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Robust Estimation of Unbalanced Mixture
Models on Samples with Outliers

Alfila Galimzianova, Franjo Pernus, Bostjan Likar, and Ziga Spiclin

Abstract—Mixture models are often used to compactly represent samples from heterogeneous sources. However, in real world, the
samples generally contain an unknown fraction of outliers and the sources generate different or unbalanced numbers of observations.
Such unbalanced and contaminated samples may, for instance, be obtained by high density data sensors such as imaging devices.
Estimation of unbalanced mixture models from samples with outliers requires robust estimation methods. In this paper, we propose a
novel robust mixture estimator incorporating trimming of the outliers based on component-wise confidence level ordering of
observations. The proposed method is validated and compared to the state-of-the-art FAST-TLE method on two data sets, one
consisting of synthetic samples with a varying fraction of outliers and a varying balance between mixture weights, while the other data
set contained structural magnetic resonance images of the brain with tumors of varying volumes. The results on both data sets clearly
indicate that the proposed method is capable to robustly estimate unbalanced mixtures over a broad range of outlier fractions. As such,
it is applicable to real-world samples, in which the outlier fraction cannot be estimated in advance.

Index Terms—Mixture model, robust estimation, trimmed likelihood estimation, outlier detection, expectation-maximization, magnetic
resonance imaging (MRI), brain structure segmentation
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MIXTURE models are widely used in pattern recognition,
computer vision, medical image analysis, etc. [1],
because they compactly and efficiently model samples from
heterogeneous sources. The components of the mixture
model carry information about the sources of observations.
To extract this information from the sample, the mixture
model component parameters and mixture weights have to
be estimated. Most often the mixture model parameters
are estimated by maximum likelihood estimators (MLEs),
because these generally have several desirable properties
such as consistency and efficiency [2]. For fitting mixture
models by MLEs, the expectation-maximization (EM) algo-
rithm [3] is usually the preferred technique. Although MLE-
EM methods are known for their high convergence rate, the
correct convergence cannot be guaranteed especially when
sample sources generate different or unbalanced numbers
of observations, which, besides, are mixed to some extent
[4]. The problem of estimating unbalanced mixtures on
samples without outliers was addressed by deterministic
annealing MLE-EM [5].

However, real-world samples not only contain unbal-
anced and overlapping observations, but are generally con-
taminated by outlying observations or outliers, i.e., noisy
and erroneous observations that do not conform the theoret-
ical mixture model of heterogeneous sources. The outliers
may adversely affect the estimation of mixture parameters
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and are very critical in the MLE, since even a single outlier
can lead to a degenerate mixture estimate, which does not
provide information about the distribution of inlying obser-
vations [6], [7]. The fraction of outliers can vary significantly
between different samples and it is often difficult, if at all
possible, to determine the fraction of outliers in advance. In
samples drawn from unbalanced mixtures with outliers,
robust estimation of parameters of components represented
by a small number of observations thus requires a careful
selection of corresponding inlying observations.

1.1 Previous Work

The degree of contamination by outliers in a sample is
usually expressed by outlier fraction A, i.e., the number of
outliers versus sample size N, while the robustness of an
estimator is measured by its breakdown point (BDP),
defined as the smallest fraction of outliers that can cause
degenerate mixture estimates. Neykov and Miiller [6]
showed that MLE has BDP of zero. To overcome this defi-
ciency of MLE, several estimators based on MLE were
developed that trade some of its efficiency for robustness to
outliers, while still providing consistent estimates of mix-
ture model parameters [2], [8], [9], [10]. There are three
main approaches to robust mixture parameter estimation: 1)
capturing outliers in a separate mixture component [11],
[12], 2) capturing outliers by using heavy-tailed component
models (e.g., t-distributions and skew-symmetric distribu-
tions) [8], [13], [14], [15] or 3) trimming to discard the out-
liers [2], [6], [9], [16], [17]. Modeling the outliers in the first
two approaches is difficult on samples, for which the
amount and distribution of the outliers are highly unpre-
dictable. Moreover, as the outliers lying arbitrarily far from
the mixture model may cause degenerate estimates, the
BPD of methods incorporating heavy-tailed distributions is
the same as when using the normal distribution, thus these
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methods may also benefit from trimming [15]. We focus on
the trimming approach, which can achieve a BDP of up to
50 percent [9].

The central idea in trimming is to detect the outliers and
to discard them from the likelihood function. If the current
estimate of mixture model is close to optimal, the outliers
are likely to correspond to observations with low likelihood,
therefore, Hadi and Luceno [2] proposed to trim the obser-
vations with low contribution to the likelihood function.
Their maximum trimmed likelihood estimator (MTLE) pro-
ceeds by drawing all possible subsamples of size M from
the given sample of size N, i.e., a total of (ﬁ,) samples, and
fitting to each sample the mixture model by MLE. Final mix-
ture parameters are given by the sample with highest
trimmed likelihood. Even though MTLE can achieve a BDP
of up to 50 percent, the combinatorial sampling renders it is
less efficient for high BDP and, especially, for applications
involving large samples. For large samples, Neykov et al.
[6], [9] developed fast trimmed likelihood estimator (FAST-
TLE), an efficient approximation to MTLE, based on itera-
tive resampling techniques proposed in [18]. The basic idea
is to take a predefined, finite number of random samples of
size M* < N, fit to each the initial mixture model by MLE
and then for each sample 1) find new samples based on
ordering all N observations according to their contributions
to the likelihood function and trimming to sample size
M > M*, and 2) improve the fit by MLE on new samples.
Steps 1 and 2 are iterated until convergence and the final
mixture parameters are given by the sample corresponding
to highest trimmed likelihood. For normal mixture models,
similar ideas were adopted in robust model based cluster-
ing methods such as EMT [17] and TCLUST [19], however,
FAST-TLE has the advantage as it can be used with various
models of component distributions and with any MLE.

A crucial parameter of trimming approach is the trim-
ming fraction, defined as o = (N — M)/N. Trimming frac-
tion should be set equal or, to increase the BDP margin,
even higher than the expected amount of outliers in the con-
taminated sample (o« > h). In some applications, trimming
fraction can be determined by tuning the value of « to
achieve best performance on given training samples [20].
However, this is often not possible and the trimming frac-
tion should be set to a high, marginal value of expected out-
lier fraction [21].

Our goal is to obtain robust estimates on large samples
of highly unbalanced mixtures, which contain a high and
unpredictable amount of outliers. The main challenge of
parameter estimation on samples of unbalanced mixtures is
to prevent trimming of those observations belonging to the
component(s) with a low number of observations, since in
such situation the estimation method will not be able to
recover the optimal parameters of the particular compo-
nent. Besides, if a high fraction of outliers is expected in a
sample, then also a high fraction of observations must be
trimmed, therefore, a careful selection of observations to be
trimmed is very critical.

