
Under review as a conference paper at ICLR 2019

FLEXIBLE AND EFFICIENT LONG-RANGE PLANNING
THROUGH CURIOUS EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Identifying algorithms that flexibly and efficiently discover temporally-extended
multi-phase plans is an essential next step for the advancement of robotics and
model-based reinforcement learning. The core problem of long-range planning is
finding an efficient way to search through the tree of possible action sequences —
which, if left unchecked, grows exponentially with the length of the plan. Exist-
ing non-learned planning solutions from the Task and Motion Planning (TAMP)
literature rely on the existence of logical descriptions for the effects and precondi-
tions for actions. This constraint allows TAMP methods to efficiently reduce the
tree search problem but limits their ability to generalize to unseen and complex
physical environments. In contrast, deep reinforcement learning (DRL) meth-
ods use flexible neural-network-based function approximators to discover policies
that generalize naturally to unseen circumstances. However, DRL methods have
had trouble dealing with the very sparse reward landscapes inherent to long-range
multi-step planning situations. Here, we propose the Curious Sample Planner
(CSP), which fuses elements of TAMP and DRL by using a curiosity-guided sam-
pling strategy to learn to efficiently explore the tree of action effects. We show that
CSP can efficiently discover interesting and complex temporally-extended plans
for solving a wide range of physically realistic 3D tasks. In contrast, standard
DRL and random sampling methods often fail to solve these tasks at all or do so
only with a huge and highly variable number of training samples. We explore the
use of a variety of curiosity metrics with CSP and analyze the types of solutions
that CSP discovers. Finally, we show that CSP supports task transfer so that the
exploration policies learned during experience with one task can help improve
efficiency on related tasks.

1 INTRODUCTION

Many complex behaviors such as cleaning a kitchen, organizing a drawer, or cooking a meal require
plans that are a combination of low-level geometric manipulation and high-level action sequencing.
For example, boiling water requires sequencing high-level actions such as fetching a pot, pouring
water into the pot, and turning on the stove. In turn, each of these high-level steps consists of
many low-level task-specific geometric action primitives. For instance, grabbing a pot requires
intricate motor manipulation and physical considerations such as friction, force, etc. The process of
combining these low-level geometric decisions and high-level action sequences is often referred to
as multi-step planning.

While high-level task planning and low-level geometric planning are difficult problems on their own,
integrating them presents unique challenges that add further complexity. Task and Motion Planning
(TAMP) is a powerful approach to the problem which constructs plans in logical terms that execute
a sequence of macro-actions that are composed of geometric motion plans (Fikes & Nilsson, 1971;
Dantam et al., 2016). While TAMP has been successful at generating temporally extended multi-
step plans that conform to geometric constraints, it requires actions to have defined preconditions
and effects that modify the logical description of the world state. This is an unreasonable assumption
for complex physical tasks because real-world effects and preconditions are often unknown or diffi-
cult to describe with logical predicates. These assumptions limit the flexibility and robustness of the
TAMP approach. In addition, TAMP is computationally costly because it requires geometric motion
planning for each macro-action sample. In contrast, deep reinforcement learning (DRL) methods

1



Under review as a conference paper at ICLR 2019

have shown success at learning flexible policies for a variety of complex tasks in unstructured do-
mains (Arulkumaran et al., 2017). However, DRL methods typically require very large sample sizes
of successful trajectories to learn useful policies and thus have trouble in sparse reward landscapes
(Choi et al., 2019; Riedmiller et al., 2018). Multi-step planning, by its very nature, involves sparse
reward landscapes, as highly specific action sequences must be executed before any positive rewards
are observed. As such, flexible multi-step planning is an open challenge in artificial intelligence and
algorithmic robotics.

In this paper we combine aspects of TAMP and DRL to achieve progress toward efficient and flexible
multi-step planning. We introduce the Curious Sample Planner (CSP), which uses curiosity to bias
the search through action space toward novel points in the state space. Our method combines the
flexibility and transferability of DRL with the temporally extended multi-step planning of TAMP.
We illustrate the power of CSP in a variety of qualitatively distinct problems in multi-step planning
for which logical descriptions of action effects would be difficult to construct, including the build-
ing of complex structures and the discovery of simple machines for achieving challenging physical
goals. We show CSP dramatically improves sample complexity compared to random TAMP explo-
ration and DRL baselines. We compare a variety of distinct curiosity metrics for use with CSP and
demonstrate that dynamics-based curiosity performs well on tasks which require many dynamic ob-
ject interactions while state-based curiosity performs better for structure-building tasks. Finally, we
show that CSP can be used to achieve substantial transfer between related but qualitatively distinct
tasks, utilizing knowledge in one domain to increase performance in a similar domain.

2 RELATED WORK

Finding policies in sparse-reward environments has been an ever-present challenge for modern deep
reinforcement learning. Model-free RL algorithms either require millions of samples in a sparse-
reward setting (Mnih et al., 2015; Hessel et al., 2017) or a precise reward curriculum that gives
checkpoints or gradients toward the goal (Heess et al., 2017). While these algorithms yield convinc-
ing performance, humans can learn these tasks without strict reward curricula or massive sample
sizes.

Model-based RL presents a promising approach for solving these sparse-reward tasks by allowing
agents to create plans through virtual experimentation. Rather than learning a direct policy or value
function, model-based RL focuses on learning the local or global dynamics of the task to enable
planning (Kaiser et al., 2019; Levine et al., 2015) or to create imagined environment roll-outs for
more efficient policy training (Weber et al., 2017; Ha & Schmidhuber, 2018). Once the structure of
the task is known, the question becomes how to best plan under that structure. Our algorithm is a
method for multi-step planning after the environmental dynamics and task structure are known.

A classical approach to planning is that of sample-based geometric motion planners. Rapidly Ex-
ploring Random Trees (RRT) and Probabilistic Road Maps (PRM) combine goal-directed sampling
with off-target sampling to balance exploration of the state space with exploitation of knowledge
about the goal configuration (Lavalle, 1998; Kavraki et al., 1996). While these algorithms can work
even for high dimensional configuration spaces, they are computationally intractable for tasks with
the complex constraints that often exist in real world settings (Kingston et al., 2018). For a robotic
manipulator, grasping an object has a necessary condition that the agent’s manipulator is in a posi-
tion to grasp that object. These constraint barriers in the configuration space render the goal-directed
component of motion planning ineffective and necessitate a random exploration the entire configura-
tion space. So while sample-based geometric motion planners are effective at simple tasks, they fail
for temporally extended multi-step tasks with intricate constraints. We use sample-based geometric
motion planners as a part of our solution to the multi-step planning problem.

