsoft AI and Research

Bellevue, WA, USA
minjiaz@microsoft.com

Yuxiong He
Microsoft AI and Research

Bellevue, WA, USA
yuxhe@microsoft.com

Abstract
This paper presents GRIP, an approximate nearest neighbor (ANN)
search algorithm for building vector search engine which makes
heavy use of the algorithm. GRIP is designed to retrieve documents
at large-scale based on their semantic meanings in a scalable way.
It is both fast and capacity-optimized. GRIP combines new algo-
rithmic and system techniques to collaboratively optimize the use
of memory, storage, and computation. The contributions include:
(1) The first hybrid memory-storage ANN algorithm that allows
ANN to benefit from both DRAM and SSDs simultaneously; (2) The
design of a highly optimized indexing scheme that provides both
memory-efficiency and high performance; (3) A cost analysis and
a cost function for evaluating the capacity improvements of ANN
algorithms. GRIP achieves an order of magnitude improvements on
overall system efficiency, significantly reducing the cost of vector
search, while attaining equal or higher accuracy, compared with
the state-of-the-art.
CCS Concepts
• Information systems → Search engine architectures and
scalability; Search engine indexing;
Keywords
Information retrieval; approximate nearest neighbor search; SSD
ACM Reference Format:
Minjia Zhang and Yuxiong He. 2019. GRIP: Multi-Store Capacity-Optimized
High-Performance Nearest Neighbor Search for Vector Search Engine. In
The 28th ACM International Conference on Information and Knowledge Man-
agement (CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3357384.3357938

1 Introduction
Retrieving relevant documents or images in response to a natural
language query is an integral and indispensable task in information
retrieval (IR). Due to the importance of this task, both academic
research and industrial products have put a significant emphasis
on designing effective and efficient IR systems. The recent suc-
cessful advances of deep neural networks for various tasks have
also impacted IR applications. In particular, it is possible to build a
vector search engine to support semantic search by encoding both

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357938

documents and queries into dense continuous vectors with high-
quality neural ranking models and retrieve documents based on
vector distances [12, 34]. This approach has demonstrated signif-
icant relevance gains in a wide range of IR applications, such as
web search [22, 38], ad-hoc retrieval [13, 20, 36], question answer-
ing [37], mobile search [6], and product search [33].

The deployment of vector search to large scale is gaining more
andmore attention, due to thewidespread commercial value and the
exciting prospect. Fundamentally, vector search can be abstracted
as the nearest neighbor search problem in high-dimensional space,
and various approximate nearest neighbor (ANN) search algorithms
have been proposed by trading the guarantee of exactness against
high-efficiency improvement, such as tree structure–based [9, 10,
30], hashing–based [18], product quantization–based [17, 23, 25,
27, 31], and proximity graph–based [16, 29] approaches. However,
existing approaches all suffer from one common limitation: they
often assume that the entire database would fit in main memory
(DRAM); thus they fail if the data exceed the limited memory capac-
ity on a single machine. To overcome the DRAM scaling issue and
to meet the high capacity needs of the large-scale vector search,
one can either scale up the amount of DRAM in a single machine
or scale out the ANN search by partitioning the dataset and utilize
the collective DRAM in a distributed setting, both of which are not
memory efficient and very costly.

Yet another possibility is to leverage persistent storage to achieve
more capacity. While storage has always been much slower than
DRAM, the arrival of fast storage medium, such as NVMe based
SSDs, has delivered unprecedented performance on both latency
and peak bandwidth, and their cost is fast approaching that of hard
disk drives. Also, SSDs today can scale up to terabytes, whereas
DRAM scales only to gigabytes. In this context, it is worth investi-
gating the hybrid memory-storage hierarchy for scalable ANN due
to the changes to the hardware landscape. To date, however, few
studies have examined how to best leverage these new storage tech-
nologies in an ANN algorithm. There are several aspects of SSDs
that make existing algorithms challenging for them. For example,
the proximity graph based method is at the time being the fastest
and most accurate ANN method [16, 29], but they are memory con-
suming and do not scale well to SSDs because the traversal of the
graph generates many non-contiguous memory accesses, which
would be much slower on SSDs.

In this paper, we exploit the memory-storage hierarchy simulta-
neously and rethink the design of ANN search algorithm to address
the following question: Can a multi-store ANN algorithm achieve
low search latency and high accuracy while being memory-efficient
and scalable? Specifically, the algorithm should have a clear advan-
tage over the state-of-the-art ANN implementations.

https://doi.org/10.1145/3357384.3357938
https://doi.org/10.1145/3357384.3357938

To provide a definite answer to this question, we present GRIP
tailored to jointly optimize search time, memory usage, and ac-
curacy with both DRAM and SSDs. To avoid excessive memory
usage of a dataset, GRIP first applies a product quantization–based
technique to compress full-precision vectors into short codes. How-
ever, product quantization, as other compression–based techniques,
often comes with non-negligible accuracy degradation on large
datasets of dense vectors due to quantization errors. To improve
the accuracy, instead of finding top-K in one-shot, GRIP identifies a
small list of candidates that have a high probability of including the
top-K , and then validates those candidates with their full-precision
vectors stored on SSDs. However, this causes another two chal-
lenges to the search efficiency: 1) product quantization tends to
check more vectors than the proximity graph–based approaches
to reach the same accuracy; and 2) accessing the storage is still
much slower than accessing DRAM. To improve search efficiency,
GRIP systematically addresses three key technical challenges: 1)
To reduce the number of vectors that need to be checked, GRIP
introduces a new routing index, called graph-routing-index, which
generalizes the proximity graph idea by replacing each node of
the graph with a small group of short codes and navigating the
graph to quick select these groups with reachability guaranteed;
2) To accelerate the speed of checking individual vectors, GRIP
introduces a technique that reduces memory accesses by almost
half with tiny memory cost added to each vector. 3) To support low
validation latency, GRIP employs a lightweight mechanism that
exploits the asynchrony and internal parallelism of SSDs.

We implement GRIP in C++ on Linux and perform a thorough
evaluation to compare its effectiveness and efficiency with state-
of-the-art ANN implementations. Our evaluation suggests that
compared to compression–based technique such as IVFPQ, GRIP
obtains significantly higher accuracy (close to 1), while reducing
the latency by 2.7–19.4X. To meet similar accuracy target, GRIP
improves the latency by 14.7–23.4X. Compared to the state-of-the-
art proximity graph–based approach HNSW, GRIP achieves 12–14X
memory cost reduction with similar latency and accuracy.

To evaluate the capacity improvement, we introduce a cost func-
tion that expresses the overall system efficiency — VQ, i.e., VQ =
number of Vectors per machine × Queries processing rate, inspired
by DQ metric of web search engine [19]. For a given database with
a total number of vectors N and a query processing rateQ , an ANN
solution requires (N × Q)/VQ number of nodes. The higher the
VQ, the less the number of machines and cost! To meet the same
accuracy target, GRIP improves VQ by up to 15.3X compared to the
DRAM-only algorithms such as IVFPQ, L&C, and HNSW.