The existing state-of-the-art robust methods, however,
have not proved adequate for robust estimation of unbal-
anced mixtures. For example, the FAST-TLE method uses
the likelihood based ordering of the observations that assigns
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a lower rank to observations belonging to components repre-
sented by smaller number of observations and components
with larger scales, which is especially critical when the trim-
ming fraction is set much higher than the actual outlier frac-
tion. Therefore, the estimation of unbalanced mixtures and
mixtures with unbalanced scales in the presence of outliers
may not be robust by the FAST-TLE method.

1.2 Contribution

Based on our previous work [22], we propose a novel
method for estimation of mixtures on samples contaminated
with outliers that is robust to the unknown fraction of
outliers. The proposed method is robust even on highly
unbalanced mixtures and efficient on large samples. The
robustness is achieved by selecting the outliers based on
component-wise confidence level ordering of observations,
which also enables the estimation of highly unbalanced
mixtures. The computational efficiency is achieved by two
computational approximations of the ordering of observa-
tions. Both approximations provide a compact representa-
tion of the sample space and enable the application of
confidence level ordering to any model of mixture compo-
nents. The proposed method was extensively validated and
compared to the state-of-the-art FAST-TLE method [9] in
two experiments. For the first experiment, synthetic samples
were generated with known fractions of outliers and with
known unbalanced mixture weights so as to evaluate the
robustness of the methods. In the second experiment, realis-
tic samples from multisequence structural MR brain images
that contained tumors of varying volumes were used to test
the two methods for robust estimation of structural inten-
sity model and segmentation of the normal brain structures.
The results indicate that the proposed method is robust
over a broad range of trimming fractions regardless of the
actual outlier fraction. This characteristic is very important
as it makes the method applicable to a wide range of mix-
ture modeling applications.

The paper is organized as follows. Section 2 describes the
proposed method. Extensive evaluation of the proposed
and FAST-TLE methods using synthetic samples is pre-
sented Section 3, while Section 4 presents a practical appli-
cation of the methods for segmenting normal structures in
the brain MR images, which also contain large pathological
structures. Analysis of performance is reported in Section 5,
while Discussion is given in Section 6.

2 METHODS

2.1 Maximum Likelihood Estimators

Let X = {71, 29,...7x},2; € R? represent a random sample
of N 1iid. observations drawn from an unobservable
d-variate multimodal distribution . By assuming v has K
distinct modes, each belonging to a known family of
parametric unimodal distribution models, the distribution
i can be represented as a K-component mixture [1]:

K
¥ Y(x|®) = > mp(xl6r), 6h)
k=1

where ® = {m;,6;},, denotes a set of unknown mixture
parameters, with mixing weights =), that obey m; > 0,Vk
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and Zf;l 7 = 1, and parameters 6;, C R? of d-variate distri-
bution model p(z|6x) of the kth component. In normal mix-
tures, the parameters 6, represent the location 1, and scale
>, of the kth component. The unknown mixture parameters
O can be found by maximizing the likelihood function
1(O|X) =1l,cx ¥(2|®) of sample X or, equivalently, by
maximizing the corresponding log-likelihood function

L(O|X) = Zlog

zeX

(z]9)). (2)

If the sample X is contaminated by outliers, maximizing
the log-likelihood (2) will lead to biased estimates of © [6].
An unbiased estimator is obtained by trimming the outliers
such that the log-likelihood is computed on a subsample
Xp, ie., L(®|Xy), which does not contain any outliers [2],
[9], [23]. Subsample X of size H = [N(1 — «)] is obtained
by trimming a fraction o of all the observations, where «
should be set higher or equal to the expected outlier fraction
h (o > h). Selection of these H observations is a critical step
that requires a specific ordering of observations, based on
which the inlying observations are more likely to be selected
into subsample X than the outliers.

2.2 Ordering Observations for Likelihood Trimming
If mixture parameters © are initialized close enough to their
optimal values, then the outliers can be selected based on
their conformance with the current estimate of the mixture
model y(z|®). Consider an ordering of sample indices
9(X|0®) = (vy,...,7n) based on monotonically non-increas-
ing log-likelihood

log(¥(z5,[0)) = - = log(y(z5y(0)). ®3)

Based on the log-likelihood ordering v(X|0) a trimmed
subsample is obtained as Xy = {:L;J}fil and the trimmed
log-likelihood function L(®|X ) is computed using (2). The
log-likelihood ordering was used in FAST-TLE [6], [9] and
TCLUST [19] methods. For unbalanced mixtures, however,
the log-likelihood ordering is biased towards the compo-
nents with higher mixture weights; for any pair of observa-
tions z; and z; belonging to kth and /th components (z; €
X,z € X)), respectively, and the corresponding mixture
weights 7;, and 7;, where 73, > m; and 7; — 0, the following
ordering is expected log(y(z;|®)) > log(¥(z;|®)). Therefore,
the use of log-likelihood ordering and a high trimming
fraction o on the unbalanced mixtures could easily lead to
trimming of all the observations of a component with a
small mixture weight. Besides, the log-likelihood ordering
is biased towards components with small scales (for the
location-scale component models), since the observations
belonging to small scale components are assigned a higher
rank as compared to the observations belonging to large
scale components. The influence of unbalanced mixture
weights and component scales on the log-likelihood order-
ing is shown in Fig. 1.

2.3 Confidence Level Ordering

The log-likelihood ordering cannot be used to obtain robust
estimates of the parameters of unbalanced mixtures and
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Fig. 1. An unbalanced three-component normal mixture model with het-
erogeneous scales and the corresponding color-coded normalized
ordering ranks obtained by the log-likelihood (leff) and the proposed
confidence level ordering (right).

unbalanced scales, therefore, we propose a new ordering
of observations 9(X|0®) = (?1,...,0y) based on monotoni-
cally non-decreasing component-wise confidence levels of
the observations

/ Pl )doo < - g/ p(l6., ) do, ()
Ozg,) Qzgy)

where Q(z;) = {w € Q: p(v|0.;) > p(x;|0.,)} are correspond-
ing confidence regions, () C R? is the sample space, and
z; € {1,..., K} is a classification of observations to one of the
K components. If the EM algorithm [3] is used to estimate
the mixture parameters 0, the observations z; € X can be
classified based on maximum posterior probability (MAP) as

;= arg max 7(z;|6), (5)
k=1, K

where ©(z|0;) = m,p(;rj|9k)/zl]il mp(z]6;). In the normal
mixtures, each observation z; € X can be classified based
on component-wise Mahalanobis distances d3 (2| iy, i) =

(zj — i) 21;1(%‘ - Mk—)T as

k=1,...K

The confidence levels required for the ordering (4) can
be computed from the Mahalanobis distances d3 (] M
Ezj) ~ as the value of cumulative density functlon of a

2 distribution. However, this approach may be computa-
tionally demanding for large samples as the Mahalanobis
distances have to be computed K times for each of the
observations. Besides, this approach can be used only in
normal mixtures. The approximate confidence levels can be
obtained by using the stochastic density quantile algorithm
[24] or numerical integration of the sample space ), both of
which are computationally efficient due to a compact repre-
sentation of the sample space and both enable the use of
confidence level ordering with any type of mixture distribu-
tions. Here we will compute the confidence levels by
numerical integration (Algorithm 1).