More recently, Task and Motion Planning has shown success in developing temporally extended
multi-step plans under both fully known and partially observed environment dynamics. A number
of TAMP algorithms (Kaelbling & Lozano-Pérez, 2013; Gravot et al., 2005; Hertle et al., 2012;
Srivastava et al., 2014) have solved tasks such as block stacking, object packing, table setting, and
much more. TAMP algorithms generally iterate between a motion planning step (using RRT, PRM,
etc) and a symbolic planning step using task planning algorithms such as Fast Downward Planning
(Helmert, 2006) or Fast Forward Planning (Hoffmann & Nebel, 2001). However, because geometric
motion planning is relatively slow, Task and Motion Planning is computationally burdensome. Ad-

2



Under review as a conference paper at ICLR 2019

ditionally, defining logical predicates for the effects and preconditions of macro-actions is a manual
undertaking which limits the flexibility of the solution. We take inspiration from Task and Motion
planning by using geometric motion planners as procedures used in executing macro-actions, but
increase planning efficiency and flexibility by intelligently sampling macro-actions and avoiding
logical descriptions of effects and preconditions.

Many other methods have been proposed that increase the efficiency and flexibility of Task and
Motion Planning. Supervised learning of the preconditions and effects of certain macro-actions
removes the need for manual specification, but requires constructing task-specific training datasets
(Kroemer & Sukhatme, 2016; Wang et al., 2018). Other work has focused on factoring the planning
problem into submanifolds with analytic constraints in order to reduce the size of the search space.
(Garrett et al., 2018; Vega-Brown & Roy, 2018). TAMP can be accelerated by generating a sampling
distribution around the goal trajectory using GANs (Kim et al., 2018) or by using reinforcement
learning to learn search heuristics through expert examples or previously solved problem instances
(Chitnis et al., 2016; Kim et al., 2019). In this work, we also aim to build an algorithm that can
utilize information gained from previous problem instances to speed up planning and generalize to
related tasks. However, instead of supervising on expert examples or task-specific training sets, we
aim to use a self-supervision signal to increase the efficiency of multi-step planning.

Along with model-based RL and planning, intrinsic motivation, also known as curiosity, has been
used to turn sparse reward spaces into dense ones by self-supervising on an auxiliary task. Some
commonly used auxiliary tasks are forward dynamics (Burda et al., 2019), random network distil-
lation (Choi et al., 2019), and state estimation (Mitash et al., 2017). The error from these predictor
networks are considered an intrinsic reward for some reward optimization algorithm. These auxiliary
tasks encourage state-space and action-space coverage and increase the probability of encountering
sparse rewards over random policies with epsilon-greedy exploration (Jaderberg et al., 2016). Our
algorithm uses the principle of self-supervision on auxiliary tasks to accelerate goal discovery in
multi-step planning.

3 MATHEMATICAL DESCRIPTION

3.1 PROBLEM DESCRIPTION

In its general formulation, our problem consists of a robot R in an environment with dynamic
movable objects D1, D2, ...Dk and static objects S1, S2, ...Sl. The robot R has an associated con-
figuration space Q containing its possible configurations in its environment, so that dim(Q) is the
number of degrees of freedom ofR. There is a larger state-space S which, in addition toQ, includes
includes the total description of the positions and orientations of the dynamic and static objects, as
well as their velocities, masses, and shapes, together with any (possibly dynamic) state-space con-
straints such as links or joints that may (permanently or temporarily) exist between objects in the
environment.

The robot is equipped with a space A of primitive actions that cause reliable (though possibly
stochastic) changes in the state. The robot is also equipped with a set of macro-actions M that
can be translated into sequences of motion primitives in A using geometric motion planning and in-
verse kinematic procedures. Each macro-action is parameterized by specific continuous and discrete
parameters, and has a set of implicitly-defined feasible conditions.

In our specific experiments, we use a mounted robot arm with seven bounded revolute joints result-
ing in a seven dimensional configuration space, with fully-extended length r. Our robot’s action
primitives A consist of (1) a 7-dimensional continuous rotation space composed by linearly inter-
polating between θ1 and θ2 where θ1, θ2 are 7-vectors corresponding to bounds on each rotational
degree of freedom, and (2) the ability to add a link constraint between any two objects in the envi-
ronment, as long as the objects are touching and the robot arm is sufficiently close to both. We use
Bullet (Coumans, 2015), a flexible physics simulation library, to execute robot actions in simulation.
The robot has access to a PickPlace macro-action which takes a target object, a goal position,
and a goal orientation as input, and moves the target block to the goal position and orientation. The
robot also has access to AddConstraint macro which takes two target objects as input, moves
them into position for linking, and performs the link; and a corresponding RemoveConstraint
that breaks the link if the objects are connected. While this setup is fairly typical of robotics appli-

3



Under review as a conference paper at ICLR 2019

Sample
Expansion

Nodes

(a) Action Selection Networks (c) Forward Dynamics

(d) Curiosity Module

(b) Motion Planning

Novelty Signal

(e) Tree Expansion

Reward Value

Figure 1: a.) The action selection networks select actions that maximize curiosity. b.) Parameterized
macro-actions are converted to motion primitives c.) The forward dynamics module predicts the
effects of executing those motor primitives in a particular state. d.) The curiosity module represents
the current world state and outputs one of the curiosity metrics (see section 4.3). e.) The search tree
is expanded.

cations, the CSP algorithm we describe below makes no assumptions about the effects of actions on
objects in the environment, and so our method could be applied to more complicated environments
containing soft-body objects, cloths, and multiple robotic manipulators.

The robot must use its actions and macro-actions to achieve a goal, defined by a state-space subset
G ⊆ S, by manipulating the state from some specified initial conditions into the G subset. For
example, for our robotic arm, the task of moving a dynamic object Di outside the reachable radius
r of the robot would be defined by G = {s ∈ S|Dix

2 + Diy
2 > r2}. Though this type of goal

definition is very simple and natural, finding a solution to such a task require complex strategic
planning — e.g. perhaps requiring the discovery and construction of a simple machine, such as a
ramp that could be used to slide the block out of the robot’s reach (see section 4.1).