The key contributions of the work include: 1) Introducing GRIP,
a capacity-optimized ANN algorithm for large-scale vector search,
which is, to the best of our knowledge, the first that goes beyond
memory and allow ANN to benefit from both DRAM and SSDs
simultaneously. 2) Developing several novel techniques that collab-
oratively optimize latency, accuracy, and memory usage (§ 4, § 5).
3) A cost analysis of GRIP and identifying an important new metric
(i.e., VQ) to evaluate the efficiency/cost of capacity optimization
results for high-quality ANN search (§ 6). 4) Implementing and eval-
uating GRIP, and showing an order of magnitude improvements
on VQ compared to the state-of-the-art (§ 7).

GRIP, with its efficiency and effectiveness, powers our produc-
tion vector search services. It empowers significantly more vectors
served by a single machine with low latency and high accuracy. As
online services like search engine host billions of vectors and serves
thousands of requests per second through vector search, a highly
cost-efficient solution like GRIP could save thousands of machines
and millions of infrastructure cost per year for the deployments of
large-scale vector search.
2 Background and Related Work
2.1 Preliminaries
Vector search can be abstracted as the nearest neighbor search (NNS)
problem, which aims at finding the K vectors from the dataset which
minimize the distance to a given query, according to a pair-wise
distance function (e.g., Euclidean).

In practice, the size of the database vectors is often large, so the
computation cost of an exact solution is extremely high. To reduce
the searching cost, approximate nearest neighbor (ANN) search
relaxes the guarantee of exactness for efficiency, which returns the
true nearest neighbors with high accuracy (high recall), where the
recall measures the fraction of the top-K retrieved by the ANN
search which are exact nearest neighbors. In particular, assume
TopK

′

denotes the set of results returned to a given query q, the
recall is defined as below:

Recall =
|TopK

⋂
TopK

′

|

|TopK |
=
|TopK

⋂
TopK

′

|

K
(1)

High recall (i.e., close to 1) is clearly important for high-quality
vector search because otherwise users will not be able to find what
they are looking for. In this paper, we use recall as an evaluation
metric. Next, we summarize previous work on ANN search.
2.2 Related Work
2.2.1 Tree structure–based algorithms. Many tree-based ap-
proaches have been proposed to partition the space and index the
resulting sub-spaces for fast retrieval, such as KD-Tree [10], R∗-
Tree [9], and Randomized KD-Tree (FLANN) [30]. These approaches
tend to work well in low dimensions. However, it is challenging
to partition the subspaces, especially in high dimensional space,
so that neighbor areas can be scanned efficiently to identify the
nearest neighbors of a given query. The complexity of these ap-
proaches is O(D × N 1−1/D), which gradually becomes not more
efficient than a brute-force search as the dimension D becomes
large (e.g., > 32) [26].
2.2.2 Proximity graph–based algorithms.The proximity graph
based approaches have recently demonstrated outstanding accuracy
and latency trade-offs. In particular, HNSW (Hierarchical Navigable
Small World Graph) achieves logarithmic search complexity by
navigating with small-world properties [29]. Several literatures
have compared HNSW to a wide range of existing ANN algorithms,
and the experimental results show that HNSW is by far both the
fastest and most accurate, because it checks much fewer vectors
to reach the same accuracy than other approaches [15, 29]. Fu.
et al. later introduces NSG, which achieves similar performance
as HNSW but with concrete theoretical proof of the logarithmic
search complexity [16]. Both HNSW and NSG achieve high search
efficiency with high accuracy, but they have a high cost of memory,
as they still need to store the whole full-precision vectors and graph
metadata in memory.

2.2.3 Compression–based algorithms. Another large body of
existing ANN work relies on compression. One of the well-known
representatives is Locality-Sensitive Hashing (LSH) [18], which ap-
proximates the similarity between two vectors with hashed codes.
However, LSH and similar approaches have been designed for large
bag-of-words sparse vectors with hundreds of thousands of dimen-
sions, not dense continuous vectors with only a few hundreds of
dimensions, like those learned by neural networks.

On a separate line of research involves compressing vectors to
short codes that contain only tens of bits through product quantiza-
tion (PQ) [23, 24]. Prior work such as OPQ, Cartesian KMeans, and
LOPQ extend PQ by making the quantization better fit to the under-
lying distribution of database vectors [17, 25, 31]. To deal with large
datasets, these approaches typically use a two-level approach in
combination of the inverted file index (IVF) or inverted multi-index
(IMI) [23, 27], which prior work has demonstrated to be more ef-
fective on large-scale datasets than hashing-based approaches [25].
Although the PQ–based methods can effectively reduce the data-
base size, one common limitation is that they have a poor recall on
large datasets because of quantization errors (discussed in §§ 3.1).

3 Challenges and Opportunities
In this section, we first introduce the challenges prior work face to
offer desired accuracy, latency, and memory all together. We then
identify opportunities for improvement.
3.1 Challenges
Challenge I. It is less clear how to best utilize storage for ANN
design, given the very different performance characteristics
between memory and storage.While it takes only around 60ns to
read a few bytes of data with DRAM, it takes 10ms to read data from
hard disk drives (HDDs) due to its slow mechanical nature. Because
of this big latency gap, one of the key assumptions in existing ANN
design has been that data fits in memory. More recent non-volatile
memory (NVM) based SSDs offer 60 µs read latency, which has
improved by more than 1,000X over HDDs. Furthermore, DRAM
today scales only to gigabytes per DIMM slot, whereas SSDs can
scale up to terabytes per PCIe slot [5]. In terms of cost, SSDs are
up to 8X cheaper and consume less than ten times of power per
bit than DRAM [28]. These changes could dramatically affect ANN
design. However, it is still unclear how to best leverage these new
storage technologies. For example, what should be stored on SSDs
and what should be kept in memory, and for a response time limit
how to deal with the trade-offs between accesses in DRAM vs. in
SSDs, which previous design choices do not consider.

Challenge II. Graph-based approaches are efficient, but they
are memory consuming and do not scale well to SSDs. While
graph-based approaches attain good latency and accuracy, their
indices are memory consuming in order to store both full-length
vectors and the additional graph structure [29]. As the number of
vectors grows, its scalability is limited by the physical memory
of the machine, requiring machines with larger memory or more
machines. However, it is difficult to make graph-based solutions
work effectively on SSDs because the search of the graph structure
generates many non-contiguous memory accesses, which are much
slower on SSDs than memory and detrimental to the query latency.

Challenge III. Compression provides memory compactness
but results in poor recall on large datasets. Compression based

approaches, such as PQ, suffer from low recall. As a point of refer-
ence, the best results achieved by both PQ and its most advanced
variant LOPQ on Deep10M and Deep1B datasets do not exceed
0.76 recall at rank 1 [23, 25]. Douze et al. recently propose L&C ,
which builds an HNSW graph with each node quantized and ex-
ploits neighbor nodes to refine the estimation of distance. This
approach does not eliminate quantization errors and still creates
non-negligible recall loss for large datasets, and the best recall L&C
achieves on 1-million vectors (Deep1M) is < 0.65 (Fig.5) when
K = 1 [15], which is too low. We will provide a comparison with
this approach in our experiments.
3.2 Preliminary Analysis and Opportunities
Although product quantization–based approaches have poor re-
call, they are still promising techniques for capacity optimization
because they provide a strong reduction in memory. This section
presents several studies that have guided the design of the algo-
rithms and optimizations in § 5. All these evaluations are performed
on X = SIFT 1M ⊂ R128, a classical dataset in BIGANN to evaluate
nearest neighbor search [23]. We experiment with IVFPQ (16K clus-
ters) by varying the number of clusters being selected and checked
in IVF. This lets us identify opportunities for our design.

