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Abstract

We present Orion, a new black-box optimization tool currently in development
that is designed to adapt to the workflow of machine learning researchers for
minimal obstruction. We propose a new version control system for experiments,
which can significantly improve the organization of research projects in machine
learning as well as the efficiency of hyperparameter optimization. The entire tool
is built with the goals of promoting reproducibility, fair benchmarking of different
machine learning models, and providing a platform for the research of black-box
optimization algorithms.

1 Introduction

Hyperparameter optimization is one of the most time-consuming parts of research in machine learning.
Several classes of models, such as deep neural networks take days or weeks to train, making the
process of hyperparameter tuning even more time-consuming [12]. In spite of this, the use of
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automatic hyperparameter optimization tools is not widespread in the community of deep learning
researchers [15, 16]. This causes a serious risk of positive bias, since research is often based on
incremental improvements to state-of-the-art methods. This also contributes to the problem of
reproducibility when models are highly sensitive to hyperparameter values [9].

There are many frameworks available for hyperparameter optimization; spearmint, hyperopt [1],
automl, comet.ml [17], sigopt [4], schedy, and optunity [3] to name a few. However, the availability
of such frameworks does not translate to widespread adoption. Based on a local survey we conducted,
we concluded that the most important reason for the low adoption rate of these frameworks is the
cognitive overhead incurred by using them. We thus presume that researchers are significantly more
willing to spend time learning about frameworks to implement their models rather than spending
time learning tools that impact the other parts of the research workflow, such as hyperparameter
optimization, experiment management, visualization tools, etc.

To address this, we propose Orion?, a different approach centered on the following idea: machine
learning researchers should be viewed as users, not as developers. From this perspective it follows
that hyperparameter optimization should be adapted to the workflow of researchers, rather than
imposed as an API to adapt their code to.

In order to make such an adaptation to the workflow, we propose a non-intrusive way of commu-
nicating with the user’s script. We designed the tool to be implementation agnostic, in order to
support user scripts written in any language or framework, and configuration file agnostic, in order
to support any text-based configuration file format they use. We built it to work asynchronously as
a way to avoid the need of setting up master and workers, and to improve resiliency. Finally, we
made it incrementally configurable for flexibility and simplicity. We will describe all those features
in Section 2.

To further improve the research workflow, we propose a new experiment version control system
for proper experiment management and boosted hyperparameter optimization. We will present this
system in Section 3.

With community development in mind, we designed Orion to be modular and support external
contributions as plug-ins. Supporting contributions is an important part of our tool, as one of our
main goals is to support research in the area of black-box optimization. We will describe the related
design choices in Section 4.

2 Adapting black-box optimization to the research workflow

Orion is meant to be simple to configure and operate. The simplicity of configuration is enabled by
the configuration-type and implementation agnosticity of the tool we present. We explain this further
in Section 2.1. For the simplicity of operation, we rely on asynchronous execution of workers to
avoid the common master-workers architecture. We present this briefly in Section 2.2.

2.1 Agnosticity for broad support
./userscript -x 5 -some-other ‘arguments’

Suppose this snippet represents the normal way a user would execute their script to train a model. By
using the same configuration interface, it is possible to declare a hyperparameter to be optimized by
writing a prior distribution definition instead of a specific value for the hyperparameter.

orion hunt -n expname \
./userscript -x~‘uniform(0,10)’ -some-other ‘arguments’

The above command-line call will create a new experiment instance named expname with a search
space composed of a single real dimension with uniform prior. A local worker will then be instanti-
ated, which will be executing userscript, each time providing it with particular hyperparameter
values suggested by a black-box optimization algorithm. In this example, the default hyperparameter
optimization algorithm would be used, which randomly samples hyperparameters from the specified
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distributions. The single complete execution of the user’s script, defined by the set of hyperparameter
values and the corresponding evaluation results, is referred to as a trial. An experiment is thus defined
as the ensemble of all trials corresponding to a snapshot of the code-base* and a specific search space
definition.

There are no restrictions on the user’s script code, since Orion uses the script’s own configuration
interface to provide hyperparameter values to it. Communicating the results from the user’s script
to the worker is less trivial, since there is no predefined communication interface. Therefore, two
options are provided: a script can either 1) write results to a file, to a path and according to a template
provided by Orion, or 2) use the client API provided. In the case when Orfon is not used, a call to the
API defaults to a Python print statement. Usage of the API does not obstruct a user from calling
their script without using Orion. Hence, the most intrusive part is the code modification needed to
report trial results.