Finally, the robot has access to a (deterministic) dynamics model, f : S × A → S , that maps states
and actions to future states i.e. f(st, a) = st+τ for some τ > 0. In this work, f simply gives
the robot access directly to the underlying Bullet physics simulator as a black box, but future re-
search could involve having f be a learned (possibly non-deterministic) forward dynamic prediction
network that must be inferred from agent experience (such as e.g. (Mrowca et al., 2018)).

3.2 CURIOUS SAMPLE PLANNER

Below, we describe the Curious Sample Planner. We first describe the CSP’s system architecture,
including its constituent neural networks and geometric planning module. We then describe the core
curious tree-search algorithm by which CSP uses these modules to construct multi-step plans.

System Architecture: CSP is comprised of four main modules (Fig. 1). The action selection
networks include an actor-network πθ : S → M and a critic-network Vφ : S → R (Fig. 1a),
which learn to select macro-actions and choose parameters of that macro-action given a particular
state. The action selection networks have two primary functions: maximizing curiosity in action
selection and avoiding infeasible macro-actions. The networks are trained using actor-critic rein-
forcement learning (PPO (Schulman et al., 2017)) where πθ has learnable parameters θ and Vφ has
learnable parameters φ. The networks select feasible actions which maximize the novelty signal,

4



Under review as a conference paper at ICLR 2019

leading to actions which result in novel configurations or dynamics. The actor network outputs a
continuous (real-valued) vector which is translated into a macro-action with both discrete and con-
tinuous parameters. The forward dynamics module f : S × A → S (Fig. 1c) takes a state and
an action primitive, simulates forward a fixed time τ , and returns the resulting state. This forward
dynamics module is used by a geometric planning module (Fig. 1b) to convert macro-actions inM
into feasible sequences of motor primitives in A. Finally, the curiosity module is a neural network
Hβ (H stands for heuristic, Fig. 1d) that takes states as inputs and returns a curiosity score, with
learnable parameters β. The exact input and output of the curiosity module is dependent on the type
of curiosity being used (see §4.3).

Input: Initial state s0,Goal set G, dynamics f
Output: Path{(s0, a0, s1), ..., (sn−1, an−1, sn)} where sn ∈ G, f(si, ai) = si+1

1 T = ({s0}, ∅)
2 Randomly Initialize πθ, Vφ, Hβ

3 Initialize P(s0) = 1
4 while V ∩G = ∅ do
5 S ← batch sample ∼ P(V); // Expand novel states
6 M ← πθ(S)
7 A = motion planning using f for each m ∈M
8 S′ ← f(S,A)
9 L ← novelty metric ; // Various metrics described in sec 4.3

10 L(A = ∅) = 0 ; // No reward for infeasible actions
11 Train Hβ to minimize L(A 6= ∅)
12 Update πθ, Vφ to maximize L; // PPO Training
13 V ← S′ ∪ V
14 Add each (Si, S

′
i) to E

15 P = softmax(novelty metric for each v ∈ V)
end

16 return Path in T from s0to sg ∈ V ∩G
Algorithm 1: The CSP algorithm.

CSP Algorithm: At its core, CSP is an algorithm for efficiently building a search tree over the state
space using parameterized macro-actions (see Algorithm 1). The algorithm starts by initializing a
tree T = (V, E) in which the vertices are points in the continuous state space, edges are macro-
actions with defined parameters, and paths are sequences of macro-actions which are guaranteed to
transition between states at each end of the path under the dynamics model. The tree starts with
a single vertex s0 which is the start state of the multi-step planning problem. The algorithm also
initializes a probability distribution over the tree vertices such that P (s0) = 1. A batch of size B
states are then sampled from P and passed into πθ resulting in a set of state/macro-action pairings.

The next step of the algorithm is to convert the selected macro-actions into primitive action se-
quences using a combination of inverse kinematics and geometric motion planning. We use RRT-
Connect (Kuffner & LaValle, 2000) for motion planning and the recursive Newton Euler algorithm
(Luh et al., 1980) for inverse kinematics. The exact routine for converting macro-actions to primi-
tives is specific to the macro-action. In some cases it is infeasible to convert macro-actions to motor
primitives. (For example, it is infeasible to pick up an object that is out of the robot’s reach.) In such
cases, the planning module returns an empty sequence of primitives. These feasibility conditions
are not explicitly represented as logical preconditions, but are discovered from failed attempts at
inverse kinematics or motion planning. Over time, the action selection network learns to focus only
on feasible macro-actions. The resulting sequence of action primitives are passed into the black-box
dynamics module to get a corresponding batch of future states.

In order to determine which states and actions should be further explored, the algorithm creates a
curiosity score for each of the selected macro-actions. Passing the batch of states and future states
through the curiosity module will give a prediction loss, or novelty score. A subset of the new states
with high novelty scores in the batch are then added as vertices in the search tree and the probability
distribution P is adjusted to give more weight to states with high novelty scores. Although it is not
strictly necessary for CSP to function, for increased computational efficiency we discard vertices

5



Under review as a conference paper at ICLR 2019

Figure 2: Visualizations each of the four task categories used to test CSP. Top Row: representative
initial state for each task. Bottom Row: representative final state for each task. The Block-Stack
task requires the robot to find a way to cause one block to remain stably at a high z-position without
touching the arm, necessitating the building of a tower. The Push-Away task requires the robot to
push the small (blue) block beyond the reach of the robot arm, which, depending on the circumstance
might require the robot to build a ramp. The Bookshelf tasks requires the robot to knock a book of a
shelf which is further away from the robot that it can reach, necessitating that the robot discover how
to build a simple tool from the provided blue rods. The Launch-Block task requires the robot to
launch the small red block off the far end of the seesaw, but it can only do so (we think) by putting all
five of the other blocks as counterweight into the red bucket and detaching the pulley rope, causing
the now-heavy bucket to crash into the close end of the seesaw. Tasks are described in more detail
in Section 4.1.

with low probability (typically the bottom 90% of the distribution), as they are extremely unlikely to
be sampled. After scores are calculated, the input states that have infeasible macro-actions are given
a curiosity score of zero, strongly disincentivizing infeasible macro-action selection. The curiosity
module is trained from the losses generated by the batch and the novelty score is used as the reward
for the training of the action selection networks. This process repeats until the algorithm reaches a
state in the goal subset or is exogenously terminated.