Given the confidence level ordering o(X|®) and the
corresponding subsample Xy = {aclj}f: , the objective of
parameter estimation is to maximize the log-likelihood
function L(®|Xy). In the following section we propose a
robust method for maximizing the log-likelihood objective
function based on confidence level ordering.



2276

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO. 11,

NOVEMBER 2015

Algorithm 1. Computation of confidence levels based on
numerical integration

Algorithm 2. Method for likelihood maximization based
on confidence level ordering

Input: samples X, = {z;:2; =k}, j=1,...,N, one for each
mixture component k£ = 1,..., K, integration precision level £
Numerical integration: for each mixture component %

1) Set integration limits as the bounding box of confidence
level ellipse, which corresponds to the observation of the
smallest value of the probability density function (PDF),
ie., minmjexkp(arjwk)

2) Compute the confidence levels on a rectangular grid using
the rectangle integration method and selectively increase
the grid density to reach the integration precision level ¢

3) Assign the computed confidence levels to the corresponding
observations in sample X}, C X

2.4 Likelihood Maximization Based on Confidence
Level Ordering

Methods based on trimming usually start with multiple ran-
dom initial guesses of mixture parameters ® and then, for
each initial guess, maximize the log-likelihood in a concen-
tration process [6], [9], [18], [19]. However, performing mul-
tiple concentration processes is computationally too
demanding for large samples and high trimming fractions «
because a high number of the random initial guesses is
required to obtain robust mixture estimates [2]. For the
application of mixture models on large samples (e.g., in
image analysis) a good initial guess of the mixture parame-
ters can be obtained by machine learning techniques, prior
knowledge, etc. [20].

The concentration process is generally a two-step itera-
tive procedure. In the first step the observations are
trimmed according to their ordering, while in the second
step the log-likelihood function is maximized on the
trimmed subsample Xy of size H = [N(1 — «)]. The log-
likelihood should increase in each iteration of the concentra-
tion process, however, unlike the log-likelihood ordering
7(X|0), the proposed confidence level ordering o(X|0®)
does not guarantee the increase of the log-likelihood. We
solve this by progressively trimming the ordered subsample
Xy to size H* < H in each iteration until the log-likelihood
is higher than in the previous iteration, whereas the log-
likelihood is increased only if the trimmed observations cor-
respond to negative log-likelihoods. Trimming more obser-
vations is likely to remove outliers from the parameter
update step, which is based on MLE and thus sensitive to
outliers. Hence, additional trimming can improve conver-
gence of the estimates. Since for any mixture parameter
estimates O the log-likelihood (2) is maximal for a subsam-
ple Xy obtained by trimming based on the log-likelihood
ordering (X |®) (3), the progressive trimming of Xy is per-
formed only until the following inequalities hold

L(®|Xy) > L(O|Xy) > L(O|Xg)). (7

Therefore, whenever L(®|7H) is bounded (.e., the FAST-
TLE), the proposed log-likelihood function L(®|Xy) is
bounded as well. The proposed method for likelihood maxi-
mization based on confidence level ordering is given in
Algorithm 2.

Input: trimming fraction o, the initial mixture parameters

0 = {n(l[)), .. ,71([3),9(10)

nation threshold e.

Concentration process: for each mixture component &k

1) Given the mixture parameters ©~"), classify each obser-
vation z; € X to one of K components according to (6) or
5).

2)  Perform confidence level ordering o(X|0"") according

,...,99}, and a log-likelihood termi-

to (4) and obtain a subsample X}}) ={zs,...,zy,} of size
H=[N(1-w)]. S

3)  Compute log-likelihood L(®(Z_1)|X§?) on the subsample
X Z) using (2). If in the first iteration (¢ = 1) or if the log-
likelihood has increased over the previous iteration, i.e.,
L(®Y |X§})) > L@ |)~(§}71)), then continue to step 5.

4)  Progressively trim the subsample Xg by taking into
account the lexicographic ordering of v;,j=1,..., H,
until the trimmed subsample f(%) ={zs,..., x4, } of
size H* < H satisfies condition (7). If condition (7) is satis-
fied, set Xg = )N(EL? and continue to step 5. Otherwise, ter-
minate iteration and return the previous mixture
parameters e, _

5)  Improve the mixture parameters el by maximizing
the log-likelihood O = argmaxeL(®|X})) , eg, by
using EM on the subsample f(g).

6) If the relative increase of the log-likelihood is below
the termination threshold e, i.e., (L(@“”X&?) — L(OY)]
ngn))/[,(@(i_])p?g*l)) <'¢, terminate iteration and
return the mixture parameters o0, Otherwise, continue
to step 1 and start iteration ¢ + 1.

The key ingredient of the proposed method is the confi-
dence level ordering (4), which preserves the inlying obser-
vations of all the mixture components even for samples of
highly unbalanced mixtures and components of heteroge-
neous scales. For this reason, even for a trimming fraction «
that is much higher than the expected fraction of the outliers
h, the proposed method enables robust estimation of mix-
ture parameters, the characteristic which we experimentally
verify in the next sections.

3 EXPERIMENTS ON SYNTHETIC SAMPLES

The purpose of these experiments was to evaluate the
performance of the proposed and FAST-TLE methods on
synthetic samples that were generated by drawing observa-
tions from synthetic mixtures with known parameters. The
balance between component weights was controlled and
the synthetic samples were contaminated by a varying frac-
tion of outliers.

3.1 Creation of Synthetic Samples with Outliers

The synthetic samples were composed of inlying and outly-
ing observations, each of which were generated using a spe-
cific random sampling process. The inlying observations
were obtained by randomly sampling from different syn-
thetic mixtures, which consisted of three normal (Gaussian)
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components in the two-dimensional (2D) real domain. Each
synthetic mixture was defined by parameters O = {my, i,
Ek}}:’:l , where m;, were the weights, u; the means (loca-
tions), and X, the covariances (scales) of the normal compo-
nents. Generation of a new synthetic mixture involved
random sampling of the values of parameters m, (1), and %,
from uniform distributions U(a, b) in the range from a to b.
The weights 7, were drawn from U(0, 1) and are normal-
ized to sum up to one (Zi:l 7, = 1). The coordinates of the
means ju;, k = 1,2,3 were drawn from U(—1,1) and labeled
such that their first coordinates were in ascending order,
i.e., 11 < gy < pyy. To ensure the observations belonging
to the mixture components could be reliably distinguished
from each other [1], we verified that the minimal distance
between the first coordinates j1; 1, (o and 3, was at least
1/K; otherwise, new coordinates for the means were drawn
as long as this condition was not satisfied. The covariances
3 were generated as 3, = SST o A, which ensured 3. was
positive-definite and where S = Sy.o = {s;; : 55 ~U(—1,1)}
was a random nonsingular matrix and A = % (Ioxo + 1) the
scaling matrix and § a positive constant set to 5. To test if
the resulting synthetic mixture was well-separated, the
overlap between the three mixture components was mea-
sured by Bayes error rate (BER) and the synthetic mixture
was discarded if BER was higher than BER,,,, = 0.05. In
order to avoid mixtures with badly scaled components, the
lower limit to the covariance determinant was set to
0.5 - 10*. Finally, the means and covariances were rescaled
as y, = yuy and 3y, = 22 using y = 10 so that the observa-
tions x drawn from the synthetic mixtures lied in the 2D
domain of [—20, 20] x [—20, 20]. The obtained synthetic sam-
ples were contaminated by a varying fraction of outliers,
the coordinates of which were drawn uniformly from
U(—20,20) and, then, the observations within the 95 percent
confidence area of any of the three components of the
normal mixture were rejected. Because the outliers were
clearly separable from the inliers, trimming should effec-
tively remove these outliers. In this way, we can assess the
impact of ordering schemes used for trimming and, thus,
the robustness of the mixture estimation methods with
respect to varying trimming fraction « and varying outlier
fraction h.