A user may have also chosen to use configuration files as a way to provide input to their script. Orion
supports this use case as well, since the markers it uses to specify search spaces can also be used
inside any type of text-based configuration files, be it JSON, YAML or another user-defined format.
Thus, in total it is configuration-type agnostic.

Once an experiment is configured, it can be executed without any arguments passed. Suppose that the
experiment defined above is registered in a database. Then one may execute it by simply calling the
following command:

orion hunt -n expname

If any modification to the code of user’s script happens between the initialization of the experiment
and its execution, then a branching event will occur, and a new experiment will be created with the
same configuration. This process is part of the Experiment Version Control system, which we will
explain in Section 3.

2.2 Asynchronicity for simple execution

A significant overhead for many frameworks is the process of dispatching workers for concurrent
black-box optimization. Most frameworks use a master-workers architecture. This implies that
master’s process must be deployed either by the user or by a service provider. In the latter case,
an API is provided as it is needed from a SaaS delivery model. In order to avoid such third-party
dependencies, we rather put the responsibility of generating trials inside the workers. We also assume
the user’s script to be resumable, so that interrupted trials can be resumed with minimal loss of
computation time.

The synchronization point is the database. Sharing information between workers is not achieved
by establishing interprocess communication channels. Instead it happens implicitly by reading the
common history from the database. Then, workers make decisions based only on that common
history.

Every operation to the database is implemented in a non-blocking fashion, in order to provide a better
throughput. The design choices are further described in Appendix A.

3 Version control and extended optimization

It is common practice in software development to use version control systems to organize the evolution
of the code. Research is no different than code development in its iterative nature. Yet, the task of
organizing the research results is still far from being standardized like code version control is. There
are fortunately new tools, like Datmo [19] and DVC [13], which aim to improve research organization
and reproducibility in the form of version control systems.

However, there is also a lack of features compared to code version control. While the latter saves
modifications rather than raw content, current tools for data version control only support tagging
and snapshots. Saving modifications rather than raw content makes it possible to reapply these
modifications on other contexts, with some adaptations if required. We propose to adopt such

*Snapshot of the code-base is commit-hash from user’s code version control software.
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Figure 1: Visualizations of a project tree with different path of adaptations depending on which
experiment is being optimized. Note that all path of adaptations results from the same project tree. In
1a, the experiment being optimized is A, the original one. In 1b, the experiment being optimized is B,
the first children of A in 1a. In Ic, the experiment being optimized is G, the second children of B in 1a.

practices in our Experiment Version Control, so that trials from one experiment can be used by
another one. In addition to helping organization of research projects, such a feature makes it possible
to warm start the optimization process of a new experiment, as well as improving the search efficiency
if many related experiments are being executed concurrently. This reduces the time overhead of
iterative hyperparameter optimization while maintaining the reproducibility of results.

3.1 Structure of the Experiment Version Control system

Suppose a user is working on some experiment A. After some time, they either edit the code or want
to change the configuration of the experiment. Doing so using Orion would trigger a branching
event and create a new experiment that we will call B for simplicity. Experiment B is a children of A.
They are connected to each other with an adapter based on the modifications applied on A to create B.
The role of the adapter is to transform trials from A to make them compatible with B and vice-versa.
Thanks to this adapter, it is possible to access trials from A while optimizing B or the opposite.

There is no limit to the number of experiments created by branching. The user could branch again
from A many times as well as from B. See Figure 1 for toy examples of a project tree. Note that the
adapters have two directions because adapting trials from A to B is the inverse process of adapting
from B to A. For example, the direction of the adapter between A and B is reversed in Figures 1a and
1b.

Trials belong to a single experiment. When they are fetched from many different experiments in the
project tree, they are only grouped together in memory at execution time and are never saved into
another experiment inside the database. One may note however, that the algorithm trained on the
grouped trials is now biased by the other trials of these other experiments. To ensure full traceability,
the database indexes of the trials affecting the current state of the search algorithm are logged within
each trial at generation time. It is thus possible to filter them.

3.2 Branching events

As we mentioned previously, any change in the code of the user or search space definition will trigger
an experiment branching event. When such an event occurs, Orfon will build resolution adapters
to ensure compatibility between the original experiment and the new ones when applicable. The
user can use a provided API to specify these resolutions through the command-line or through its
configuration file.