4 EXPERIMENTS

4.1 TASKS

Each of the four task types below are extremely easy to specify in the non-restrictive goal semantics
accepted by CSP, but often require complex multi-step planning to solve, and would be extremely
statistically improbable to be solved through random exploration. From a DRL point of view, such
tasks correspond to extremely sparse reward landscapes. They also involve complex and fairly pre-
cise continuous motor manipulation of both rigid and non-rigid objects, using sequences of macro-
actions whose preconditions would be very challenging to specify using logical predicates. The task
set also affords some natural opportunities for cross-task transfer (e.g. between tower-building in
Block-Stack and ramp building for Push-Away).

Block-Stack: In this task, the robot is provided with a set of K cubic blocks of size h, and the
robot’s goal is to cause at least one block to stably remain in position at z-position of greater than
(K − 1) ∗ h, without being in contact with the robot arm, for at least two seconds. Of course, the

6



Under review as a conference paper at ICLR 2019

only feasible way for the robot to solve this problem is to stack the K blocks in a stable tower, but
the robot is not provided with any reward at intermediate unsolved conditions. This type of block
stacking is a commonly used task for evaluating planning algorithms because it requires detailed
motor control and has a goal that is sparse in the state space.

Push-Away: In this task, the robot is provided with several large cubic blocks, a flat elongated
block, and one additional smaller “target” object that can be of variable shape (e.g. a cube or a
sphere) and material (with e.g. high or low coefficient of friction). The objective is to somehow
push the target object outside the directly reachable radius of the robotic arm. Depending on the
situation, the solution to the task can be very simple or quite complex. For example, if the target
object is spherical with low friction, the robot could solve the task simply by dropping it against one
of the larger blocks, causing it to roll away. However, if the target object is cubic with high friction,
it may be necessary for the robot to discover how to construct and use a simple machine such as a
ramp — e.g. consisting of the large blocks stacked up, with the elongated block placed at one end
on the stack as an inclined plane down which the small object can be slid.

Bookshelf: In this task, the environment contains a bookshelf with a single book on it. The robot
is also provided with two elongated rectangular-prism rods initial placed at random (reachable)
locations in the environment. The goal is to knock the book off the bookshelf. However, the book and
bookshelf are not only outside the reachable radius of the arm, but they are further than the combined
length of the arm and a single rod. However, the robot can solve the task by (e.g.) combining the
two rods in an end-to-end configuration using the link macro-action, and then using the combined
object to dislodge the book.

Launch-Block: In this task, the environment contains a pre-built rope-and-pulley with one end
of the rope connected to an anchor block on the floor and the other attached to a bucket that is
suspended in mid-air. A seesaw balances evenly below the bucket, with a target block on the far end
of the seesaw. The goal is to launch this target block into the air, above the seesaw surface. The
robot could solve this task by (e.g.) gathering all blocks into the bucket and untying the anchor knot
so that the bucket will descend onto the near end of the seesaw. However, due to the masses of the
blocks and the friction in the seesaw, this can only happen when the combined weight of all five
blocks are used.

4.2 NEURAL NETWORK SETTINGS AND CURIOSITY METRICS

Throughout our experiments, the action selection networks πθ and Vφ are three-layer networks with
64 hidden units each, using the tanh activation function.

There is a wide range of potential curiosity and novelty metrics, and the optimal metric may be
task-dependent. For this reason, we explored a range of such metrics from the recent literature,
including: State Estimation (SE) (Mitash et al., 2017), Forward Dynamics (FD) (Burda et al., 2019),
and Random Network Distillation (RND) (Choi et al., 2019). The neural network architecture of the
curiosity module naturally needed to vary as a function of which metric was chosen. For SE, the
curiosity module accepted images of the scene generated from multiple perspectives, in the form of
84×84× (3 ·np) pixel arrays (where np is the number of perspectives taken), while the architecture
was a five-layer convolutional neural network with 3 convolution layers and two fully connected
layers. For both FD and RND the architecture consisted of a four-layer MLP with 128 units in
each layer. For FD, the inputs were the concatenated vector of system states and actions, while for
RND the input simply consisted of the state vector. To enable fair comparison, we ensured that the
number of trainable parameters in the curiosity modules was approximately even across all curiosity
variants.

4.3 QUANTITATIVE RESULTS

For each task, we tested CSP in comparison to a variety of baseline approaches. Simple random ex-
ploration was tested by assigning a uniform curiosity score to each state and selecting macro-actions
from a uniform distribution (CSP-No Curiosity). We also tested against vanilla implementations of
vanilla PPO (Schulman et al., 2017) and A2C (Mnih et al., 2016) RL algorithms, using the same
architecture as the curious action selector shown in figure 1, but without the tree expansion and sam-
pling module. Finally, we tested a non-planning based but still curiosity-driven DRL model, using

7



Under review as a conference paper at ICLR 2019

3-Stack 5-Stack Push-Away Bookshelf Launch-Block

104

105

106

107

lo
g 

(s
am

pl
es

)

Solution Speed Comparisons
Vanilla A2C
RND-PPO No Reset
Vanilla PPO
RND-PPO With Resets
CSP-No Curiosity
CSP-RND No AC
CSP-FD
CSP-SE
CSP-RND

Figure 3: Solution speed for all tested algorithm variants across the five tested tasks. Within each
group of 7 bars, the left-most bars represent baselines, while the right-most are the CSP models,
including the control No-Curosity control and several CSP variants with different curiosity metrics
(see text for details). The y-axis is on a log scale because the differences between CSP and non-
CSP solutions is so great that more subtle differences between various curiosity-metric variants of
CSP would otherwise be too small to see. Each bar is computed as the mean of six independent
trial runs, and error bars represent the standard error of the mean across trials. We set a maximum
number of samples (107) in order to ensure termination; in many case the baseline algorithms failed
to terminate with a successful solution on any trial.

the PPO algorithm with the RND curiosity signal (PPO-RND). All metrics and baselines are com-
pared by measuring the number of macro-action samples needed to reach the goal over six different
problem instances on five distinct tasks.