First, Fig. 1a shows that by checking 512 clusters (3%), the prob-
ability of an exact match is only 0.718, but by returning more candi-
dates (e.g., 10), the likelihood that the true top-1 is included in those
candidates is 0.997, close to unity (Fig. 1a). Similarly, although the
recall is only 0.789 when searching for top-10, the probability of
the true top-10 included in 50 candidates is 0.997, again close to
unity. We find this issue generally exist towards various datasets
(more results in Section 7.3). This observation indicates that — O1:
although the approximated top-K might not always match the ex-
act top-K for PQ on large datasets, the top-K are more likely to
fall within a list of R candidates, where R is larger but not too
much larger than K . Prior work made similar observation when
applying product quantization to signal processing [24], but they
did not evaluate the efficiency impact of this observation.

(a) (b)

Figure 1: (a) Hit ratio of top-K in the candidate sets. (b) Clus-
ter selection time TS and vector checking time TC with two-
level quantization-based approach.

Second, we study the search latency of two-level quantization,
which is decomposed into two parts: the cluster selection time (TS)
and the vector checking time (TC) in selected clusters. We observe
thatO2: quantization-based approaches face a dilemmaon op-
timizing latency. Both latency components depend on the number
of the first-level clusters NC . During cluster selection, a query com-
putes its distances to all cluster centroids and choose a few clusters
whose centroids are closest to the query to scan, andTS in this case

is linear in NC . When NC is not too large, finding which clusters
to scan is computationally inexpensive. Existing approaches rarely
choose a largeNC , because asNC increases,TS itself would become
too long, prolonging query latency. Fig. 1b shows that sometimes
TS can dominate the computation cost.

On the other end, larger NC leads to a smaller percentage of
vectors to be scanned at the second level to reach the same recall.
Fig. 2a shows that with NC = 1K, 4K, and 16K, checking the same
number of clusters (e.g., 64) all lead to a very similar recall. This
observation is kind of intuitive as top-K would belong to at most K
clusters regardless of NC value. As larger NC has a less (expected)
number of vectors per cluster, this observation indicates that, O3:
larger NC reduces the checks of vectors at the second level to
reach the same recall. Fig. 2b shows that by checking 64 clusters,
only 0.4% vectors need to be checked when NC is 16K , whereas
it is 6.4% when NC= 1K , which means the search at the second
level takes shorter time with larger NC . The NC dilemma makes it
challenging to optimize both TS and TC . The problem is beyond se-
lecting a good value for NC and seems to require more fundamental
changes in ANN design for latency optimization.

(a) (b)

Figure 2: Recall and the percentage of vectors being checked
in two-level quantization varying the number of clusters.

4 Design Overview
We introduce GRIP, a capacity-optimized multi-store ANN algo-
rithm to scale up high-quality vector search. GRIP is composed of
both DRAM and SSDs, where each vector has a quantized store
in DRAM and a full-precision store on SSDs. At a very high level,
GRIP indexes and searches vectors in two stages:
• A preview stage, comprising novel in-memory indexing that
enables memory compactness and allows a query to quickly
identify a short list of candidate vectors;
• A validation stage, employing a lightweight SSD access mecha-
nism to validate every selected candidate with their full-precision
representation to select top-K .
Fig. 3 illustrates the overview of a GRIP index, which comprises

of several layers. At the very bottom layer is the validation layer
that stores the entire full-precision dataset on SSDs. Since the ca-
pacity of SSDs is much larger than that of DRAM, GRIP can host
significantly more vectors, even in full-precision, given enough
SSD capacity. Above that is the preview layer, which contains short
codes encoded by product quantization codebooks. The quanti-
zation significantly reduces memory usage. The short codes are
clustered into groups, which allow a group of vectors to be selected
altogether if its centroid is close to the query. The highest layer
uses the graph-routing-index to quickly and accurately dispatch a
query to a few closest clusters.

Intuitively, the multi-store design achieves memory savings,
through storing quantized data in memory, and high recall through
SSD-based validation to enhance accuracy given the high probabili-
ties of true top-K included in the candidate list, as identified in O1,
but what about latency? Accessing SSDs is still much slower than
accessing DRAM. We introduce and develop three techniques to
efficiently reduce the search time:
• Graph-routing-index (GRI): The graph-routing-index returns
a small number of clusters that are better localized around the
query points with low latency, high accuracy, and reachability
guarantee. It makes cluster selection more scalable compared
to IVF and IMI, handling O2, and avoids checking an excessive
amount of short codes, as identified in O3. (§§ 5.1);
• PQ∗: We introduce PQ∗, a variant of PQ that further cuts the cost
of checking vectors by half by storing a small partial-distance-
value (PDV) value for each vector (§§ 5.2).
• Lab-SSD-Val: It performs lightweight validation on SSDs through
a combination of asynchrony and multi-candidate batching tech-
niques(§§ 5.3).

Next, we describe how to construct GRIP index in details and how
to search for top-K (§§ 5.4).

DRAM

...

Cluster_0

Short Code PDV

...

Cluster_1

Short Code PDV

...

Cluster_n

Short Code PDV
Connectivity
Augmenting

SSD

Validation Buffer

Graph-routing-index

Lab-SSD-Val

Flash Devices

Full-precision

c0

c1

cn

A

B

Figure 3: Overview of GRIP.
5 Algorithms and Optimizations
Given a set of vectors, GRIP builds the in-memory index using
Algorithm 1, with three major steps:
5.1 GRI Construction
Cluster selection based on exact search incurs linear complexity
of O(NC · D). Although prior ANN work such as KD-Tree and
PQ (e.g., IMI) may be invoked to speed up this process, they often
introduce significantly accuracy loss. Instead, we introduce a coarse-
grained routing index based on the state-of-the-art proximity graph–
based approaches. In particular, we build GRI based on both HNSW
and Kosaraju’s algorithm [21]. The goal of GRI is to quickly and
accurately select a few closest clusters to check at the next step and
to avoid creating unreachable clusters.

We build GRI upon HNSW because it is both the fastest and
most accurate ANN index. Furthermore, since we build the graph
with only cluster centroids, it does not cause as much memory
overhead as indexing the entire database vectors. However, one
source of inaccuracy of HNSW is that it has no guarantee of reach-
ability. Analysis shows that HNSW graph is weakly connected

Algorithm 1 GRIP index construction algorithm

1: Input: Vector set X , vector dimension D.
2: Output: GRIP index.
3: Parameter: Number of database vectors N , number of sub-

dimensional spacesM , size of each sub-codebook L, number of
clusters NC

4: centroids ← clusterinд(X ,D,NC) ▷ Partition the vector space
with Lloyd’s algorithm.