When no information about resolutions is provided by the user, Orion will start the interactive conflicts
solver. This shell-like prompt is meant to reduce the overhead for new users. While prompting the
user about conflicts to solve, it will provide the corresponding way to use the markers, so that the next
time around, the user can automate the process without the help of the interactive conflicts solver.



3.3 Adapters

We will describe the different adapters in this section in order to clarify the type of modifications
Orion supports and how trials are handled to ensure compatibility between experiments.

Dimension addition. Adding a new dimension, a new hyperparameter for instance, automatically
makes the previous trials invalid for the new search space definition. If the previous experiment had
an implicit default value for this dimension then it is possible to adapt the trials of the two experiments
to make them compatible.

If the child experiment fetch trials from the parent experiment, all of them will be augmented with
the new dimension set to default value. On the other side, if the parent experiment fetches trials from
the child, only the trials with the dimension equal to default value will be passed.

Dimension deletion can be handled similarly — it is actually the inverse process.

Dimension renaming. If the user changes the name of the dimension in the code and needs to adapt
the configuration.

Dimension prior change. One can narrow or expand distributions based on current results or
even completely change the distribution of hyperparameters being searched. The trials from parent
experiment will be filtered based on the new prior and vice-versa.

Algorithm or dispatcher change. The algorithm and the dispatcher are the core of the research
process. Changing them thus invokes a branching. This is particularly useful if a user wants to
compare how two different algorithms or dispatchers compare when warm-starting from a common
set of trials. Neither breaks the compatibility of the trials between experiments. They can fetch all
trials from one another.

Code Change. Code changes are currently divided in three different types.

NO EFFECT. The current change will not affect results.
UNSURE. The current change may affect the results.
BREAK. The current change will break results and make them incomparable with previous ones.

Code changes are detected via commit hash changes of the user’s code version control system for
their script. Any change will trigger an experiment branching. The user need to inform Orion if
the changes are considered to have no effects, if they are unsure or if compatibility is broken. In
cases where there is no effect, trials may be fetched from the parent and the child experiment freely.
If the change is tagged as unsure, only the child experiment may fetch the trials from the parent.
The opposite, however, is made impossible as a way to protect the parent’s history from potentially
harmful biases coming from the child’s trials. Finally, no trials may be fetched from the parent to the
child, and vice-versa, if the code modification is tagged as break.

There is arguably an infinite amount of possible code changes which could be handled more gracefully
than dividing them in 3 coarse categories. We believe nevertheless Orion is an improvement to the
common practices in research organization and wish to continue expanding the Experiment Version
Control system in the hope of contributing to the standardization of experiment management through
version control systems.

4 Modularity

Orion is built to favor community development. Many components are built to be extensible by
plug-ins. For example, optimization algorithms can be defined inside a different Python distribution
package and be made discoverable by Orion through the use of Python entry points. This means that
a user or a researcher working with a stable or an experimental optimization algorithm can keep their
codebase separated from Orion’s codebase, while also being able to use the framework with it.

4.1 Optimization and Dispatcher Algorithms

Optimization algorithms are abstracted by a programming interface which requires the implementation
of the following two abstract methods: First, Algorithm.suggest which is called to generating new
trials estimated to result in better objectives. Second, Algorithm. observe for incorporating results
from evaluated trials to the optimization process. Implementations of this interface are re-usable and



in the future they will be able to be used for tuning elements of the learning process online during a
pending trial, like a dynamic dispatching mechanism. In addition, a developer can provide a property
Algorithm.is_done to implement a terminating condition, so a specific algorithm can signal that
there can be no further improvement to the objective.

Dispatching algorithms such as early stopping mechanisms are implemented in the same fashion.
Algorithms of this type, like Hyperband [14] or POP scheduling [18], are considered dynamic in this
context because:

1. They interact with a particular trial’s evaluation by using information about the progress of
the objective in order to decide whether a trial’s execution should be suspended, releasing a
computation resource if they do.

2. They bias the reservation priority across trials based on their predicted performance, so that
some are more likely to be reserved by a worker for evaluation.

These algorithms implement an extra method called Algorithm.score, which maps each trial
within a set of trials to a number relative to its priority in that group.