3.2 Experiment Description

Experiment A. The FAST-TLE and the proposed methods
were used to estimate the three-component normal mix-
tures from synthetic samples contaminated by an a priori
unknown fraction of outliers h. The synthetic samples of
N = 10* observations were drawn from the randomly gen-
erated normal mixtures and a varying number of outliers
were added to each of these samples such that their fraction
h varied from 0.0 to 0.5 with a step of 0.05. The two methods
were tested with « from 0.0 to 0.5 in 0.05 intervals. For each
tested value of h a set of 100 random mixtures was gener-
ated and, from each, three samples of size N were drawn
and, then, the outliers with uniform distribution were
added to the three samples. As there were 11 different
values of outlier fraction h and 300 test samples were gener-
ated for each h, we obtained a total of 3,300 test samples.
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Experiments were also performed on synthetic mixtures
with normally distributed outliers (see Supplemental mate-
rials, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2015.2404835, available online).

Experiment B. The FAST-TLE and the proposed methods
were used to estimate the three-component normal mixtures
with unbalanced component weights. The degree to which
the mixture weights were unbalanced was represented by
the value of the minimal weight. The value of the minimal
weight was drawn from 11 intervals of equal size in the
range [0.01,0.33] and, for each interval, 100 normal mixtures
were generated. Three synthetic samples of N = 10* obser-
vations were drawn from each of these mixtures and each
sample was added 10° of uniformly distributed outliers
(h = 0.1). Overall, 3,300 test samples were obtained.

In Experiments A and B, the FAST-TLE and the proposed
methods were executed on all test samples and, on each
sample, both methods were initialized with the same
values of the mixture parameters 0 = {7159[J> ; ;Lif‘), EE,‘” }}:’,:1.
The initial mean values M;@o) were randomly selected among
the inliers of the kth component as observations within the
95 percent confidence ellipses, while the initial covariance

matrices 22.0) were set to 0.3 [5x» and the initial mixture

weights were set to ng» = 1/K. Both tested methods used
the EM algorithm [3] to estimate the mixture parameters on
the trimmed subsamples Xy and were executed with a max-
imum of 50 iterations. The final mixture parameters were
used to classify the inlying observations based on MAP (5)
and the performance of the two methods was evaluated
by misclassification ratio (MCR), computed as the ratio
between the number of incorrectly classified inlying obser-
vations and the total number of inlying observations V:

K
MCR:%VZ’{JU]'EX:(;EJEXM A (z]#k)}| ®)
k=1

For any combination of h and « the reported MCR values
were averaged over the three samples drawn from the cor-
responding normal mixture.

3.3 Results

The impact of the choice of trimming fraction « on the per-
formance of the FAST-TLE and the proposed methods on
one test sample with outlier fraction h = 0.1 used in the
experiment is demonstrated in Fig. 2. The sample shown in
Fig. 2 was composed of three normal components with
slightly unbalanced component weights, i.e., 7 ~ 0.34,
79 & 0.55, w3 ~ 0.11. When the trimming fraction o was
lower than the outlier fraction h, trimming could not
remove all the outliers from the original sample, thus, in
both of the tested methods the MLE estimator employed on
the trimmed sample produced degenerate mixture esti-
mates. Fig. 2 shows that the mixture component with the
smallest mixture weight (rightmost) was most affected, with
over-estimated covariance and the mean shifted away from
its true value. The reason was that some outliers were not
trimmed and thus had an adverse influence on the
EM-based mixture parameter estimation. For o« =h the
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Fig. 2. Test sample consisted of inlying observations (gray dots) of three-component normal mixture and a fraction of » = 0.1 (10 percent) of uniformly
distributed outliers (gray crosses). The ellipses show the 99 percent confidence regions of the mixture components for the initial (black) and true
(dashed black) mixture parameters, while the colored ellipses show the 99 percent confidence regions of the estimated mixture components for differ-

ent values of the trimming fraction «.

FAST-TLE method accurately estimated the mixture
parameters, however, the estimates of the third component
(the component with the smallest component weight
3 ~ 0.11) became less accurate for @ > 0.3. The reason was
that the log-likelihood ordering led to the trimming of most
of the observations belonging to the third component and
thus reduced the estimate of the covariance 3. On the
other hand, the proposed method accurately estimated all
the mixture parameters for « in the range from 0.1 to 0.5.
The advantage was obtained by the use of confidence level
ordering (4), which preserved most of the inlying observa-
tions of all the components regardless of the component
weight and regardless of the value of «. For the same test
sample, Fig. 3 shows the values of MCR for different values
of « that enables a parallel insight into the performance of
the tested methods. Note that high MCR values correspond
to false classification of inlying observations due to the
degenerate values of the mixture parameters. For o = 0.1
the MCR was the lowest for both methods and then slowly
increased for the proposed method, while for the FAST-
TLE method the MCR increase was considerably higher.
Experiment A. Table 1 reports median MCR (mMCR)
values obtained after executing the two mixture parameter
estimation methods on all of the test samples with uni-
formly distributed outliers. The results are presented for
six intervals of increasing outlier fraction (i.e., [0.0,0.0],

040/ | ==e=- FAST-TLE ull
—e— Proposed -
008l |~ BER,, 4
4
m ...‘ "
o A ”
S0.06 \ -
' "
0.04
0025 0.1 04 05

02 . 0.3
Trimming fraction o

Fig. 3. Plots of misclassification ratio (MCR) for the mixtures estimated
by the FAST-TLE (dashed blue) and the proposed methods (red) that at
different trimming fractions « on the test samples in Fig. 2 with uniformly
distributed outliers.