5: дri_index ← CreateGri(centroids)
6: for i in 0..(N − 1) do
7: cluster_id, centroid ← assiдn(X [i], centroids)
8: residuals[i] ← compute_residual(X [i], centroid)
9: cluster_ids[i] ← cluster_id
10: for i in 0..(M − 1) do
11: sub_codebook ← train(residuals,D,M,L)
12: pq_codebook .add(sub_codebook)
13: preview_layer .add(pq_codebook)
14: for i in 0..(N − 1) do
15: cluster_id ← cluster_ids[i]
16: short_codes[i] ← product_quantizer (residuals[i])
17: preview_layer .clusters[cluster_id].add(short_codes[i])
18: for i in 0..(N − 1) do
19: pdc_values[i] ← comp_pdc(residuals[i], cluster_ids[i])

but not necessarily strongly connected, which causes the issue of
having "isolated nodes" in the graph — nodes with zero in-degree
that are unreachable. For instance, our experiments show that an
HNSWgraphwith an out-degree of 20 over 200K centroids using the
Deep10M dataset has around 900 nodes whose in-degree are zero.
These nodes and their corresponding clusters, which are around
45,000 vectors, are unreachable. If these vectors are unreachable,
they cannot be retrieved. We do not want to miss results simply
because the routing index cannot reach their cluster centroids. To
resolve the reachability issue, the CreatGri method at line 5 builds
an HNSW graph with additional two complete traversals of the
HNSW graph to adjust edges to make the graph strongly connected.
The benefits of this design is that the number of added edges is
theoretically guaranteed to be minimal, and since only minimal
edges are added, it preserves the small-world properties, which
HNSW relies on for efficiency.
5.2 Enabling High-Efficiency Compression with PQ∗

To better suit the design of memory-storage based architecture,
GRIP introduces a variant of PQ, called PQ∗, to provide both mem-
ory compactness and high-performance. PQ∗ reduces the number
of bits to store each vector by generating codebooks and encod-
ing short codes the same way as PQ. Different from PQ, PQ∗ adds
a partial-distance-value (PDV) to each vector, which takes a tiny
piece of memory but results in significantly search time reduction
(line 18–line 19). We first briefly describe the main idea of using PQ
to quantize vectors below and please find more details in Jégou et
al. [23]. We then talk about how PQ∗ helps improve performance.

GRIP first calculates the residual distance of each vector to the
cluster it belongs to (line 6–line 9). It then splits the vector space
intoM sub-dimensional spaces and constructs a separate codebook
for each sub-dimension (line 10–line 12). GRIP then generates quan-
tized short codes by assigning the PQ code to each vector (i.e., a

concatenation ofM indices) and adds each short code to its closest
cluster (line 14–line 17).
5.2.1 Partial-Distance-Value (PDV).For each query, the original
distance computation of PQ requires 2 × M memory accesses to
look-up-tables (LUTs) that store pre-computed distances between
codewords. PQ∗ reduces the number of memory accesses to M +
1, which significantly reduces the data movement cost. Next, we
provide the detail of how PDV works.

For each vector x in cluster ci , PQ∗ calculates the distance from
query q to x with asymmetric distance computation (ADC) [23]:

d(q,x) = d(q − c, r) ∼ dADC (q − c,pq(r)) (2)

=

M∑
m=1

d((q − c)m ,vqm (rm)) (3)

where c is the cluster centroid and r is the residual between x and
c , denoted as [r1 : ... : rM]. Eqn.(3) gets expanded into Eqn. (4):

∥q − c∥2

T erm−A
+

M∑
m=1
∥cmxm ∥

2

T erm−B

+ 2
M∑

m=1
⟨cm , cmxm ⟩

T erm−C

− 2
M∑

m=1
⟨qm , cmxm ⟩

T erm−D

(4)

where cmxm = vq
m (rm), denoting the closest sub-codeword assigned

to sub-vector xm in them-th sub-dimension.
By looking close into these terms, we notice that each term can

be query–dependent (query–dep.), mapped-centroid–dependent
(centroid–dep.), and/or PQ-code–dependent (PQ-code–dep.). Ta-
ble 1 summaries these dependency relationships.

Query–dep. Centroid–dep. PQ-code–dep.
Term-A ✓ ✓ ✗

Term-B ✗ ✗ ✓

Term-C ✗ ✓ ✓

Term-D ✓ ✗ ✓

Table 1: Dependencies of PQ distance computation.
Since both Term-B and Term-C are query independent, existing

algorithms such as PQ compute these two terms and store them
in LUTs. At search time, it requires 2 × M memory lookups to
retrieve these two terms. This approach does not require to store
any additional data for an individual vector and favors memory
savings more than latency gains. In contrast, PQ∗ computes and
stores the total partial sum of Term-B and Term-C (PDV) for every
vector at the index construction phase, which adds f -byte memory
(e.g., 4-byte if vector type is float) per data point. During query
processing, it takes a single lookup to get the PDV. In total, it takes
M + 1 lookup-add operations to calculate the distance. We show in
the evaluation that PQ∗ significantly reduces the search time while
providing considerable memory overhead reduction.
5.3 Validation Layer Construction
Apart from the in-memory part, GRIP keeps all the full-precision
database vectors on SSDs and validate R selected candidates from
in-memory search with their full-precision vectors. Loading full-
precision vectors from storage is slow because even SSDs typically
have 100-1000 times higher round trip latency than DRAM. Tomake
it even worse, the latency of validating an entire set of candidates
from SSDs can be detrimental to the response time because there
could be as many as 100 candidates that need to be validated.
5.3.1 Lab-SSD-Val.Lab-SSD-Val is a lightweight mechanism for
quickly validating a list of candidates with their full-precision vec-
tors on SSDs. Modern SSDs are built on an array of flash memory

packages, which are connected through multiple (e.g., 8) channels
to flash memory controllers, and data accesses can be conducted
independently in parallel [11]. This hardware architecture has two
benefits: (1) Accessing data from multiple flash memory packages
in parallel can provide high-aggregate bandwidth; (2) High latency
operations can be effectively hidden by other concurrent operations.
Fortunately, given that the validation process does not have to be
sequential, the asynchronous batching query submission based tech-
nique [32] well addresses the problem by dividing the queries into
multiple batches and loading each batch asynchronously. Specifi-
cally, we implement Lab-SSD-Val using the Linux NVMeDriver. The
implementation uses the Linux kernel asynchronous IO syscalls.
We combine B candidate vectors in the candidate list R into one big
batch and submits S = ⌈R/B⌉ batched requests to SSDs to cover the
entire list. We then validate a candidate as soon as its full-precision
vector has been loaded from SSDs into DRAM. Batched requests al-
low GRIP to exploit the internal parallelism of SSDs andmake better
performance I/O request scheduling decisions. Asynchronous IO
unblocks GRIP search process and allows the distance computation
to overlap with I/O and hide the SSD access latency.
5.4 Query Processing
In this section, we describe how GRIP searches top-K . Algorithm 2
shows the online search process. First, the search starts from GRI
in memory, which efficiently selects a few closest clusters with
graph navigation (line 5). The system parameter that controls the
trade-off between search time and accuracy is e f Search, which
bounds the length of the search candidate queue. This step is very
fast because of the limited number of nodes and the logarithmic
search complexity. Second, for those selected clusters, GRIP checks
quantized vectors in them with PQ∗ 1 (6–17) and keeps track of R
candidates (R >ϵ K , where R is larger but not significantly larger
thanK) with a priority queue (line 4). Third, eventuallyR candidates
are validated on SSDs to select the final top-K (line 18).