Currently only random search is implemented in the core of Orion. Additional plugins are being imple-
mented, including Bayesian Optimization (based on a Bayesian Regressor) using scikit-optimize,
Hyperband scheduling and POP scheduling. This set of plugins can quickly be expanded by the
community due to the simple and modular nature of Orion optimization and dispatching algorithm
interfaces.

4.2 Databases

To store information about experiments and act as a point of synchronization between workers, we use
a database. While any arbitrary database system can be used, at the time of writing only MongoDB? is
supported. However, the interface of the database and the assumptions have been kept to a minimum
in order to facilitate integration of different kinds of databases.

The first assumption is that read and write operations preserve the integrity of the document. A
document should not change during a read operation. Reads and writes on many documents are
assumed to be non-atomic agglomerations of atomic reads and writes at single document level.

The second assumption is that the backend provides an atomic read-and-write operation at the
single document level. No concurrent modification should occur on a given document during the
read-and-write operation.

4.3 Analysis and visualizations

We also provide several analytical tools along with visualizations following the same modular design,
allowing for easy expansion to more methods. Currently, we include: fANOVA and LPI analysis
and visualization methods of hyperparameter influence as in [2, 7]; hyperparameter performance and
search visualization through scatter plots and heatmaps similarly to [11, 14]; parallel coordinate plots
as in [2, 5]. Some examples of such visualizations can be seen in Figure 2 with additional information
in Appendix B.

Within the visualization toolkit, we also use a modular design with a DataAnalyzer which transforms
the data (through fANOVA, LPI, PCA, etc.) and a AnalysisPlotter which takes the transformed
data and generates a visualization. This ensures that future analysis methods and plotting mechanisms
can be mixed and matched. The DataAnalyzer must conform to information provided in the Orion
format as inputs to ensure a common interface. This modular format allows for easy contribution of
new analysis and plotting tools to match any user workflow. Furthermore, it ensures reproducible
production of publication figures.

S Limitations and planned improvements

For now, Orion is not meant to track an exhaustive amount of information about trials but only what
is necessary to hyperparameter optimization. We may extend this to general statistics so that Orion

>https://www.mongodb.com/
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Figure 2: Several visualizations provided with the framework. 2a) fANOVA analysis of hyperpa-
rameter marginal performance [8]. 2b) LPI analysis of hyperparameter importance [2]. 2c) Parallel
coordinate plot of hyperparameter configurations tested along with performance. 2d) A heatmap
demonstrating performance across two hyperparameters. 2e) Performances of the black-box optimizer

over the number of experimentation trials in a PCA projection of the hyperparameter space.



can be used as an experiment management tool as well, similarly to Sacred [6]. This would be a
natural addition to the Experiment Version Control system. In the same spirit, there is currently no
support for collection of large artifacts such as model parameters generated by users’ scripts’.

There is no automatic dispatching wrapper for Orion. The workers must be submitted manually by
the user. We plan on supporting auto-resubmission on clusters using Slurm or PBS. We may also
integrate a simple dispatcher.

The addition of experiment version control enables many possibilities we have not explored yet. One
of them would be to enhance adapters so that they can infer modifications to trials. It could learn for
instance correlations between some hyperparameters such that missing hyperparameter values are
inferred from one experiment to another. This would be less restrictive than current use of default
values.

Finally, we would like to ensure that Orion is compatible with itself as a user script. This would
enable recursive optimization. One could then optimize hyperparameters of optimization algorithms
in a single command, providing a useful way to benchmark optimization algorithms against each
other and provide empirical data of their sensitivity to hyperparameter selection.

orion hunt -config metaconfig.yaml \
orion hunt -n~trial.name -config=algorithm_params.yaml \
./benchmark_script.py -x~‘gaussian(0,30,shape=1000)’

Similarly, one could call Orion to optimize across code changes or any other configuration changes
expressed by the Experiment Version Control tree.

orion hunt -n ‘optimize_code_change’ \
orion -n~‘choices([codechangel,codechange2,etc])’

6 Conclusion

Due to the Experiment Version Control system we introduced and the features which enable the
hierarchy and the modularity of algorithms, experiments and their trials, Orfon comprises a simple but
powerful experimentation platform. It is engineered to equip researchers with a lightweight tool to
incrementally develop and re-evaluate implementations of ideas. Most importantly, it is a step forward
to meet the increasing demand of the machine learning community for conducting reproducible
research. This is achieved by Orion’s original goal: to reduce the overhead of hyperparameter
optimization for researchers and ensuring the determinism, traceability, and reproducibility of this
process. Finally, its intuitive and flexible user interface, seamless and fast integration with any
research code, as well as its distributed and asynchronous approach, make Orion an accessible
function for creating precise and organized work. We believe that, by constructing such software
tools, we can reinforce and accelerate the application of the scientific method.
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A Database non-blocking implementation

Every operations to the database are implemented in a non-blocking fashion to provide a better
throughput. This is critical at three parts.

