
Under review as a conference paper at ICLR 2019

FLEXIBLE AND EFFICIENT LONG-RANGE PLANNING
THROUGH CURIOUS EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Identifying algorithms that flexibly and efficiently discover temporally-extended
multi-phase plans is an essential next step for the advancement of robotics and
model-based reinforcement learning. The core problem of long-range planning is
finding an efficient way to search through the tree of possible action sequences —
which, if left unchecked, grows exponentially with the length of the plan. Exist-
ing non-learned planning solutions from the Task and Motion Planning (TAMP)
literature rely on the existence of logical descriptions for the effects and precondi-
tions for actions. This constraint allows TAMP methods to efficiently reduce the
tree search problem but limits their ability to generalize to unseen and complex
physical environments. In contrast, deep reinforcement learning (DRL) meth-
ods use flexible neural-network-based function approximators to discover policies
that generalize naturally to unseen circumstances. However, DRL methods have
had trouble dealing with the very sparse reward landscapes inherent to long-range
multi-step planning situations. Here, we propose the Curious Sample Planner
(CSP), which fuses elements of TAMP and DRL by using a curiosity-guided sam-
pling strategy to learn to efficiently explore the tree of action effects. We show that
CSP can efficiently discover interesting and complex temporally-extended plans
for solving a wide range of physically realistic 3D tasks. In contrast, standard
DRL and random sampling methods often fail to solve these tasks at all or do so
only with a huge and highly variable number of training samples. We explore the
use of a variety of curiosity metrics with CSP and analyze the types of solutions
that CSP discovers. Finally, we show that CSP supports task transfer so that the
exploration policies learned during experience with one task can help improve
efficiency on related tasks.

1 INTRODUCTION

Many complex behaviors such as cleaning a kitchen, organizing a drawer, or cooking a meal require
plans that are a combination of low-level geometric manipulation and high-level action sequencing.
For example, boiling water requires sequencing high-level actions such as fetching a pot, pouring
water into the pot, and turning on the stove. In turn, each of these high-level steps consists of
many low-level task-specific geometric action primitives. For instance, grabbing a pot requires
intricate motor manipulation and physical considerations such as friction, force, etc. The process of
combining these low-level geometric decisions and high-level action sequences is often referred to
as multi-step planning.

While high-level task planning and low-level geometric planning are difficult problems on their own,
integrating them presents unique challenges that add further complexity. Task and Motion Planning
(TAMP) is a powerful approach to the problem which constructs plans in logical terms that execute
a sequence of macro-actions that are composed of geometric motion plans (Fikes & Nilsson, 1971;
Dantam et al., 2016). While TAMP has been successful at generating temporally extended multi-
step plans that conform to geometric constraints, it requires actions to have defined preconditions
and effects that modify the logical description of the world state. This is an unreasonable assumption
for complex physical tasks because real-world effects and preconditions are often unknown or diffi-
cult to describe with logical predicates. These assumptions limit the flexibility and robustness of the
TAMP approach. In addition, TAMP is computationally costly because it requires geometric motion
planning for each macro-action sample. In contrast, deep reinforcement learning (DRL) methods

1

Under review as a conference paper at ICLR 2019

have shown success at learning �exible policies for a variety of complex tasks in unstructured do-
mains (Arulkumaran et al., 2017). However, DRL methods typically require very large sample sizes
of successful trajectories to learn useful policies and thus have trouble in sparse reward landscapes
(Choi et al., 2019; Riedmiller et al., 2018). Multi-step planning, by its very nature, involves sparse
reward landscapes, as highly speci�c action sequences must be executed before any positive rewards
are observed. As such, �exible multi-step planning is an open challenge in arti�cial intelligence and
algorithmic robotics.