6 Cost Analysis
Compared to in-memory only ANN approaches, the GRIP multi-
store design has more parameters. Having a much larger design
space, it is preferable to have a systematic way for parameter se-
lection. In this section, we build a performance model, with an eye
towards being able to set the parameters properly to achieve the
design targets. Table 2 presents the notation used in the analysis.
6.1 Search Cost
The search cost consists of three parts: the cost of cluster rout-
ing (CR), the cost for checking vectors (CV), which includes sub-
distance calculation and actual distance calculation using sub-distance
results (codebook look-ups plus summing up sub-distances), and
the cost of validation (VA). Assuming a complete overlap between
computation and data movement (best case scenario), the execution
time can be estimated using the roofline model [35].

Time ⩾ Max(CompTime,DataMoveTime)

= Max(
TotalComp

ComputePeak
,

DataMoved

DataBandwidth
)

(5)

1Similar as IVFPQ, GRIP skips (line 7–8) and directly calculates term-D on-the-fly at
line 15 when it is cheaper to compute term-D directly.

Algorithm 2 GRIP online search algorithm

1: Input: Query vector q, K
2: Output: Top-K
3: Parameter: number of selected clusters to scan NS , size of

search queue e f Search, size of candidate list R.
4: R ←min_priority_queue()
5: INS ,DNS ← дri_index .search(q,NS)
6: form in 0..(M − 1) do
7: for l in 0..(L − 1) do
8: termD_LUT [m][l] ← −2 × ⟨qm , cml ⟩ ▷ Init LUTs for

computing all possible Term-D
9: for n in 0..(NS − 1) do
10: cluster ← preview_layer .clusters[INS [n]]
11: t1← ∥q − DNS [n]∥2 ▷ Compute Term-A
12: for all v in cluster do
13: dist ← 0
14: form in 0..(M-1) do
15: dist ← termD_LUT [m][vm] + dist
16: dist ← pdc_values[vid] + dist ▷ Lookup-add the

PDV value
17: R.push(v,dist)

18: TopK ← lab_ssd_val(q,R) ▷ Validation on SSDs.

Based on that, the search cost (SO) is:
SO = CR +CV +VA (6)

CR ⩾ Max(
2 · loдNC · D
ComputePeak

,
loдNC · D · f

DRAMBandwidth(loдNC · D · f)
)

(7)

CV ⩾ Max(
N · NS/NC · (M + 1)

ComputePeak
,

N · NS/NC · (M + 1) · loдL/8
DRAMBandwidth(N · NS/NC · (M + 1) · loдL/8)

)

+ N · NS/NC · loдR

(8)

VA ⩾ Max(
2 · R · D

ComputePeak
,

R · D · f

SSDBandwidth(R · D · f)
) + R · loдK

(9)
On modern architectures, the computational throughput is signifi-
cantly higher than the DRAM data movement throughput, which
is significantly higher than the SSD data movement throughput.
Let us look at a machine with Xeon Gold 6152 2.10GH, DDR4 (2666
MHz) DRAM, and Samsung 960 Pro SSD. It has peak computational
performance of 1.48TFlops while the DRAM peak bandwidth is
10.75 GigaFloats/s (43GB/s) and the SSD peak bandwidth is 0.525
GigaFloats/s (2.1GB/s). Because of this big difference of hardware
throughput, the total execution time can easily be bottlenecked by
the data movement. Our GRI reduces both the computation and
data movement overhead of CR fromO(NC) toO(loдNC). Our PQ∗
technique reduces the DRAM accesses of each vector from 2 ·M
toM + 1, effectively reducing CV. While the SSD accessing cost is
high from an absolute standpoint, our in-memory index is designed
with the goal of reducing excessive accesses to SSDs, which results
in only a small set of candidates (e.g., 10–100) , which together with
Lab-SSD-Val only cause marginal cost associated with SSDs (VA).

Symbol Meaning Example
GRIP design parameters

NC number of clusters 200K
L codebook length per sub-dimension 256
M number of sub-dimension 24
OD out-degree of proximity graph 20
NS number of selected clusters 256
R number of candidates 50

Workload characteristics
N number of database vectors 80M
D number of dimensions 128
f number of bytes of data type 4
K number of nearest neighbors to retrieve 5

Constraints
ξ lower limit of allowable accuracy 0.97
ϕ response time limit 10ms

Hardware parameters
MS memory capacity size 32GB
SS SSD storage size 1T B

Table 2: Notation.

6.2 Construction Cost

The complexity of the GRIP index construction consists of three
parts: (1) the clustering cost, which takes O(NC · |X |2 · D) to run
each iteration; (2) the GRI construction cost, which has O(NC ·
loдNC + 2 · (NC + NC ·OD)) complexity; (3) the PQ∗ cost, which
takes M times the complexity of performing K-Means clustering
with L centroids of dimension D

M to learn the codebooks and then
takes O(N · (D · L + 2M)) to encode and compute the PDV values
for all vectors. Among the three parts, clustering usually dominates
the construction time because it has a quadratic complexity to the
number of vectors due to the pairwise comparisons. When X is
really large, it is possible to reduce clustering cost by applying the
algorithm to a smaller subset X ∗ ⊂ X .

6.3 Space Consumption

We express memory consumption as the sum of bytes required to
store the GRIP index, which includes the GRI, the codebooks, the
quantized short codes, and the PDV values. The GRI uses NC ·
(D +OD) · f bytes. The codebooks take L ·D · f bytes. Each vector
consumesM · loд(L)8(bit) plus f bytes, which includes both codebook
indices and a PDV value. The memory overhead is given by Eqa. 10:

MO = NC · (D +OD) · f + L · D · f + N · (M ·
loд(L)

8-bit
+ f) (10)

First, this equation indicates that even a large NC (e.g., two orders
of magnitude smaller than N) does not significantly increase the
memory consumption because it is still relatively small compared to
the quantized representation of the entire set of vectors. However,
whenNC gets closer toN andM gets closer toD, GRIPwill consume
increasingly more memory. In the extreme case when NC = N (no
clustering) and M = D, then GRIP turns out to be more similar
to an HNSW graph with scalar quantizer applied to every node.
Second, the selection of parameters needs to satisfy the following
relationship between the memory capacity, SSD size, and memory
overhead:

MO ⩽ MS & N × D × f ⩽ SS (11)
Under this condition, GRIP can fit more vectors on a single machine
even if the dataset size exceeds the memory capacity.

6.4 VQ Efficiency
For capacity optimization, we are facing a threefold trade-off be-
tween latency, memory efficiency, and accuracy. Among them, ac-
curacy is an effectiveness metric, and both latency and memory
consumption are important system efficiency metrics which have
a crucial impact to the scalability and capacity. In this section, we
introduce a cost function that expresses the system efficiency as VQ
(Vector–Query), the product of the number of vectors V per node
and the query processing rate Q , inspired by the DQ (Document–
Query) metric from a web search engine [19]. Our constraints are
that the accuracy must exceed the fixed threshold ξ and the latency
must be lower than a response time limit ϕ . V is inversely pro-
portional to the amount of memory consumption per vector. Q is
inversely proportional to the query latency. Therefore

VQ ∝
1

SO ·MO
(12)

For a dataset with a total number of vectors N , an ANN solution
requires (N × Q)/VQ number of machines, given constraints are
met. The higher the VQ, the less number of machines needed!
7 Evaluation
We evaluate GRIP and show how its design and algorithms con-
tribute to its goals.
7.1 Methodology
7.1.1 Datasets.We conduct experiments on three datasets.
• SIFT1M is a classical dataset in BIGANN to evaluate nearest
neighbor search [23].
• Deep10M is a more recent dataset that consists of dense continu-
ous vectors generated by a deep neural network [7].
• SpaceV80M is a dataset that consists of 80millions of 128-dimensional
feature vectors extracted by a neural ranking model.