[0.0,0.1], [0.0,0.2], [0.0,0.3], [0.0,0.4], [0.0,0.5)). The mMCR
was computed separately for samples, in which o = A4,
o > hpee and o < hye: and where h,,,, was the maximal
outlier fraction over all of the samples in the considered out-
lier fraction interval. The proposed method outperformed
the FAST-TLE method and was less affected at high and
highly variable outlier fractions (e.g., interval [0.0,0.5)).
Fig. 4 shows the mMCR values for each combination of A
and «. Both the FAST-TLE and the proposed methods per-
formed poorly (high mMCR) if the trimming fraction « was
lower than the outlier fraction & (i.e., values below diagonal
in Fig. 4). The FAST-TLE performed best (ie., lowest
mMCR) when the trimming fraction was similar to the true
outlier fraction (¢ = h, i.e., values on the diagonal in Fig. 4),
while by increasing o beyond the value of 4 the mMCR pro-
gressively increased. The proposed method, however,
showed a good and stable performance also for the values
a > h (i.e., values above the diagonal in Fig. 4). Similar
results were obtained on test samples with normally distrib-
uted outliers (see Supplemental materials, available online).

Experiment B. Table 2 reports the mMCR and median
absolute deviations (MAD) on five intervals of the minimal
weight computed over all trimming fraction values consid-
ered, o € {0.00,0.05,...,0.50}. The proposed method out-
performed the FAST-TLE method in each of the tested
intervals, which corresponded to varying balance between
mixture weights. Fig. 5 presents the mMCR values obtained
by FAST-TLE and the proposed methods on all 11 intervals
by increasing the minimal weight value. Fig. 5 confirms the
hypothesis that the robustness of FAST-TLE depends drasti-
cally on balance between mixture weights, since at high val-
ues of trimming fraction o the inliers of the component
with minimal weight are trimmed and, therefore, the
components’ parameters cannot be recovered. However,
the proposed method successfully addressed this problem
and gave stable results for trimming fractions higher than
0.1, which was the outlier fraction used in this experiment.
The proposed method performed slightly worse in cases
when the minimal mixture weight was much lower than the
outlier fraction (,,, < 0.05), while at the same time the
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TABLE 1
Median Misclassification Ratio (MMCR, x10~2) and Median Absolute Deviation (in parentheses) Computed
for the Mixtures Estimated by the FAST-TLE and the Proposed Methods on Test Samples with
Uniformly Distributed Outliers for Six Different Intervals of the Outlier Fraction

Trimming fraction o Method Interval of the outlier fraction h, [0, hyax]
0.0,000  [0.0,01]  [0.0,02]  [0.0,0.3]  [0.0,0.4] [0.0,0.5]
@ = by FAST-TLE  22(1.2)  27(1.6)  35(21)  43(32)  61(49)  11.3(3.9)
Proposed 2.2(1.2) 2.2(1.4) 24(1.4) 2.6(1.6) 2.8(1.7) 3.2(1.9)
&> Par FAST-TLE  2.8(1.4)  35(20)  43(3.1)  58(47)  9.8(7.9) -
Proposed 22(12)  22(14)  24(15)  27(16)  31(18)
@ < honas FAST-TLE - 27(1.6)  33(19)  39(27)  49(3.7) 7.6 (6.3)
Proposed - 26(14) 27(16)  28(17)  3.0(18) 3.4(21)

The numbers in bold correspond to the best performing method.

trimming fraction was set very high (« > 0.4). The reason is
that, depending on the initialization, the outliers uniformly
distributed around the inliers of the minimal component
will have a significant effect during the first few iterations.

4 EXPERIMENTS ON BRAIN MR IMAGES

The analysis of brain MR images is typically approached by
modeling the intensity distribution of brain structures,
which can be performed through the estimation of a corre-
sponding mixture model and which is then used for the
task of brain structure segmentation, intensity nonunifor-
mity correction, partial volume estimation, pathology detec-
tion, etc. [20], [25], [26], [27]. If the brain structures contain
pathologies, then the modeling of the intensity distribution
of these structures requires the use of robust mixture esti-
mation methods, since the MR intensities corresponding to
the pathological structures do not conform to the intensity
distribution of the normal structures. The intensities of
pathological structures such as tumor and brain lesions
thus represent outliers in the intensity distribution. The
fraction of outliers is directly proportional to the volume of
the pathological structures that can vary significantly com-
pared to the volume of the normal brain structures, there-
fore, the mixture estimation methods need to be robust to
high variations of the outlier fraction. To evaluate the per-
formance of the FAST-TLE and the proposed methods for
the purpose of modeling the intensity distribution of brain
structures, we created a database of MR images of brains
that contained tumors of varying volumes. The mixture
models estimated by the two tested methods were used to
segment the normal brain structures such as the white mat-
ter (WM) and gray matter (GM) tissues, and cerebrospinal
fluid (CSF), and the tumors.
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Fig. 4. Median misclassification ratio (MMCR) on test samples with uni-
formly distributed outliers for the mixtures estimated by the FAST-TLE
(leff) and the proposed methods (right).

4.1 Creation of Brain MR Image Database

A database' of 100 sets of MR images of brains with tumors
of varying volumes was created from 20 different brain
phantoms in the BrainWeb database [28]. From each of the
20 brain phantoms five sets of MR images with tumors
of different volumes were created, resulting in a total of
100 sets of MR images. Tumors were generated by a realistic
simulator of 3D brain tumor growth (TumorSim) [29]
such that an initial tumor seed was placed at a random loca-
tion inside the WM or GM tissue. The output of the Tumor-
Sim simulator that we used consisted of modified T1-, T2-
weighted and FLAIR MR sequences and a modified ground
truth segmentation of the brain structures and the tumor
(Fig. 6). These three MR sequences are typically used for
the visualization of the brain structures and for the diagno-
sis of the brain pathologies, since the T1w sequence gener-
ally has the highest contrast between the normal brain
tissues (WM, GM), the T2w sequence highlights fluids
(CSF) and inflammations, while FLAIR is complementary
to T2w sequence, but suppresses the fluid-related signals.
All the MR images had 256 x 256 x 128 voxels with isotro-
pic resolution 1 x 1x 1 mm? and contained MR-specific arti-
facts, such as Rician noise, partial volume and intensity
inhomogeneity.

The obtained five sets of MR images per each brain phan-
tom corresponded to five initial tumor seeds of increasing
volumes and, since the volumes of the simulated tumors
were proportional to the volume of the initial tumor seed,
the final tumor volumes were different with mean volumes
over all the 20 phantoms of 1.6, 10.6, 27.8, 44.9 and 66.0 cm?®
(Fig. 6).