Overall, we found that CSP was dramatically more effective than the baselines at solving all four
task types (Fig. 3). The control algorithms (including the CSP-No Curiosity baseline) were some-
times able to discover solution in the simplest cases (e.g. the 3-Block task). However, they were
substantially more variable in terms of the number of samples needed; and they largely failed to
achieve solutions in more complex cases within a 107-step maximum sample limit. The failure of
the random and vanilla PPO/A2C baseliness is not entirely surprising: the tasks we chose here are
representative of the kind of long-range planning problems that typically are extremely difficult for
standard DRL approaches. The more sophisticated curiosity driven PPO-RND algorithm was able to
make headway in a few of the more complex circumstances, but was nonetheless substantially less
powerful than the CSP variants.1. We ran many additional actor critic and curiosity metric com-
binations and discussed the results in Section D. Comparing between curiosity metrics, we found
that, while there is some task dependence, Random Network Distillation serves as a good general-
purpose curiosity metric achieving the best performance on four of the five tasks (see figure 3). We
also performed an ablation on the action selection networks (CSP-RND No AC) to see how ben-
eficial they were to the planning process over random action selection. We found that in all tasks
except Bookshelf, performed slightly better with the action selection networks. While not vital to
the planning process, these networks are key for transfer (see sec. 4.5).

1RL algorithms are often designed with a multi-episodic environment in mind, in which the external con-
troller repeatedly resets the system to a known state (e.g. in a video game level after the time limit has elapsed).
Resetting can often help learning algorithms that would otherwise fail, since it rescues them from unrecov-
erable states. In our case, such an unrecoverable state arises when objects needed to complete the task are
prematurely pushed outside the available radius of the robot arm. The CSP algorithm is easily able to handle
this circumstance, because it can expand from previous explored nodes in the state space. However, standard
methods likely do not have this capacity. To give the baseline algorithms the best chance of working, we thus
tested them in two situations: one without trial resetting (the “natural” circumstance for this work), and one
with random trial resetting, characterized by a set with probability 1e-4 after each macro-action. Only the
PPO-RND algorithm actually benefited from resets, however, and is the only one shown in Fig. 3.

8



Under review as a conference paper at ICLR 2019

4.4 QUALITATIVE RESULTS

In the process of planning, CSP often found interesting state configurations and unexpected
problem-solving techniques. A video illustrating some representative solutions found by CSP
can be found here: https://youtu.be/7DSW8Dy9ADQ. As an example, we initially developed the
PUSH-AWAY task with a spherical ball as a target object, hoping CSP would build a ramp and roll
the ball out of the reachability zone. However, CSP instead found a simple solution consisting of
dropping the ball directly next to another object in order to get enough horizontal velocity to roll out
of the reachability zone. In an attempt to avoid this rather trivial solution, we then switched out the
ball for a block with a high coefficient of friction. However, again instead of always building a ramp,
CSP sometimes made use of its link macro-action to fix the block to one end of the plank and orient
the plank so that the block was outsize the reachability zone. However, once the link macro-action
was disabled, ramp-building behavior robustly emerged.

4.5 TASK TRANSFER

A central aspect of human intelligence is the ability to improve at solving problems over time and to
use knowledge gained from solving one problem to more efficiently solve related problems. For this
reason, we were curious whether CSP could transfer knowledge between problem instances with
different initial conditions, and between different but related problems. We evaluated transfer both
the within-task and between-task using 3-STACK, 5-STACK, and PUSH-AWAY tasks. We selected
these tasks because they all share a common essential skill: stacking blocks.

We tested transfer from each learnable component of the system individually, to identify which
components of the system can be effectively reused between problems, including (i) the baseline
“no transfer” condition, where neither the curiosity module nor the action selection networks are
transferred from another problem instance; (ii) condition where just the curiosity module or action
selection networks were transferred; and (iii) a full transfer condition where both the action selection
networks and the curiosity module are transferred between tasks.

Results (Fig. 4) show that transferring the curiosity module alone slightly improves planning ability
between instances of the same task, but has a minimal effect and can even be detrimental in the case
of between-task transfer. On the other hand, transferring the action selection networks leads to a
large increase in efficiency in all tasks except for 3-STACK. (The 3-STACK task is likely unaffected
by transfer because it is solved so quickly that the networks have little time to train.) Full transfer
results in transfer performance improvements similar to that of transferring the action selection
network alone. Gains arose for qualitatively identifiable reasons e.g. once CSP learned to solve the
stacking problem, it tries stacking macro-actions much more frequently as an initial guess, which is
naturally useful for solving the Push-Away task. Transfer gains are reflected by the fact that the tree
search procedure has learned to very effectively reduce the task tree, a particularly dramatic example
of which is illustrated in Fig. 4b.

5 CONCLUSION

In this work, we introduce the CSP algorithm, a fusion of classical task-planning and deep RL ap-
proaches that is capable of flexible long-range multi-step planning in sparse reward settings. CSP
consists of two learnable components which aim to maximize curiosity in action selection and state
exploration. The first component is the action selector networks which reduces sampling of in-
feasible or uninteresting effects in favor of macro-actions and parameters which lead to interesting
and unseen effects. The second component is a curiosity module which guides exploration of the
state tree toward novel state configurations by increasing the probability that those nodes will be ex-
panded. We show that the addition of these components not only speeds up planning when compared
to random action selection and reinforcement learning baselines but also has the ability to make oth-
erwise intractable problems solvable. We also systematically examine the effect of different forms
of curiosity on task performance, finding that the RND variant is the most effective overall. Finally,
we look at the transferability of solutions to new instances of the same general problem and to re-
lated but different problems, showing that networks trained to select actions states which result in
interesting configurations perform better than those which are randomly initialized.

9



Under review as a conference paper at ICLR 2019

(a)

(b)

5-Stack Before Transfer, 187 Nodes 5-Stack After Transfer, 6 Nodes

Figure 4: (a) Inter-task and between-task transfer efficiency measured by the number of samples
needed to reach the goal, for each of several transfer policies (only curiosity module, only action
selection module, and full network transfer). The CSP-RND variant is used for all cases. Within
each group of bars for a given task, the difference between blue bar (No Transfer) and other bars
represents transfer gain (note that the y-axis is on a logarithmic scale). Each condition was run 6
times and error bars represent standard error of the mean over runs. (b) Example of search trees for
an instance of the 5-stack problem, before (left) and after (right) full network transfer.