We choose these three million-scale datasets because not all the
state-of-the-art approaches can scale to billion-scale vectors. We
choose SIFT1M and Deep10M because they are widely used in
related literature [8, 14, 15, 23, 29]. We choose SpaceV80M, which
is one partition of a multi-billion scale dataset used for semantic
understanding of queries and web data for better search quality.
There is an attempt to build a benchmark suite for ANN [1], but no
dataset contains more than 1.2M vectors, which is insufficient.
7.1.2 ComparisonAlgorithms.We comparewith three approaches.
• IVFPQ: Faiss [2] is a recently released library from Facebook
and has the most state-of-the-art implementation of product
quantization–based methods.
• HNSW: NMSLib [4] is a well known ANN search library, which
contains well-implemented codes for HNSW.
• Link-and-code (L&C): L&C [3] is an ANN algorithm that com-
bines quantization with graph–based retrieval, incurring low
latency and low memory usage.

All three of them are memory-only ANN solutions. We choose
IVFPQ as a baseline becausewe leverage product quantization for in-
memory vector compression. We choose HNSW because it is both
the fastest and most accurate method at the time being, as discussed
in § 2. We choose L&C because it is a state-of-the-art attempt to
optimize latency, accuracy, and memory usage altogether.
7.1.3 Evaluation metrics.Latency, memory, and recall are impor-
tant metrics for ANNs. We measure query latency as the average
time of per-query execution (one query at a time) time in millisec-
ond. The memory cost is calculated as the total allocated DRAM for

the ANN index. The recall is calculated as Eqa. 1. Since it is essential
to be both fast and with high accuracy in real scenarios, we focus
on the performance of all algorithms in the high recall range. We
report VQ improvement over baseline ANNs as a product of the
latency speedup and memory cost reduction rate.
7.1.4 Testbed.We conduct the experiments on Intel Xeon 6152
CPU (2.10GHz) with 64GB DRAM and 1TB Samsung 960 Pro SSD.
7.2 ANN Search Performance Comparison
7.2.1 Comparison to IVFPQ.Table 3 reports the recall (forK = 1),
latency, memory cost, and VQ improvement of GRIP, in comparison
to IVFPQ. Both IVFPQ and GRIP partition the input vectors into
NC clusters (20K for SIFT1M, 200K for Deep10M, and 400K for
SpaceV80M) and generate the same codebooks to encode all vectors
with a compression ratio of 16X. We vary the selected clusters NS
(Nscan) from 64 to 1024. This is the range we start to see that further
increasing NS leads to a marginal return of recall from IVFPQ. Two
main observations are in order.

NS IVFPQ GRIP VQ
Impr.Recall Lat. Mem. Recall Lat. Mem.

SI
FT

1M

1024 0.679 8.8 40 0.904 0.6 49 12.0X
(NS : 32)

512 0.678 5.4 40 0.989 1.8 49 2.4X
256 0.676 3.2 40 0.986 1.2 49 2.2X
64 0.662 2.0 40 0.948 0.7 49 2.3X

D
ee
p1

0M

1024 0.602 18.5 302 0.906 1.2 377 12.3X
(NS : 64)

512 0.601 15.6 302 0.975 5.4 377 2.3X
256 0.599 14.1 302 0.965 3.4 377 3.3X
64 0.580 12.8 302 0.906 2.0 377 5.1X

Sp
ac
eV

80
M 1024 0.767 28.1 2552 0.925 1.2 4036 14.8X

(NS : 32)
512 0.765 27.8 2552 0.977 4.7 4036 3.7X
256 0.763 27.5 2552 0.971 2.7 4036 6.4X
64 0.752 27.2 2552 0.946 1.4 4036 12.3X

Table 3: Recall, latency (ms), memory (MB), VQ improve-
ment of GRIP in comparison with IVFPQ.

First, the results show that GRIP provides significant improvement
to the recall from about 0.58–0.77 to 0.90–0.99, while at the same
time improving VQ consistently by 2.3–12.3 times among tested con-
figurations. As expected, by varying NS from 64 to 512, the recall
and latency increase for both implementations as scanning more
clusters increases both the likelihood and time of finding top-K .
The recall of IVFPQ is constantly lower than GRIP, and it starts
to saturate at NS = 128. In contrast, GRIP significantly improves
the system’s effectiveness by bringing the recall to the 0.97+ range
because of GRIP’s multi-store design. In terms of efficiency, GRIP
overall speedups query latency by 2.7–19.4X even with accessing
SSDs, because GRI, PQ∗, Lab-SSD-Val all reduce search cost consid-
erably. Compared to IVFPQ, GRIP takes 1.2–1.6X more memory due
to storing the GRI index metadata and PDV values. But the absolute
memory savings (10–13.3X) are still quite significant compared to
the original dataset.

Second, GRIP improves VQ by 12–14.8 times to meet similar or
higher recall target. The highest recall IVFPQ gets is still far below
1. As discussed earlier, this is because product quantization has dif-
ficulties in distinguishing top-K with only short codes. In contrast,
GRIP achieves similar or much higher recall (0.90+) by checking a

much smaller number of clusters (e.g., 32 and 64 clusters), improv-
ing the latency by 14.7–23.4X. Compared to IVFPQ, GRIP is more
suitable for high recall and fast response scenarios.
7.2.2 Comparison toHNSW.HNSW is one of the state-of-the-art
proximity graph–based approaches. We compare them by choosing
configurations from both that achieve the same recall targets 1.

As reported in Table 4, GRIP significantly and consistently outper-
forms HNSW, with an average VQ improvement of 2.5–15.3X among
tested configurations. GRIP reduces the memory cost by 12–14X
compared to HNSW because it uses PQ∗ to compress vectors into
short codes. HNSW runs faster than GRIP in a few cases. However,
the latency gap between GRIP and HNSW decreases as we increase
the recall target. This is presumably because for isolated nodes in
HNSW, further increasing e f Search does not help discover them
but leads to significantly more node exploration. We will discuss
the benefits of HNSW and GRIP and how to determine which one
to use at the end of this section.
7.2.3 Comparison to L&C. The comparison to L&C first focus
on the trade-off between latency and accuracy. Fig. 4 presents a
comparison of GRIP to L&C in terms of recall vs query time for
different parameters of e f Search 2. The results show that L&C can
offer much lower latency at the low recall range (i.e., 0.4–0.7). How-
ever, at the high recall area (i.e., 0.90–1), L&C is significantly less
accurate and has difficulties in reaching recall 0.8 with 250ms. In
contrast, GRIP reaches 0.977 recall in less than 5ms. This is because
fundamentally L&C still uses quantized short codes for distance
computation. In contrast, GRIP’s multi-store design allows it to
leverage SSDs to boost accuracy with full-precision vectors. Fur-
thermore, the memory usage of L&C is 8.96GB, whereas GRIP takes
only 4.04GB of memory, which is 2.2X lower. This is because GRIP
can afford a larger compression ratio from quantization by recover-
ing the precision loss from full-precision vectors on SSDs. Because
of this large gap of latency and memory at the high accuracy range,
GRIP is more competitive when high precision, low memory usage,
and fast response are all required.