In this paper we combine aspects of TAMP and DRL to achieve progress toward ef�cient and �exible
multi-step planning. We introduce the Curious Sample Planner (CSP), which uses curiosity to bias
the search through action space toward novel points in the state space. Our method combines the
�exibility and transferability of DRL with the temporally extended multi-step planning of TAMP.
We illustrate the power of CSP in a variety of qualitatively distinct problems in multi-step planning
for which logical descriptions of action effects would be dif�cult to construct, including the build-
ing of complex structures and the discovery of simple machines for achieving challenging physical
goals. We show CSP dramatically improves sample complexity compared to random TAMP explo-
ration and DRL baselines. We compare a variety of distinct curiosity metrics for use with CSP and
demonstrate that dynamics-based curiosity performs well on tasks which require many dynamic ob-
ject interactions while state-based curiosity performs better for structure-building tasks. Finally, we
show that CSP can be used to achieve substantial transfer between related but qualitatively distinct
tasks, utilizing knowledge in one domain to increase performance in a similar domain.

2 RELATED WORK

Finding policies in sparse-reward environments has been an ever-present challenge for modern deep
reinforcement learning. Model-free RL algorithms either require millions of samples in a sparse-
reward setting (Mnih et al., 2015; Hessel et al., 2017) or a precise reward curriculum that gives
checkpoints or gradients toward the goal (Heess et al., 2017). While these algorithms yield convinc-
ing performance, humans can learn these tasks without strict reward curricula or massive sample
sizes.

Model-based RL presents a promising approach for solving these sparse-reward tasks by allowing
agents to create plans through virtual experimentation. Rather than learning a direct policy or value
function, model-based RL focuses on learning the local or global dynamics of the task to enable
planning (Kaiser et al., 2019; Levine et al., 2015) or to create imagined environment roll-outs for
more ef�cient policy training (Weber et al., 2017; Ha & Schmidhuber, 2018). Once the structure of
the task is known, the question becomes how to best plan under that structure. Our algorithm is a
method for multi-step planning after the environmental dynamics and task structure are known.

A classical approach to planning is that of sample-based geometric motion planners. Rapidly Ex-
ploring Random Trees (RRT) and Probabilistic Road Maps (PRM) combine goal-directed sampling
with off-target sampling to balance exploration of the state space with exploitation of knowledge
about the goal con�guration (Lavalle, 1998; Kavraki et al., 1996). While these algorithms can work
even for high dimensional con�guration spaces, they are computationally intractable for tasks with
the complex constraints that often exist in real world settings (Kingston et al., 2018). For a robotic
manipulator, grasping an object has a necessary condition that the agent's manipulator is in a posi-
tion to grasp that object. These constraint barriers in the con�guration space render the goal-directed
component of motion planning ineffective and necessitate a random exploration the entire con�gura-
tion space. So while sample-based geometric motion planners are effective at simple tasks, they fail
for temporally extended multi-step tasks with intricate constraints. We use sample-based geometric
motion planners as a part of our solution to the multi-step planning problem.

More recently, Task and Motion Planning has shown success in developing temporally extended
multi-step plans under both fully known and partially observed environment dynamics. A number
of TAMP algorithms (Kaelbling & Lozano-Ṕerez, 2013; Gravot et al., 2005; Hertle et al., 2012;
Srivastava et al., 2014) have solved tasks such as block stacking, object packing, table setting, and
much more. TAMP algorithms generally iterate between a motion planning step (using RRT, PRM,
etc) and a symbolic planning step using task planning algorithms such as Fast Downward Planning
(Helmert, 2006) or Fast Forward Planning (Hoffmann & Nebel, 2001). However, because geometric
motion planning is relatively slow, Task and Motion Planning is computationally burdensome. Ad-

2

Under review as a conference paper at ICLR 2019

ditionally, de�ning logical predicates for the effects and preconditions of macro-actions is a manual
undertaking which limits the �exibility of the solution. We take inspiration from Task and Motion
planning by using geometric motion planners as procedures used in executing macro-actions, but
increase planning ef�ciency and �exibility by intelligently sampling macro-actions and avoiding
logical descriptions of effects and preconditions.

Many other methods have been proposed that increase the ef�ciency and �exibility of Task and
Motion Planning. Supervised learning of the preconditions and effects of certain macro-actions
removes the need for manual speci�cation, but requires constructing task-speci�c training datasets
(Kroemer & Sukhatme, 2016; Wang et al., 2018). Other work has focused on factoring the planning
problem into submanifolds with analytic constraints in order to reduce the size of the search space.
(Garrett et al., 2018; Vega-Brown & Roy, 2018). TAMP can be accelerated by generating a sampling
distribution around the goal trajectory using GANs (Kim et al., 2018) or by using reinforcement
learning to learn search heuristics through expert examples or previously solved problem instances
(Chitnis et al., 2016; Kim et al., 2019). In this work, we also aim to build an algorithm that can
utilize information gained from previous problem instances to speed up planning and generalize to
related tasks. However, instead of supervising on expert examples or task-speci�c training sets, we
aim to use a self-supervision signal to increase the ef�ciency of multi-step planning.