Despite its initial successes, the CSP system has a number of key limitations that will need to be
addressed in future work. As a pure planning algorithm, CSP does not attempt to solve a directed
learning problem over the course of many trials; when very large numbers of trials are available for
training, it is plausible that Deep RL approaches would begin to catch up with and eventually exceed
CSP performance. A very natural next step will be to combine CSP with a cross-trial learning
algorithm to obtain the best of both worlds. It will also be key to show that CSP is able to function
effectively when only a non-deterministic and noisy future prediction module is available, rather
than the unrealistic perfect black-box predictor used in this work. It will be especially important
to determine if CSP is compatible with a learned future predictor, and of interest to determine if
CSP-generated plans could help accelerate the learning of such a predictor simultaneously while
CSP modules are themselves learned. Another key direction for future work will be to apply a
CSP-like procedure to the discovery of macro-actions themselves (Barto et al., 2004; Machado
et al., 2017), resulting in a hierarchical multi-timescale procedure in which more and more complex
plans become routinized as macro-actions. Finally, it will be of interest to compare the behavior
sequences generated by CSP to data from experiments measuring patterns of play and discovery in
both human children and adults (Gopnik et al., 2009; Begus et al., 2014), as both the similarities
and differences between human decision making and exploration and algorithmic outputs will help
inform the development of improved flexible and efficient planning algorithms.

REFERENCES

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34:26–38, 2017.

10



Under review as a conference paper at ICLR 2019

A. G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical collections
of skills. In Proceedings of International Conference on Developmental Learning (ICDL). MIT
Press, Cambridge, MA, 2004.

Katarina Begus, Teodora Gliga, and Victoria Southgate. Infants learn what they want to learn:
Responding to infant pointing leads to superior learning. PLOS ONE, 9(10):1–4, 10 2014. doi:
10.1371/journal.pone.0108817.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-scale study of curiosity-driven learning. In ICLR, 2019.

Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth Srivastava, Edward Groshev,
Christopher Lin, and Pieter Abbeel. Guided search for task and motion plans using learned
heuristics. In 2016 IEEE International Conference on Robotics and Automation, ICRA 2016,
volume 2016-June, pp. 447–454. Institute of Electrical and Electronics Engineers Inc., 6 2016.
doi: 10.1109/ICRA.2016.7487165.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and
Honglak Lee. Contingency-aware exploration in reinforcement learning. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
HyxGB2AcY7.

Erwin Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, SIGGRAPH ’15,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3634-5. doi: 10.1145/2776880.2792704.
URL http://doi.acm.org/10.1145/2776880.2792704.

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental task
and motion planning: A constraint-based approach. In Robotics: Science and Systems, 2016.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189, 1971.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Sampling-based methods
for factored task and motion planning. CoRR, abs/1801.00680, 2018. URL http://arxiv.
org/abs/1801.00680.

A. Gopnik, A.N. Meltzoff, and P.K. Kuhl. The Scientist In The Crib: Minds, Brains, And How
Children Learn. HarperCollins, 2009. ISBN 9780061846915.

Fabien Gravot, Stephane Cambon, and Rachid Alami. asymov: A planner that deals with intricate
symbolic and geometric problems. In Paolo Dario and Raja Chatila (eds.), Robotics Research.
The Eleventh International Symposium, pp. 100–110, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg. ISBN 978-3-540-31508-7.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evo-
lution. In Advances in Neural Information Processing Systems 31, pp. 2451–
2463. Curran Associates, Inc., 2018. URL https://papers.nips.cc/paper/
7512-recurrent-world-models-facilitate-policy-evolution. https://
worldmodels.github.io.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and David Silver. Emergence
of locomotion behaviours in rich environments. CoRR, abs/1707.02286, 2017. URL http:
//arxiv.org/abs/1707.02286.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

Andreas Hertle, Christian Dornhege, Thomas Keller, and Bernhard Nebel. Planning with seman-
tic attachments: An object-oriented view. In Proceedings of the 20th European Conference
on Artificial Intelligence, ECAI’12, pp. 402–407, Amsterdam, The Netherlands, The Nether-
lands, 2012. IOS Press. ISBN 978-1-61499-097-0. doi: 10.3233/978-1-61499-098-7-402. URL
https://doi.org/10.3233/978-1-61499-098-7-402.

11

https://openreview.net/forum?id=HyxGB2AcY7
https://openreview.net/forum?id=HyxGB2AcY7
http://doi.acm.org/10.1145/2776880.2792704
http://arxiv.org/abs/1801.00680
http://arxiv.org/abs/1801.00680
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://worldmodels.github.io
https://worldmodels.github.io
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
https://doi.org/10.3233/978-1-61499-098-7-402


Under review as a conference paper at ICLR 2019

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. CoRR, abs/1710.02298, 2017. URL http://
arxiv.org/abs/1710.02298.

Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation through heuristic
search. J. Artif. Int. Res., 14(1):253–302, May 2001. ISSN 1076-9757. URL http://dl.
acm.org/citation.cfm?id=1622394.1622404.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks.
CoRR, abs/1611.05397, 2016. URL http://arxiv.org/abs/1611.05397.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion planning in belief
space. Int. J. Rob. Res., 32(9-10):1194–1227, August 2013. ISSN 0278-3649. doi: 10.1177/
0278364913484072. URL http://dx.doi.org/10.1177/0278364913484072.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Ryan Sepassi,
George Tucker, and Henryk Michalewski. Model-based reinforcement learning for atari. CoRR,
abs/1903.00374, 2019. URL http://arxiv.org/abs/1903.00374.

Lydia Kavraki, Petr Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. Robotics and Automation, IEEE Transactions
on, 12:566 – 580, 09 1996. doi: 10.1109/70.508439.

Beomjoon Kim, Leslie Kaelbling, and Toms Lozano-Perez. Guiding search in continuous state-
action spaces by learning an action sampler from off-target search experience. In Proceedings of
the 32th AAAI Conference on Artificial Intelligence (AAAI). To appear. AAAI Press, 2018. URL
http://lis.csail.mit.edu/pubs/kim-aaai18.pdf.

Beomjoon Kim, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Adversarial actor-critic
method for task and motion planning problems using planning experience. In AAAI Confer-
ence on Artificial Intelligence (AAAI), 2019. URL http://lis.csail.mit.edu/pubs/
kim-aaai19.pdf.

Zachary Kingston, Mark Moll, and Lydia E. Kavraki. Sampling-based methods for motion planning
with constraints. Annual Review of Control, Robotics, and Autonomous Systems, 1(1):159–185,
2018. doi: 10.1146/annurev-control-060117-105226. URL https://doi.org/10.1146/
annurev-control-060117-105226.