Figure 4: Comparison of GRIP with L&C on SpaceV80M.

7.3 Effect of Different Components
We also conduct an in-depth evaluation across different design
points of GRIP.
7.3.1 Effect of in-memory search latency. Fig. 5 shows the
breakdown of query latency on searching the in-memory index.

Latency of cluster selection. Fig. 5a shows that GRI yields sig-
nificant improvements on cluster selection time compared to the
exact search in IVF. Overall, GRI boosts the cluster selection time
by 10–22 times for Deep10M (NC = 200K). GRI scales better as

1We build HNSW graph with standard settings: ef Construction=200 and OD=10.
We trade-off accuracy and latency by varying ef Search from 160 to 1280.
2We build L&C with 6 links per vector and 32 bytes per vector as suggested by [3].

HNSW GRIP VQ
Recall efSearch Latency Memory NS Recall Latency Memory Improvement

SIFT1M
0.993 1280 2.3 588 512 0.989 1.8 49 15.3X
0.973 320 0.6 588 128 0.976 0.8 49 9.0X
0.947 160 0.3 588 64 0.948 0.7 49 5.1X

Deep10M
0.998 1280 3.1 4662 512 0.994 3.9 377 9.8X
0.985 320 0.9 4662 256 0.983 2.6 377 4.3X
0.969 160 0.4 4662 128 0.961 2.0 377 2.5X

SpaceV80M
0.972 2560 4.1 57554 512 0.977 4.7 4036 12.4X
0.943 640 1.4 57554 128 0.961 1.8 4036 11.1X
0.918 320 0.9 57554 64 0.946 1.4 4036 9.2X

Table 4: Latency (ms), memory (MB), and VQ improvement of GRIP in comparison with HNSW.

(a) Cluster selection
time

(b) Vector checking time (c) In-memory time

Figure 5: Breakdown of different components on the in-
memory search query latency. The x-axis represents the
number of selected and scanned clusters NS .

NC increases and the improvement becomes more significant with
larger NC , because of its logarithmic search complexity.

Latency of checking vectors. Fig. 5c illustrates the improvements
of query latency of the preview layer using PQ∗ compared to PQ.
As NS increases, the execution time increases almost linearly for
both PQ and PQ∗. However, PQ∗ consistently outperforms PQ by
1.4–3.5X. This is because PQ∗ reduces the distance computation
per vector from 2 ×M toM + 1, cutting both the number of adds
and memory bandwidth consumption by almost half.

Latency of the in-memory search. Fig. 5c reports the total in-
memory search time. GRI and PQ∗ together offer 3–12.7X latency
reduction over IVFPQ.
7.3.2 GRI Accuracy.We also evaluate how accurately GRI identi-
fies NS clusters compared to doing an exact search. Fig. 6 reports
the accuracy and latency of routing 200K clusters of Deep10M
when NS varies from 1 to 256. Overall, GRI can achieve fairly high
accuracy (e.g.. when e f Search is 320) for various NS , thanks to the
outstanding performance of recent proximity graph–based ANN
search (e.g., HNSW). Gradually increasing e f Search (e f S) leads to
higher accuracy at the expense of increased routing latency. We
also observe that under the same e f Search, larger NS sometimes
leads to slightly worse accuracy if e f Search is not big enough (e.g.,
e f Search is less than 160), as the closest centroids not visited dur-
ing the routing phase are definitely lost. In practice, we find [320,
640] as a good range that provide close to unity accuracy for GRI.
7.3.3 Sensitivity of K .Different scenarios might have different
K . Table 5 shows the recall of GRIP at different K compared to
IVFPQ varying NS from 1 to 1024 on Deep10M. We make two
observations. First, GRIP offers significant recall improvement for
K=1 as well as K > 1. In both cases, the recall of IVFPQ has reached

Figure 6: Trade-offs between GRI accuracy and latency on
200K centroids of Deep10M. Higher accuracy is better.

a plateau around 0.60–0.70, whereas GRIP consistently brings the
recall to 0.98+. Second, increasing K does not significantly increase
R and a small R sharply improves the recall. Although larger R is
better for getting a higher recall, further increasing R from 10 to 100
when K = 1 or from 50 to 100 when K = 10 does not bring much
improvement on recall, which indicates that a small R (10–100) is
often sufficient to get a high recall.

NS
K=1 K=10

IVFPQ GRIP IVFPQ GRIP
R=10 R=100 R=50 R=100

64 0.580 0.906 0.920 0.657 0.864 0.868
256 0.599 0.965 0.983 0.691 0.958 0.966
1024 0.602 0.978 0.998 0.697 0.983 0.994
Table 5: Effect of K on recall for IVFPQ and GRIP.

7.3.4 Performance of validation on SSDs.Fig. 7 shows the vali-
dation latency on SSDs without Lab-SSD-Val (Seq.) and with Lab-
SSD-Val on SpaceV80M, varying the size of candidate list R from 10
to 100. As expected, the execution time all increases almost linearly
with the increase of the number of candidates. However, compared
to the baseline, Lab-SSD-Val provides a much shorter execution
time consistently. Without Lab-SSD-Val, it takes 6.8ms to validate
100 candidates, which already takes more time than in-memory
search latency. With Lab-SSD-Val, GRIP validates 100 candidates in
less than 0.6ms. Overall, Lab-SSD-Val achieves 4.3–11.5X speedup
over the baseline. This is because Lab-SSD-Val exploits the internal
parallelism of SSDs with asynchronous batching. As GRIP requires
only a small set of candidates to be validated, Lab-SSD-Val allows
GRIP to scale much better on SSDs.

Figure 7: Validation latency w/o and with Lab-SSD-Val.

7.4 Why GRIP? A Combined View
GRIP provides a memory–efficient, high–performance ANN algo-
rithm for building large-scale vector search engines. To make vector
search more scalable, GRIP adopts a multi-store design with the
goal of achieving high-quality capacity-optimized ANN search on
a single node. Take the SpaceV workload as an example, which is
a hundred-billion scale dataset under a distributed search setting.
SpaceV80M is only one partition of this dataset. Without counting
other index metadata, the dataset itself already takes 40GB of mem-
ory and is the maximal size non-compression–based approaches
such as HNSW can run on a single machine without failing. The
latency SLA (ϕ) is 10ms for each query and the accuracy needs to
be high (ξ = 0.97) to guarantee user satisfaction.