New experiment registration When two workers are executed simultaneously on the same new
experiment, only one of them will be able to register it thanks to atomic index uniqueness based on
experiment’s name and user name. The other worker will rollback and instantiate a new experiment
object fetching the database.

Trial reservation When a worker tries to reserve a trial, it changes its state to running. Atomic
read-and-write ensures the trial did not change state between selection and update. On race conditions,
one worker will always successfully reserve a trial. The other worker will rollback and try to select
another trial.

Trial generation The optimization algorithm’s generated trials may only be registered one at a time.
The id of the trial will be inferred based on the parameter values and the experiment’s id. The
registration of the trial will fail if another trial has been registered with the same id concurrently. If
registration fails, the algorithm will be trained based on up-to-date history and generate another trial.

B Analysis and Visualization

To analyze the performance of both the models being optimized and the black-box hyperparameter
optimization process itself, we provide a set of visualization plugins which can be used. We roughly
categorize these tools into 3 types: performance analysis, optimization algorithm analysis and
parameter analysis.

In the performance analysis tools, the goal is to determine the performance of the different models
within experiments during the hyperparameter optimization process, i.e., the learning curves of
several sets of hyperparameters. The optimization algorithm analysis tools are used for determining
the performance and behaviour of the black-box hyperparameter optimization method and hyper-
parameter set selection method. Finally, the parameter analysis tools are used for determining the
effects and importance of individual hyperparameters on the performance of the system , i.e., which
hyperparameter bears the most weight on the evaluation metric.

B.1 Performance Analysis

Individual performance analysis of trials can be compared using some of the visualization tools. As
seen in Figure 3, this bears some resemblance to Figure 1b from [14] and can easily be adapted to
map performance against arbitrary resources®.

B.2 Optimization Algorithm Analysis

To compare black-box hyperparameter optimizers and their search behaviour over time, it may be
desirable to plot both the improvement of the found solutions over time and the space of features
being searched. To this end, we include several visualization methods which accomplish this in
different ways. Figure 4 and 5 demonstrate these visualizations on several tasks. As can be seen,
for methods which use dynamic adaptation of the hyperparameters or gradient based updates, these
can be particularly useful to both see the improvement of the solutions over time and the space of
hyperparameters being searched. This is similar to plots which can be found in [2, 10].

B.3 Parameter Analysis

Determining the effect or importance of different hyperparameters can be highly beneficial when
presenting a new algorithm. For example, if a new optimizer performs well across a wide range
of learning rates it is a valuable to have a measurement of this desirable property. Similarly, if a
hyperparameter bears no effect it may be beneficial to leave it from the hyperparameter optimizer’s
search space. To aide in this, we provide several visualization tools.

81n our case we only consider the number of algorithm steps as a resource
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Figure 4: The black-box optimization method performance of the explored configurations over time
for population-based training (left) and a gradient-based method (right) on a toy task.

B.3.1 Scatter Plots

While it may be useful to see the progression of hyperparameters over time using scatter plots, it
may also be useful to see the evaluation performance in various regions of the hyperparameter search
space using projections and comparing different hyperparameters. To this end, Figure 6 demonstrates
such provided visualizations.

B.3.2 Heatmaps

Similarly, heatmaps may provide a better picture of the generalized (averaged) performance within
various quadrants of the relative hyperparameter space. Figure 7 demonstrates how hyperparameters
can be compared via a heatmap either in a projected PCA space or simply comparing sets of
hyperparameters. This is similar to Figure 1b in [14].

B.3.3 Parallel coordinate plot

We also include a method for generating parallel coordinate plots. These provide another method for
visualizing parameter importance when mapping to performance. See Figure 8 for some examples.
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Figure 5: For a population-based training method on a toy task, the pattern of exploration of the
state space with varying projections. With the number of experiments done on one axis and the
hyperparameters on the other two with score being indicated by colour (top left). A PCA projection
of the hyperparameters with the x-axis indicating number of trials and colour as score (top right). Two
hyperparameters composing the axes and colour indicating the number of trials completed when the
hyperparameter configuration was tried (bottom left). For a gradient based method, PCA projection
components composing two of the 3D axes with the third being the number of configurations tried so
far and colour indicating evaluation metric (bottom right).