Along with model-based RL and planning, intrinsic motivation, also known as curiosity, has been
used to turn sparse reward spaces into dense ones by self-supervising on an auxiliary task. Some
commonly used auxiliary tasks are forward dynamics (Burda et al., 2019), random network distil-
lation (Choi et al., 2019), and state estimation (Mitash et al., 2017). The error from these predictor
networks are considered an intrinsic reward for some reward optimization algorithm. These auxiliary
tasks encourage state-space and action-space coverage and increase the probability of encountering
sparse rewards over random policies with epsilon-greedy exploration (Jaderberg et al., 2016). Our
algorithm uses the principle of self-supervision on auxiliary tasks to accelerate goal discovery in
multi-step planning.

3 MATHEMATICAL DESCRIPTION

3.1 PROBLEM DESCRIPTION

In its general formulation, our problem consists of a robotR in an environment with dynamic
movable objectsD1; D2; :::Dk and static objectsS1; S2; :::Sl . The robotR has an associated con-
�guration spaceQ containing its possible con�gurations in its environment, so thatdim(Q) is the
number of degrees of freedom ofR. There is a larger state-spaceS which, in addition toQ, includes
includes the total description of the positions and orientations of the dynamic and static objects, as
well as their velocities, masses, and shapes, together with any (possibly dynamic) state-space con-
straints such as links or joints that may (permanently or temporarily) exist between objects in the
environment.

The robot is equipped with a spaceA of primitive actions that cause reliable (though possibly
stochastic) changes in the state. The robot is also equipped with a set of macro-actionsM that
can be translated into sequences of motion primitives inA using geometric motion planning and in-
verse kinematic procedures. Each macro-action is parameterized by speci�c continuous and discrete
parameters, and has a set of implicitly-de�ned feasible conditions.

In our speci�c experiments, we use a mounted robot arm with seven bounded revolute joints result-
ing in a seven dimensional con�guration space, with fully-extended lengthr . Our robot's action
primitives A consist of (1) a 7-dimensional continuous rotation space composed by linearly inter-
polating between� 1 and� 2 where� 1; � 2 are 7-vectors corresponding to bounds on each rotational
degree of freedom, and (2) the ability to add a link constraint between any two objects in the envi-
ronment, as long as the objects are touching and the robot arm is suf�ciently close to both. We use
Bullet (Coumans, 2015), a �exible physics simulation library, to execute robot actions in simulation.
The robot has access to aPickPlace macro-action which takes a target object, a goal position,
and a goal orientation as input, and moves the target block to the goal position and orientation. The
robot also has access toAddConstraint macro which takes two target objects as input, moves
them into position for linking, and performs the link; and a correspondingRemoveConstraint
that breaks the link if the objects are connected. While this setup is fairly typical of robotics appli-

3

Under review as a conference paper at ICLR 2019

Figure 1: a.) The action selection networks select actions that maximize curiosity. b.) Parameterized
macro-actions are converted to motion primitives c.) The forward dynamics module predicts the
effects of executing those motor primitives in a particular state. d.) The curiosity module represents
the current world state and outputs one of the curiosity metrics (see section 4.3). e.) The search tree
is expanded.

cations, the CSP algorithm we describe below makes no assumptions about the effects of actions on
objects in the environment, and so our method could be applied to more complicated environments
containing soft-body objects, cloths, and multiple robotic manipulators.

The robot must use its actions and macro-actions to achieve a goal, de�ned by a state-space subset
G � S , by manipulating the state from some speci�ed initial conditions into theG subset. For
example, for our robotic arm, the task of moving a dynamic objectD i outside the reachable radius
r of the robot would be de�ned byG = f s 2 SjD i x

2 + D i y
2 > r 2g. Though this type of goal

de�nition is very simple and natural, �nding a solution to such a task require complex strategic
planning — e.g. perhaps requiring the discovery and construction of a simple machine, such as a
ramp that could be used to slide the block out of the robot's reach (see section 4.1).