4.2 Experiment Description

The aim of this experiment was to investigate the perfor-
mance of the FAST-TLE and the proposed methods for the
task of modeling the intensity distribution of normal brain
structures in the presence of a varying amount of pathologi-
cal structures. The methods were tested on 100 sets of MR
images with varying tumor volumes by modeling the MR
intensity distribution as a three-component normal mixture
with the components corresponding to the WM, GM and
CSF structures. The estimation of the normal mixture
was performed on the intensities of Tlw, T2w, and FLAIR

1. The code and the brain tumor MR image database are publicly
available online at http:/ /lit.fe.uni-lj.si/tools
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TABLE 2
Median Misclassification Ratio (MMCR, x10~2) and Median Absolute Deviation (in parentheses) Computed
for the Mixtures Estimated by the FAST-TLE and the Proposed Methods on Test Samples with
Uniformly Distributed Outliers for Six Different Intervals of the Outlier Fraction

NOVEMBER 2015

Method Interval of the minimal component weight [0, 7Tin]

0.01,0.07] 0.07,0.14] [0.14,0.20] [0.20,0.27] [0.27,0.33]
FAST-TLE 15.6 (12.9) 6.5 (4.9) 4.2(3.0) 3.5(2.1) 3.3(1.6)
Proposed 3.2(2.8) 2.7(1.7) 2.8(1.6) 2.6(1.5) 2.8(1.4)

The numbers in bold correspond to the best performing method.

sequences in those voxels, which lied within the brain mask
as given by the ground truth segmentation. The number of
voxels captured within the brain mask varied between dif-
ferent phantoms and was 2 - 10° on average. The FAST-TLE
and the proposed method were tested with different values
of the trimming fraction « that varied from 0.0 to 0.5 with
step 0.05. Mixture parameters were initialized based on a
coarse segmentation of T1w sequence into the WM, GM and
CSF structures, obtained by unsupervised dual-threshold
Otsu’s algorithm [30]. The initial means p; and covariances
>, of mixture components were set to corresponding sam-
ple means and sample covariances, and m;, were set to the
fraction of voxels corresponding to each structure. Both of
the two tested methods used the EM algorithm [3] on the
trimmed subsample to estimate the mixture parameters and
were executed with a maximum of 50 iterations.

The estimated mixture models were used to segment the
brain MR images into WM, GM and CSF structures based
on MAP (5), while the samples of trimmed observations, or
outliers, {X \ Xy}, as obtained by the FAST-TLE and the
proposed method, were further analyzed to segment the
tumor. Besides the voxels corresponding to the tumor inten-
sities, the samples of outliers may contain voxels with other
atypical intensity values that deviate from the normal inten-
sity model of brain structures due to partial volume, Rician
noise [31] , intensity inhomogeneity [32], etc. Therefore, the
voxels in each sample of outliers were classified as tumor or
non-tumor voxels based on a heuristic hyper-intensity rule
[20]. A particular voxel j was put into sample X (the sample
of tumor voxels) if its T2w and FLAIR intensities ;72
and ; rrarr, respectively, deviated from the corresponding
intensity distributions of the WM voxels. At a given sign-
ificance levels pro,, and prrarr, the corresponding intensity
thresholds t79, and trrar were computed from p; =
17 N(wwars, owars)dt, s € {T2w, FLAIR}, i.e., the Gaussian

FAST-TLE Proposed mMCR
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Fig. 5. Median misclassification ratio (MMCR) on test samples of syn-
thetic mixtures with different values of the minimal mixture weight. Mix-
tures were estimated by the FAST-TLE (left) and the proposed methods
(right) for different trimming fractions «.

intensity distribution of WM voxels, and were used to clas-
sify the tumor voxels as

Xy ={z; € X : (zjro0 > trow N TjrLAR > tFLAIR)

A z; & {WM,GM,CSF}}. ©

The intensity thresholds were obtained at the corresponding
significance levels pra,, and prrair set to 10~%. The outlier
voxels that were not classified as tumors were subsequently
classified as WM, GM or CSF based on the MAP and
merged with their corresponding segmentations. Based on
the ground truth segmentations, the accuracy of the esti-
mated normal mixtures was evaluated as in Section 3 by
computing the median misclassification ratio (mMCR) (8)
over 20 phantoms for each of the five mean tumor volumes
and for each setting of the trimming fraction «. The overlap
between the obtained and ground truth segmentations was
evaluated by Dice similarity coefficient (DSC):

_2|Zy,n ZY|

DSCy. = .
|Zx| + 12}

(10)

The DSC was computed for each of the three normal brain
structures k € {WM,GM,CSF} between the obtained Z;
and the ground truth segmentations Z{'. The median of
DSC (mDSC) was computed over 20 phantoms for each of
the five mean tumor volumes and for each setting of the
trimming fraction a.

4.3 Results

Table 3 reports the mMCR for the normal mixtures com-
puted by the standard maximum likelihood estimator
(MLE), the FAST-TLE and the proposed methods. The MLE
used the EM algorithm and was equivalent to the FAST-
TLE and the proposed methods with the trimming fraction
a set to 0. The mMCR was generally higher for the MLE
method compared to the other two methods that employed
trimming, indicating the advantage of using robust mixture
estimation methods. Nevertheless, the mMCR for the FAST-
TLE method varied significantly for « > 0.3 and was some-
times even higher than the mMCR of the MLE method,
especially in the MR image sets with small tumors. On the
other hand, the performance of the proposed method was
not affected at high trimming fractions o and the method
achieved the lowest mean mMCR. The left of Fig. 7 shows
the mMCR values for each combination of mean tumor
volume and «. The observed performance is consistent
with the performance observed on the synthetic samples
(Section 3), in which FAST-TLE achieved the lowest mMCR
when the trimming fraction o was close to the true outlier
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Fig. 6. Top row from left to right. A set of MR images, i.e., ground truth segmentation of the brain structures and tumor, tumor infiltration map, T1-, T2-
weighted and FLAIR sequences with delineated tumor (red line), T2w—FLAIR distribution of outliers with superimposed ellipses of mixture compo-
nents based on ground truth. The tumor also affected the MR intensities outside its boundary (arrows). Bottom row from left to right. Axial cross-
sections of ground truth segmentations of the brain MR images with increasing tumor volume. The cross-sections are shown for different brain phan-
toms and each of the axial cross-sections was taken at the largest axial cross-sectional area of the tumor.

Median Misclassification Ratio (mMCR, x10~

TABLE 3

1) and Its Median Absolute Deviation (in Parentheses)

for the Three Component Normal Mixtures Estimated on the MR Image Sets by the FAST-TLE
and the Proposed Methods for Different Values of Trimming Fractions «

Median MCR (mMCR) for different mean tumor volumes

Trimming Method Overall
fraction o 1.6cm? 10.6cm? 27.8cm? 44.9cm? 66.0cm? mMCR
0.0 MLE 3.4(0.6) 3.9(0.4) 4.1(0.5) 3.4(0.5) 3. 7(0 5) 3.7(0.6)
0.1 FAST-TLE 3.3(0.7) 3.0(0.5) 3.3(0.6) 3.1(0.5) 6(0.3) 3.2(0.6)
Proposed 3.1(0.7) 2.9(0.7) 3.2(0.8) 2.9(04) .5(0.3) 3.1(0.6)
0.2 FAST-TLE 2.3(0.4) 2.4(0.5) 2.4(0.3) 2.9(0.5) 1(0.5) 2.6(0.5)
Proposed 2.3(0.5) 2.2(0.5) 2.6 (0.4) 2.7(0.6) 1(0.5) 2.6 (0.5)
0.3 FAST-TLE 2.2(0.4) 2.1(0.5) 2.2(0.5) 2.0(0.5) 4(0.5) 2.2(0.5)
Proposed 22(0.2) 2.2(0.5) 2.1(0.3) 2.7(0.7) 3(0.5) 2.2(0.4)
0.4 FAST-TLE 3.2(1.2) 2.6(1.1) 4.0(0.9) 2.9(1.3) 1(0.7) 3.4(1.2)
Proposed 2.2(0.4) 1.7(0.3) 1.9(0.4) 2.2(0.7) 9(0.4) 2.0(0.5)
0.5 FAST-TLE 4.5(0.5) 4.5(1.0) 48(0.7) 1.2(0.6) 2(0.7) 45(0.7)
Proposed 2.1(0.3) 1.7(0.3) 2.0(0.6) 1.7 (0.5) 7(0.4) 1.9(0.4)