Oliver Kroemer and Gaurav S. Sukhatme. Learning spatial preconditions of manipulation skills
using random forests. 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), pp. 676–683, 2016.

James Kuffner and Steven LaValle. Rrt-connect: An efficient approach to single-query path plan-
ning. volume 2, pp. 995–1001, 01 2000. doi: 10.1109/ROBOT.2000.844730.

Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. 1998.

Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manipulation skills with
guided policy search. CoRR, abs/1501.05611, 2015. URL http://arxiv.org/abs/1501.
05611.

J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-Line Computational Scheme for Mechani-
cal Manipulators. Journal of Dynamic Systems, Measurement, and Control, 102(2):69–76, 06
1980. ISSN 0022-0434. doi: 10.1115/1.3149599. URL https://doi.org/10.1115/1.
3149599.

Marlos C. Machado, Marc G. Bellemare, and Michael H. Bowling. A laplacian framework for option
discovery in reinforcement learning. CoRR, abs/1703.00956, 2017. URL http://arxiv.
org/abs/1703.00956.

12

http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://dl.acm.org/citation.cfm?id=1622394.1622404
http://dl.acm.org/citation.cfm?id=1622394.1622404
http://arxiv.org/abs/1611.05397
http://dx.doi.org/10.1177/0278364913484072
http://arxiv.org/abs/1903.00374
http://lis.csail.mit.edu/pubs/kim-aaai18.pdf
http://lis.csail.mit.edu/pubs/kim-aaai19.pdf
http://lis.csail.mit.edu/pubs/kim-aaai19.pdf
https://doi.org/10.1146/annurev-control-060117-105226
https://doi.org/10.1146/annurev-control-060117-105226
http://arxiv.org/abs/1501.05611
http://arxiv.org/abs/1501.05611
https://doi.org/10.1115/1.3149599
https://doi.org/10.1115/1.3149599
http://arxiv.org/abs/1703.00956
http://arxiv.org/abs/1703.00956


Under review as a conference paper at ICLR 2019

C. Mitash, K. E. Bekris, and A. Boularias. A self-supervised learning system for object detection
using physics simulation and multi-view pose estimation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vancouver, Canada, 09/2017 2017. URL https:
//www.cs.rutgers.edu/˜kb572/pubs/physics_object_detection.pdf.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529 EP –, 02 2015. URL https://doi.org/10.1038/nature14236.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, and
Daniel L. K. Yamins. Flexible neural representation for physics prediction. In NeurIPS, 2018.

Martin A. Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van
de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing -
solving sparse reward tasks from scratch. CoRR, abs/1802.10567, 2018. URL http://arxiv.
org/abs/1802.10567.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensible planner-independent interface
layer. Proceedings - IEEE International Conference on Robotics and Automation, pp. 639–646,
1 2014. ISSN 1050-4729. doi: 10.1109/ICRA.2014.6906922.

William Vega-Brown and Nicholas Roy. Asymptotically optimal planning under piecewise-analytic
constraints. 2018.

Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Active model
learning and diverse action sampling for task and motion planning. In International Conference on
Intelligent Robots and Systems (IROS), 2018. URL http://lis.csail.mit.edu/pubs/
wang-iros18.pdf.

Theophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter W. Battaglia, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. CoRR, abs/1707.06203, 2017. URL http://arxiv.
org/abs/1707.06203.

13

https://www.cs.rutgers.edu/~kb572/pubs/physics_object_detection.pdf
https://www.cs.rutgers.edu/~kb572/pubs/physics_object_detection.pdf
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1802.10567
http://arxiv.org/abs/1802.10567
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://lis.csail.mit.edu/pubs/wang-iros18.pdf
http://lis.csail.mit.edu/pubs/wang-iros18.pdf
http://arxiv.org/abs/1707.06203
http://arxiv.org/abs/1707.06203


Under review as a conference paper at ICLR 2019

A CURIOSITY METRICS

A.1 STATE ESTIMATION CURIOSITY

The objective of the state estimation curiosity module is to estimate the underlying state of the world
through a set of visual observations. State configurations that are visually distinct from previously
seen configurations will lead to high losses. The curiosity module and loss function are defined as
follows.

Hβ : Im 7→ S

Li = ‖Hβ(Imi)− si‖22

Where Im is the space of 84 × 84 × 3 · np matrices containing np images captured from various
perspectives in the scene, s ∈ S denotes the state, and i is an index into the batch. In our experiments,
we used a single top-down perspective (np = 1).

A.2 FORWARD DYNAMICS CURIOSITY

The objective of the forward dynamics curiosity module is to estimate future states given current
states and actions. Given deterministic physics, actions modify states deterministically. Therefore,
it is theoretically possible to estimate a future state from an action and the current state. Rare
or unpredictable object-object interaction will yield the highest loss in dynamics prediction and
therefore will be sought out by the curiosity module. The curiosity module and loss function are
described as follows.

Hβ : S 7→ S
f : S ×A 7→ S

Li = ‖Hβ(si)− f(si, ai)‖22

Where f is the deterministic dynamics model which maps a state and action at t to a state at time
t+ τ for some fixed τ .

A.3 RANDOM NETWORK DISTILLATION CURIOSITY

Random Network Distillation (RND) is a recently proposed method for obtaining state-space cover-
age. This is achieved by training a model to fit some fixed random transformation of the input data.
The RND curiosity module achieves low loss when it matches the transformation. This results in
high curiosity module loss for unseen states.

Hβ ,Φβ : S 7→ S

Li = ‖Hβ(si)− Φ(si)‖22

Where Φ is the fixed mapping that is initialized with random parameters. Among other mappings
including random linear and non-linear mappings with uniformly and gaussian distributed weights,
we found that the best performing mapping was a random permutation of the state vector.

B NETWORK STRUCTURES AND HYPERPARAMETERS

B.1 ACTOR CRITIC POLICY AND VALUE NETWORKS

The structure of the policy network is a multilayer perceptron model with three layers. The input
size is the dimensionality of the state space and the output size is equivalent to the dimensionality
of the action space. Action space and state space dimensionality are described in more detail below.
The hidden layers each have 64 hidden units with tanh activation functions. The the value network
has an equivalent architecture but with an output size of one.