Finally, the robot has access to a (deterministic) dynamics model,f : S � A ! S , that maps states
and actions to future states i.e.f (st ; a) = st + � for some� > 0. In this work, f simply gives
the robot access directly to the underlying Bullet physics simulator as a black box, but future re-
search could involve havingf be a learned (possibly non-deterministic) forward dynamic prediction
network that must be inferred from agent experience (such as e.g. (Mrowca et al., 2018)).

3.2 CURIOUS SAMPLE PLANNER

Below, we describe the Curious Sample Planner. We �rst describe the CSP's system architecture,
including its constituent neural networks and geometric planning module. We then describe the core
curious tree-search algorithm by which CSP uses these modules to construct multi-step plans.

System Architecture: CSP is comprised of four main modules (Fig. 1). The action selection
networks include an actor-network� � : S ! M and a critic-networkV� : S ! R (Fig. 1a),
which learn to select macro-actions and choose parameters of that macro-action given a particular
state. The action selection networks have two primary functions: maximizing curiosity in action
selection and avoiding infeasible macro-actions. The networks are trained using actor-critic rein-
forcement learning (PPO (Schulman et al., 2017)) where� � has learnable parameters� andV� has
learnable parameters� . The networks select feasible actions which maximize the novelty signal,

4

Under review as a conference paper at ICLR 2019

leading to actions which result in novel con�gurations or dynamics. The actor network outputs a
continuous (real-valued) vector which is translated into a macro-action with both discrete and con-
tinuous parameters. The forward dynamics modulef : S � A ! S (Fig. 1c) takes a state and
an action primitive, simulates forward a �xed time� , and returns the resulting state. This forward
dynamics module is used by a geometric planning module (Fig. 1b) to convert macro-actions inM
into feasible sequences of motor primitives inA . Finally, the curiosity module is a neural network
H � (H stands for heuristic, Fig. 1d) that takes states as inputs and returns a curiosity score, with
learnable parameters� . The exact input and output of the curiosity module is dependent on the type
of curiosity being used (seex4.3).

Input: Initial states0; Goal setG; dynamicsf
Output: Pathf (s0; a0; s1); :::; (sn � 1; an � 1; sn)g wheresn 2 G; f (si ; ai) = si +1

1 T = (f s0g; ;)
2 Randomly Initialize� � ; V� ; H �
3 Initialize P(s0) = 1
4 while V \ G = ; do
5 S batch sample� P(V); // Expand novel states
6 M � � (S)
7 A = motion planning usingf for eachm 2 M
8 S0 f (S; A)
9 L novelty metric ; // Various metrics described in sec 4.3

10 L (A = ;) = 0 ; // No reward for infeasible actions
11 TrainH � to minimizeL (A 6= ;)
12 Update� � ; V� to maximizeL ; // PPO Training
13 V S0 [V
14 Add each(Si ; S0

i) to E
15 P = softmax(novelty metric for eachv 2 V)

end
16 return Path inT from s0to sg 2 V \ G

Algorithm 1: The CSP algorithm.

CSP Algorithm: At its core, CSP is an algorithm for ef�ciently building a search tree over the state
space using parameterized macro-actions (see Algorithm 1). The algorithm starts by initializing a
treeT = (V; E) in which the vertices are points in the continuous state space, edges are macro-
actions with de�ned parameters, and paths are sequences of macro-actions which are guaranteed to
transition between states at each end of the path under the dynamics model. The tree starts with
a single vertexs0 which is the start state of the multi-step planning problem. The algorithm also
initializes a probability distribution over the tree vertices such thatP(s0) = 1 . A batch of sizeB
states are then sampled fromP and passed into� � resulting in a set of state/macro-action pairings.