The values in bold correspond to the best performing method in terms of mMCR.
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Fig. 7. Performance of the MR intensity mixture estimation and MR image segmentation: (a) median misclassification ratio (mMMCR) and (b) median
Dice similarity coefficient (mMDSC), respectively. Low mMCR corresponds to accurate mixture estimation, while high mDSC corresponds to accurate
segmentation of MR images. Results for the FAST-TLE (top) and the proposed (bottom) method are shown for different mean tumor volumes and
trimming fractions «, and for the white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF).
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0=0.25

a=0.35

Fig. 8. Analysis of MR images shown in Fig. 6 and their cross-sections:
outlier voxels (top) and segmentation (bottom) of the normal brain struc-
tures and tumors for FAST-TLE (upper rows) and the proposed (lower
rows) methods for different trimming fractions «. The color-coding of the
segmentations is the same as in Fig. 6.

fraction h, while the proposed method had low and stable
mMCR when « > h. As the exact outlier fraction A is not
known for the MR image sets, as in data sets of many other
applications, the ability to set the trimming fraction « arbi-
trarily high (up to 0.5) without trading performance has an
important advantage for the practical use of mixture estima-
tion methods.

The accuracy of the estimated mixtures has an impor-
tant impact on the segmentation of normal brain struc-
tures. The performance of segmentation reported by mDSC
is shown on the right of Fig. 7. The FAST-TLE achieved
best mDSC in the range of trimming fraction « from 0.25 to
0.35, while for higher values of «, the mDSC for the CSF
and GM structures decreased significantly. The main rea-
son is that the log-likelihood ordering (3) resulted in trim-
ming most of the voxels belonging to the CSF (Fig. 8),
while the mixture component corresponding to CSF then
modeled the CSF-GM interface and, thus, the resulting seg-
mentation of both the CSF and GM became inaccurate. The
proposed method achieved stable mDSC for « in the range
from 0.3 to 0.5 and resulted in accurate segmentation of
the normal brain structures and the tumors. Fig. 8 shows
the segmentations with respect to « obtained by the FAST-
TLE and the proposed method.

5 PERFORMANCE CHARACTERISTICS

The aim of this section is to investigate and compare the
properties of the FAST-TLE and the proposed methods
such as convergence and execution times.
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Fig. 9. The normalized mean likelihood curve (top), median misclassifi-
cation ratio (MMCR) (middle) w.r.t. iterations, and the number of itera-
tions required to convergence (bottom) of the FAST-TLE and the
proposed methods for different trimming fractions « computed on syn-
thetic samples contaminated by a fraction » = 0.2 of outliers.

The convergence properties of the two tested methods
were investigated on the synthetic samples (Section 3). In
this experiment 10 different synthetic mixtures were used
with a fraction h = 0.2 of uniformly distributed outliers;
thus, each sample consisted of 1.2-10" observations. The
FAST-TLE and the proposed methods were tested for trim-
ming fractions « € {0.05,0.10,...,0.5} and executed for 50
iterations. All 50 iterations were performed regardless of
the stopping criteria, however, the iteration count was
recorded when stopping criteria was met. Also, the accu-
racy of mixture estimation was evaluated in each iteration
by computing the mMCR. The experiment was repeated
10 times, each time with a different, randomly selected
initial parameters as described in Section 3. The normal-
ized mean likelihood, recorded iteration counts and
mMCR curves with respect to the 50 iterations performed
for each method are shown in Fig. 9. When o was equal
to h (i.e., o = 0.2), both methods achieved the highest per-
formance (low mMCR) and were most efficient (low iter-
ation count). In general, the likelihood convergence of the
proposed method was slower than that of FAST-TLE,
however, the proposed method typically required a lower
number of iterations, especially for o = h, as the mMCR
always stabilized after 20 iterations (Fig. 9). The reason
for lower iteration count was also that an additional
stopping criterion was incorporated into the proposed
method that put an upper bound on the log-likelihood
objective function (step 4 in Algorithm 2). As already
observed in Section 3.3, the mMCR of the FAST-TLE
method increased drastically when the trimming fraction
o differed from the outlier fraction h, while the proposed
method achieved low and stable mMCR for o > h.

The execution times of the two tested methods were mea-
sured on synthetic samples of different sizes that varied
from 10° to 10°. For each sample size, observations were
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TABLE 4
Characteristics of the FAST-TLE and Proposed Method, Which Was Tested with Three Implementations
of the Confidence Level Ordering

Proposed method
Criterion Sample size N FAST-TLE Mahalanobis Numerical Stochastic
method distances integration quantile density
103 0.20 0.35 0.22 0.43
Mean time [s] 104 0.56 3.66 0.50 1.05
10° 5.06 61.74 3.74 5.33
10° 11 5 5 5
Tteration count 104 23 8 9 12
10° 43 15 15 22
10° 0.15 — 0.006 0.017
mMCR* 10% 0.14 — 0.002 0.006
10° 0.17 — 0.001 0.008

The mMCR of each method is computed w.r.t. the proposed method with Mahalanobis distance based implementation of confidence level order-
ing. The measurements are means over 10 experiment repetitions, using different outlier and trimming fractions, and different initial mixture

parameters (cf. text for details).
“with respect to Mahalanobis distance based implementation

drawn from three-component normal mixtures and the uni-
formly distributed outliers were added to the sample in
fractions varying from 0 to 0.5 with step of 0.05. The meth-
ods were tested for trimming fraction « varying from 0.05 to
0.5 with step of 0.05. The experiment was repeated 10 times,
each time with a different, randomly selected initial param-
eters as described in Section 3. The proposed method was
tested with three different implementations of the confi-
dence level ordering (4). The first was based on computing
the component-wise Mahalanobis distances, the second
was the numerical integration (Algorithm 1) and the third
was the stochastic density quantile algorithm [24]. The last
two implementations resulted in approximate confidence
levels, therefore, their effect on the accuracy of the mixture
estimates with respect to the Mahalanobis distance based
implementation was measured by mMCR. Besides the exe-
cution time, iteration count was also recorded. The results
are summarized in Table 4.