For compression–based approaches such as IVFPQ, although
they can reduce memory consumption considerably, their recall
cannotmeet the accuracy target even onmulti-million scale datasets
given the latency constraint. HNSW takes 4.1ms to reach 0.972 re-
call, meeting latency SLA and recall target, but it consumes 56GB
of memory (on average 720-byte per vector) to host a single par-
tition of the dataset, which means it would require thousands of
distributed machines to handle a peak load of thousands of queries
per second. In contrast, although GRIP takes 0.6ms longer to do the
search, which is marginal given it is already within the response
time limit, it not only reaches a higher recall 0.977, but more im-
portantly, it requires approximately only 51 bytes of DRAM per
vector and in total 4G of memory, which is a 14X memory cost
reduction. For a larger dataset such as SpaceV120M, HNSW runs
out-of-memory and fails. In contrast, GRIP uses 6GB of memory
and 60GB of SSD space, both are still far below their hardware
capacity on a single machine, while meeting the accuracy target
and latency SLA. GRIP is therefore a scalable and more suitable
approach to building large-scale vector search engines.
8 Conclusion
The scalability requirement of large scale vector search differenti-
ates our problem from traditional ANN problems, where the data is
assumed to fit in memory. We present GRIP, a multi-store capacity-
optimized ANN algorithm for building next-generation large-scale
vector search engines which collaboratively optimizes accuracy,
latency, and memory usage using both DRAM and SSDs. Our eval-
uation results show that GRIP achieves an order of magnitude
improvements on system capacity, making ANN search fast and
scalable on large-scale data while attaining high–quality search
results, compared to the state-of-the-art.
Acknowledgments
We thank Junhua Wang, Jason Li, Shi Zhang, and Han Zhang from
Search & AI and DLVS for their support of GRIP. We thank David
Andersen, Conglong Li, Olatunji Ruwase, Samyam Rajbhandari,
Wenhan Wang, Qi Chen, and Mingqin Li for their helpful discus-
sions. We thank our anonymous reviewers for their valuable feed-
back that helps improve the quality of the work.
References
[1] Accessed: 05-20-2019. Benchmarking nearest neighbors. https://github.com/

erikbern/ann-benchmarks.
[2] Accessed: 05-20-2019. Faiss: A library for efficient similarity search and clustering

of dense vectors. https://github.com/facebookresearch/faiss.
[3] Accessed: 05-20-2019. Link & code source code. https://github.com/

facebookresearch/faiss/blob/master/benchs/link_and_code/README.md.

[4] Accessed: 05-20-2019. NMSLib. https://github.com/nmslib/nmslib.
[5] Accessed: 05-20-2019. Samsung drops 128TB SSD and kinetic-type flash drive

bombshe00lls. https://www.theregister.co.uk/2017/08/09/samsungs_128tb_ssd_
bombshell/.

[6] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce Croft.
2018. Target Apps Selection: Towards a Unified Search Framework for Mobile
Devices. In SIGIR 2018. 215–224.

[7] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-Scale
Datasets of Deep Descriptors. In CVPR 2016. 2055–2063.

[8] Artem Babenko and Victor S. Lempitsky. 2017. AnnArbor: Approximate Nearest
Neighbors Using Arborescence Coding. In ICCV 2017. 4895–4903.

[9] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-Tree: An Efficient and Robust Access Method for Points and Rect-
angles. In SIGMOD 1990. 322–331.

[10] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-
tive Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517.

[11] Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal Parallelism of Flash
Memory-Based Solid-State Drives. TOS 12, 3 (2016), 13:1–13:39.

[12] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason
Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A library for
fast approximate nearest neighbor search. https://github.com/Microsoft/SPTAG

[13] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural RankingModels withWeak Supervision. In SIGIR 2017. 65–74.

[14] Matthijs Douze, Hervé Jégou, and Florent Perronnin. 2016. Polysemous Codes.
In ECCV 2016. 785–801.

[15] Matthijs Douze, Alexandre Sablayrolles, and Hervé Jégou. [n. d.]. Link and Code:
Fast Indexing With Graphs and Compact Regression Codes. In CVPR 2018.

[16] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search with the Navigating Spreading-out Graph. In VLDB’19.

[17] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product
Quantization for Approximate Nearest Neighbor Search. In CVPR 2013.

[18] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB’99. 518–529.

[19] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei,
Sameh Elnikety, and Yuxiong He. 2017. BitFunnel: Revisiting Signatures for
Search. In SIGIR ’17.

[20] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In CIKM 2016. 55–64.

[21] D. Frank Hsu, Xiaojie Lan, Gabriel Miller, and David Baird. 2017. A Comparative
Study of Algorithm for Computing Strongly Connected Components. InDASC’17.

[22] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In CIKM ’13. 2333–2338.

[23] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. In Product Quantization
for Nearest Neighbor Search. TPAMI 2011.

[24] Herve Jegou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in one billion vectors: Re-rank with source coding. In ICASSP 2011.

[25] Yannis Kalantidis and Yannis S. Avrithis. 2014. Locally Optimized Product Quan-
tization for Approximate Nearest Neighbor Search. In CVPR 2014. 2329–2336.

[26] D. T. Lee and C. K. Wong. 1977. Worst-case Analysis for Region and Partial
Region Searches in Multidimensional Binary Search Trees and Balanced Quad
Trees. Acta Informatica 9, 1 (March 1977), 23–29.

[27] Victor Lempitsky. 2012. The Inverted Multi-index. In CVPR ’12. 3069–3076.
[28] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. 2011. SILT:

a memory-efficient, high-performance key-value store. In SOSP 2011. 1–13.
[29] Yury A. Malkov and D. A. Yashunin. 2016. Efficient and robust approximate

nearest neighbor search using Hierarchical Navigable Small World graphs. CoRR
arXiv preprint abs/1603.09320 (2016).

[30] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. TPAMI 2014 36, 11 (2014), 2227–2240.

[31] Mohammad Norouzi and David J. Fleet. 2013. Cartesian K-Means. In CVPR 2013.
[32] Karthik Ramachandra, Mahendra Chavan, Ravindra Guravannavar, and S. Su-

darshan. 2015. Program Transformations for Asynchronous and Batched Query
Submission. IEEE Trans. Knowl. Data Eng. 27, 2 (2015), 531–544.

[33] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
Latent Vector Spaces for Product Search. In CIKM ’16. 165–174.

[34] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation
in Alibaba. In KDD 2018. 839–848.

[35] Samuel Williams, Andrew Waterman, and David A. Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. In CACM’09.

[36] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In SIGIR 2017. 55–64.

[37] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. 2014. Deep
Learning for Answer Sentence Selection. CoRR abs/1412.1632 (2014).

[38] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.
2018. Neural Ranking Models with Multiple Document Fields. In WSDM ’18.

https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss/blob/master/benchs/link_and_code/README.md
https://github.com/facebookresearch/faiss/blob/master/benchs/link_and_code/README.md
https://github.com/nmslib/nmslib
https://www.theregister.co.uk/2017/08/09/ samsungs_128tb_ssd_bombshell/
https://www.theregister.co.uk/2017/08/09/ samsungs_128tb_ssd_bombshell/
https://github.com/Microsoft/SPTAG

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Preliminaries
	2.2 Related Work

	3 Challenges and Opportunities
	3.1 Challenges
	3.2 Preliminary Analysis and Opportunities

	4 Design Overview
	5 Algorithms and Optimizations
	5.1 GRI Construction
	5.2 Enabling High-Efficiency Compression with PQ*
	5.3 Validation Layer Construction
	5.4 Query Processing

	6 Cost Analysis
	6.1 Search Cost
	6.2 Construction Cost
	6.3 Space Consumption
	6.4 VQ Efficiency

	7 Evaluation
	7.1 Methodology
	7.2 ANN Search Performance Comparison
	7.3 Effect of Different Components
	7.4 Why GRIP? A Combined View

	8 Conclusion
	Acknowledgments
	References