The next step of the algorithm is to convert the selected macro-actions into primitive action se-
quences using a combination of inverse kinematics and geometric motion planning. We use RRT-
Connect (Kuffner & LaValle, 2000) for motion planning and the recursive Newton Euler algorithm
(Luh et al., 1980) for inverse kinematics. The exact routine for converting macro-actions to primi-
tives is speci�c to the macro-action. In some cases it is infeasible to convert macro-actions to motor
primitives. (For example, it is infeasible to pick up an object that is out of the robot's reach.) In such
cases, the planning module returns an empty sequence of primitives. These feasibility conditions
are not explicitly represented as logical preconditions, but are discovered from failed attempts at
inverse kinematics or motion planning. Over time, the action selection network learns to focus only
on feasible macro-actions. The resulting sequence of action primitives are passed into the black-box
dynamics module to get a corresponding batch of future states.

In order to determine which states and actions should be further explored, the algorithm creates a
curiosity score for each of the selected macro-actions. Passing the batch of states and future states
through the curiosity module will give a prediction loss, or novelty score. A subset of the new states
with high novelty scores in the batch are then added as vertices in the search tree and the probability
distributionP is adjusted to give more weight to states with high novelty scores. Although it is not
strictly necessary for CSP to function, for increased computational ef�ciency we discard vertices

5

Under review as a conference paper at ICLR 2019

Figure 2: Visualizations each of the four task categories used to test CSP. Top Row: representative
initial state for each task. Bottom Row: representative �nal state for each task. TheBlock-Stack
task requires the robot to �nd a way to cause one block to remain stably at a highz-position without
touching the arm, necessitating the building of a tower. ThePush-Awaytask requires the robot to
push the small (blue) block beyond the reach of the robot arm, which, depending on the circumstance
might require the robot to build a ramp. TheBookshelftasks requires the robot to knock a book of a
shelf which is further away from the robot that it can reach, necessitating that the robot discover how
to build a simple tool from the provided blue rods. TheLaunch-Block task requires the robot to
launch the small red block off the far end of the seesaw, but it can only do so (we think) by putting all
�ve of the other blocks as counterweight into the red bucket and detaching the pulley rope, causing
the now-heavy bucket to crash into the close end of the seesaw. Tasks are described in more detail
in Section 4.1.

with low probability (typically the bottom 90% of the distribution), as they are extremely unlikely to
be sampled. After scores are calculated, the input states that have infeasible macro-actions are given
a curiosity score of zero, strongly disincentivizing infeasible macro-action selection. The curiosity
module is trained from the losses generated by the batch and the novelty score is used as the reward
for the training of the action selection networks. This process repeats until the algorithm reaches a
state in the goal subset or is exogenously terminated.

4 EXPERIMENTS

4.1 TASKS

Each of the four task types below are extremely easy to specify in the non-restrictive goal semantics
accepted by CSP, but often require complex multi-step planning to solve, and would be extremely
statistically improbable to be solved through random exploration. From a DRL point of view, such
tasks correspond to extremely sparse reward landscapes. They also involve complex and fairly pre-
cise continuous motor manipulation of both rigid and non-rigid objects, using sequences of macro-
actions whose preconditions would be very challenging to specify using logical predicates. The task
set also affords some natural opportunities for cross-task transfer (e.g. between tower-building in
Block-Stackand ramp building forPush-Away).

Block-Stack: In this task, the robot is provided with a set ofK cubic blocks of sizeh, and the
robot's goal is to cause at least one block to stably remain in position atz-position of greater than
(K � 1) � h, without being in contact with the robot arm, for at least two seconds. Of course, the

6

	Introduction
	Related Work
	Mathematical Description
	Problem Description
	Curious Sample Planner

	Experiments
	Tasks
	Neural Network Settings and Curiosity Metrics
	Quantitative Results
	Qualitative Results
	Task Transfer

	Conclusion
	Curiosity Metrics
	State Estimation Curiosity
	Forward Dynamics Curiosity
	Random Network Distillation Curiosity

	Network Structures and Hyperparameters
	Actor Critic Policy and Value Networks
	State Estimation Convolution Network
	Forward Dynamics Network
	RND Network
	Universal Curiosity Module Hyperparameters

	Task Specific State Space and Action Space
	Stack State
	Push-Away State
	Bookshelf State
	Launch-Block State
	Transfer States
	Action Spaces

	Additional Baselines