For the proposed method with Mahalanobis distance
based implementation of the confidence level ordering, the
increase in sample size N resulted in a significant increase
of the execution time. On the other hand, the numerical inte-
gration and stochastic density quantile implementations
were very efficient with execution times comparable to the
FAST-TLE method. The approximation error introduced by
the numerical integration and stochastic density quantile
implementation used in the proposed method was below
0.006 and 0.017 in terms of mMCR, respectively. The
mMCR between the FAST-TLE and the proposed methods
(the Mahalanobis distance based implementation) was
much higher, indicating a significant difference between
the log-likelihood (3) and the confidence level (4) ordering
schemes. Besides, the implementation incorporating numer-
ical integration or stochastic density quantile algorithm
can be easily adapted to mixtures of arbitrary forms of com-
ponent distributions.

6 DiISCUSSION

In applications of mixture estimation, samples are always
contaminated by the outliers and, more importantly, the a

priori estimation of the fraction of outliers in a sample is often
difficult, if at all possible in advance. The results of mixture
estimation on samples contaminated by outliers indicate that
the proposed method performs more robustly than the
FAST-TLE method. The two tested methods rely on trimming
of the observations to achieve robust mixture estimation,
therefore, the trimming fraction is the most critical perfor-
mance-affecting parameter of these methods. The experi-
ments on synthetic and realistic samples contaminated with
outliers revealed that mixture estimates obtained by the
FAST-TLE method were accurate only when the value of the
trimming fraction was set to a value which was similar to the
actual outlier fraction. The proposed method can be applied
by setting the trimming fraction to the highest expected value
of the outlier fraction in the class of samples considered and,
thereby, obtain accurate mixture estimates from the samples
contaminated with a fraction of outliers that is either much
lower or reaches up to the preset trimming fraction.

One of the advantages of trimming versus a competing
strategy, which is to treat outliers as a separate component,
is that trimming can capture outliers of varying distribu-
tions; e.g., diffuse, concentrated uni-modal, or multi-modal,
or even a combination of diffuse and concentrated outlier
distributions. This was verified by the results on synthetic
samples of normal mixtures with the outliers distributed
either uniformly (Section 3) or normally (Supplemental
materials, available online), and by results on realistic sam-
ples of 100 brain tumor MR image data sets (Section 4). On
realistic samples the distribution of outliers was both dif-
fuse and concentrated in multiple modes (Fig. 6 top right),
hence, trimming has the ability to capture outliers with
rather arbitrary distributions.

The benefit of the proposed method is also in its ability to
estimate mixtures from samples, in which the components
are represented by a different and highly unbalanced num-
ber of observations. Such samples are often obtained from
high density data sensors such as imaging devices, in which
structures of different sizes need to be compactly repre-
sented by a mixture model. In medical image analysis, for
example, the mixture models are often used to represent
the intensity model of anatomical structures. The intensity
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models are typically used for the tasks like image segmenta-
tion, registration, and intensity nonuniformity correction.
We performed experiments on 100 sets of MR images of
brains with tumors of varying volumes, in which the task
was to model the intensities of the normal brain structures
structures such as white matter, gray matter and cere-
brospinal fluid. These structures differed significantly in
volume and, therefore, the number of voxels representing
the intensity of each structure also varied significantly. For
example, the mean fractions of the normal brain structures,
ie, WM, GM and CSF, were 0.27, 0.49 and 0.24, respec-
tively. The outlying intensities represented the tumor
intensities and the intensities of its surrounding structures
(tumor infiltration) and common MR image artifacts such as
partial volume effect, Rician noise, and intensity inhomoge-
neity. Therefore, neither the form nor the fraction of outliers
could be accurately predicted in advance and an accurate
estimation of the MR intensity model in the form of a mix-
ture is a challenging problem. Robust mixture estimation
methods such as FAST-TLE have already been applied to
MR image segmentation [20], [33], [34], however, as demon-
strated by our experiments, their optimal application to MR
image sets requires case-specific tuning of the trimming
fraction value. The proposed method demonstrated stable
performance of mixture estimation over a broad range of
trimming fraction values (0.3-0.5) and outperformed the
FAST-TLE method in segmentation of normal brain struc-
tures in the presence of tumors of varying volumes.

For the task of image segmentation, a spatial association
between voxels is an important prior assumption that can
be incorporated through statistical image modeling based
on Markov random field (MRF) framework [35]. In MRF
frameworks, the components of mixture estimates represent
the likelihood of structures used in a Bayesian inference.
We used the mixture estimates obtained by the FAST-TLE
and the proposed method in the MRF framework, which
generally improved the DSC of resulting segmentations,
however, the patterns of DSC with respect to tumor volume
and trimming fraction o were similar to those in Fig. 7b.
Hence, we arrived at the same conclusion as previously
without employing the spatial association of voxels, which
is, the mixture estimates obtained by the proposed method,
compared to the FAST-TLE, result in consistent DSC values
for a larger range of trimming fraction « (0.3-0.5) and, thus,
in more robust mixture estimates.

The robustness of mixture estimation depends on the
way mixture parameters are initialized. To analyze this
dependence, the experiments on the synthetic samples were
also conducted with the mixture parameters initialized by
k-means clustering and by ground truth mixture parame-
ters. Although the final results varied slightly based on the
initialization used, the patterns of mMCR, and thereby the
conclusions, for both the FAST-TLE and the proposed
methods were similar to those in Fig. 4. To improve the
robustness of mixture estimates a widely used solution is to
take several (random) initial mixture parameters, compute
the respective mixture estimates and then select the mixture
corresponding to the highest objective function [2], [9], [23].
Performing several mixture estimations may not be feasible
for large samples due to increased execution time, while for
samples of unbalanced mixtures and/or high value of
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trimming fraction a drastically higher number of the initial
mixture parameters would be required for robust mixture
estimation [2]. In practical applications, however, the mix-
ture parameters can usually be initialized based on applica-
tion-specific prior knowledge, as demonstrated on brain
MR images [20], [36].

Although the FAST-TLE and the proposed methods do
not explicitly model the outlier distributions, they assign,
through the normalized likelihood or confidence level based
ordering of observations, respectively, an outlier member-
ship value to each of the observations. The proposed order-
ing based on confidence levels assigns a weight in range
from zero to one to each observation, which can be used as
a fuzzy outlier membership map in advanced image seg-
mentation frameworks that account for spatial association
of observations [35].

In conclusion, we proposed a novel method for robust
estimation of unbalanced mixtures on samples contaminated
with outliers. The main advantage of the proposed method is
its robustness because it can estimate unbalanced mixture
models irrespective of the fraction of outliers, as long as the
trimming fraction is higher than the outlier fraction, which
can be as high as 50 percent. The breakthrough was achieved
by selecting the outliers based on confidence level ordering,
which also enabled the estimation of highly unbalanced mix-
tures. The results on synthetic and realistic samples indi-
cated that the proposed method was robust over a broad
range of trimming fractions, therefore, it can be applied for
the mixture estimation on real-world samples, in which the
outlier fraction cannot be estimated in advance.
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