B.3.4 fANOVA

fANOVA analysis [8] is a useful method for determining the importance of certain hyperparameters.
Using data gathered from a variety of hyperparameter configurations, an empirical performance model
can be fit to predict evaluation performance from configuration settings. Functional ANOVA can then
be used to determine how significant the hyperparameters are in defining the algorithm’s performance.
We provide visualizations and processing methods for this as seen in Figure 9. Furthermore, we can
plot the marginal objective using a similar analysis as seen in Figures 10 and 11.

B.3.5 LPI

Local Parameter Importance (LPI) as seen in [2] provides an easy to interpret measure of how
important certain hyperparameters are when tuning the performance of an algorithm. As such, we
provide a method for generating visualizations based on LPI interpretations as seen in Figure 12.

LPI computes the importances of a parameter p with respect to a metric of interest ¢ by calculating
the variance induced on ¢ while modifying p and keeping constant the others parameters 6. The
LPI scores is computed as a categorical distribution over all the parameters. Hence, the parameter
importance is relative to the other parameters.

To avoid computing c for every combination of hyperparameters, a regressor (e.g. random forest) can
be trained to approximate the score induced by modifying a parameter.

12



1.0 %0
0.8 70 %
0.6 =

o -

= 04 3 50 B

@ =]
02 . 40 .S
. . <
0.0 v 30 2
R <
-02 o 20
02 00 02 04 06 08 10 12 10
hO
0.88 90
0.015 80 &
o 2 0010 70 f!:
0.72 g8 60 2
g 2 0005 50 ©
0.64 < 'ED 40 ..5
= =
056 T B 0000 30 5
20 5
048 -0.005 0 S
040 0.0 0.2 04 0.6 0.8 .0
0.32 momentum

Figure 6: Scatter plots comparing performance across the hyperparameter space. A toy task for
population based training with only two hyperparameters (top left). Bayesian Optimization of an
MLP on MNIST comparing learning rate, batch size, and weight decay (top right). A grid search
comparing L2 regularization, an epsilon factor and learning rate for a ResNet training on CIFAR
(bottom left). Comparing momentum and weight decay yields a plot with scattered performance
indicating unlikely importance of the hyperparameters on Bayesian Optimization of a MLP on the
MNIST dataset.
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Figure 7: Heatmaps of parameter performance across projections of the rosenbrock task with 2
hyperparameters and 10 hyperparameters, respectively (top) and across learning performance on an
MNIST task (bottom).
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Figure 8: Here we demonstrate several instances of parallel coordinate plots using different optimiza-
tion methods on various tasks. The difference in optimization methods becomes apparent as random
search bears no real pattern to the search space while gradient descent and Bayesian Optimization
converge to some portion of the search space.
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Figure 9: Bar plot representing the fANOVA importance score obtained for each parameter on two
different tasks. In 9a, we present the fANOVA score when analysing the top 0.05% of trials with
respect to validation error rate for a bayesian optimization on ResNet with CIFAR10. Error-rates
ranges between 8% and 13% for the top 0.05%. In 9b, we present the fANOVA importance score
when using 100% of the trials from random search on Rosenbrock function.
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Figure 10: Marginal validation error rate over the space of realizable hyperparameter values. The
solid line represents the mean validation error rate while the light-blue area represents the width of
one standard deviation. The results are from a bayesian optimization for ResNets trained on CIFAR10.
Analysis is done on the top 0.05% of the trials, with error-rates between 8% and 13%.
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Figure 11: Marginal loss over the space of realizable hyperparameter values. The solid line represents

the mean validation error rate while the light-blue area represents the width of one standard deviation.
The results are from a random search on the Rosenbrock function. Analysis done on all the trials.
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Figure 12: Barplot representing the LPI importance score obtained for each parameters on two
different tasks. On 12a, we present the importance of the parameters when analysing the top 0.05% of
trials with respect to validation error rate for a bayesian optimization on ResNet with CIFAR10. Error-
rates range between 8% and 13% for the top 0.05%. In 12b, we present the parameter importance
score when using 100% of the trials from random search on Rosenbrock function.
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