14



Under review as a conference paper at ICLR 2019

For PPO and A2C training, we used the same hyperparameters during action selection network
training and baseline experimentation. For PPO we used a batch size of 128 with 1024 samples
collected per update, γ = 0, lr = 7e − 4, ε = 0.2. We chose γ = 0 for multiple application-
dependent reasons. For the curiosity networks, we found that it led to higher performance in both
solution speed and selection of feasible actions. In our curiosity-guided RL baselines, we found no
difference between values of gamma. We also selected value and entropy coefficients of 0.5 and 0.0
respectively and restricted the magnitude of the gradient to 0.5. For each batch, we did 4 PPO epoch
updates. For A2C, we used the same learning rate and coefficients as PPO.

B.2 STATE ESTIMATION CONVOLUTION NETWORK

The state estimation network takes in visual input from perspectives in the scene and outputs an
estimated state. We achieved this image to state mapping using a convolutional neural network with
three convolutional layers and two fully connected layers, all with ReLU nonlinearities. Because
we used a single perspective for all of our experiments, the input size is 84× 84× 3 and the output
size is the dimensionality of the state space. The convolutional layers have kernel sizes of 8, 4, 3
and strides of 4, 2, 1. The fully connected layers each have 128 hidden units.

B.3 FORWARD DYNAMICS NETWORK

The forward dynamics network maps st, at to st+τ . This is achieved using a multilayer perceptron
model with 3 layers, 64 hidden units per layer and tanh activation functions. The input size is the
sum of the action and state dimensionality and the output size is the dimensionality of the state.

B.4 RND NETWORK

The RND network maps states to transformed states. The size we used for the transformed state is
equivalent to the size of the state. Therefore, the input and output sizes are both equivalent to the
dimensionality of the state. The architecture consisted of a three layer multilayer perceptron model
with tanh activation functions and 64 hidden units for each hidden layer.

B.5 UNIVERSAL CURIOSITY MODULE HYPERPARAMETERS

For training the curiosity networks, we used an Adam optimizer with a learning rate of 5× 10−5, a
batch size of 128, and 1024 samples per update. We also found that performance was higher when
we used an adaptive number of samples per update. The number of samples is increased until the
loss is below a threshold after training. This improves CSP by giving the curiosity network time to
train to baseline before adding nodes to the tree.

C TASK SPECIFIC STATE SPACE AND ACTION SPACE

C.1 STACK STATE

This set of tasks consists of k cubes. Each cube has it’s own SE(3) configuration parameterized
by three positional degrees of freedom and three euclidean rotational degrees of freedom. When
the linking macro-action is enabled, the state also contains indicator values for each pairwise object
combination.

C.2 PUSH-AWAY STATE

This task contains two larger cubes, one smaller cube, and one elongated, flat rectangular prism.
Again, the dimensionality of the state space is SE(3) for each object along with pairwise indicators
when the linking macro-action is enabled.

15



Under review as a conference paper at ICLR 2019

Metric-Algorithm 3-Stack 5-Stack Push-Away Bookshelf Push-Away
RND-PPO 3.34e6± 1.92e6 1e7± 0 1e7± 0 1e7± 0 1e7± 0
Forward Dynamics-PPO 5.01e6± 2.03e6 1e7± 0 1e7± 0 1e7± 0 1e7± 0
Effect Prediction-PPO 1e7± 0 1e7± 0 1e7± 0 1e7± 0 1e7± 0
RND-A2C 2.72e6± 1.92e6 1e7± 0 1e7± 0 1e7± 0 1e7± 0
Forward Dynamics-A2C 1e7± 0 1e7± 0 1e7± 0 1e7± 0 1e7± 0
Effect Prediction-A2C 1e7± 0 1e7± 0 1e7± 0 1e7± 0 1e7± 0

Table 1: Comprehensive List of Actor-Critic/Curiosity Metric Evaluations

C.3 BOOKSHELF STATE

This task contains two rods elongated rectangular prism rods and a rectangular prism book, each
with a SE(3) configuration space and pairwise linking. Linking is always enabled for this task
because it is required to complete it.

C.4 LAUNCH-BLOCK STATE

The state space for this task contains five small cubes, one larger cube that sits at the end of the
seesaw, and the angle of the seesaw itself. Each of the cubes has an SE(3) configuration space and
the seesaw has a bounded real configuration with a single degree of freedom.

C.5 TRANSFER STATES

When comparing between tasks, the action spaces and state spaces need matching dimensionality to
ensure the networks could be substituted. We achieved this by making sure each problem instance
had an equivalent number of objects, even if it was unnecessary to use all objects to complete the
task. For the transfer results stated in this paper, this equated to using five objects for each task.

C.6 ACTION SPACES

When both linking and pick-place macro-actions are enabled, the action space needs to contain
information for choosing which object to move (k total), the goal pose of the object (dof ), which
of the

(
k
2

)
object pairs to link or unlink , and which macro-action to select (linking or pick-place).

Therefore, the dimensionality of the action space is
(
k
2

)
+ (dof + 1) · k + 2. The macro-action,

link, and object discrete variables are chosen by performing an argmax over the respective section
of the action space. If a link macroaction is selected between two objects that are already linked,
this is considered an unlink action and the constraint between the two objects is removed. If a link
is chosen between two objects which aren’t in contact, then the action is considered to be infeasible.
For implementation simplicity, we use k2 variables for the linking indicator rather than

(
k
2

)
and

ignore any redundant pairs.

D ADDITIONAL BASELINES

We ran several other reinforcement learning baseline comparisons including Forward Dynamics-
PPO, Effect Prediction-PPO, RND-A2C, Forward Dynamics-A2C, and Effect Prediction-A2C with-
out resets, and results are shown in Table 1. As expected, we found results similar to RND-PPO No
Reset in Figure 3. Specifically, we found that all additional baselines solved 3-Stack in up to two of
the experiments, but failed at ever solving the other tasks.

16


	Introduction
	Related Work
	Mathematical Description
	Problem Description
	Curious Sample Planner

	Experiments
	Tasks
	Neural Network Settings and Curiosity Metrics
	Quantitative Results
	Qualitative Results
	Task Transfer

	Conclusion
	Curiosity Metrics
	State Estimation Curiosity
	Forward Dynamics Curiosity
	Random Network Distillation Curiosity

	Network Structures and Hyperparameters
	Actor Critic Policy and Value Networks
	State Estimation Convolution Network
	Forward Dynamics Network
	RND Network
	Universal Curiosity Module Hyperparameters

	Task Specific State Space and Action Space
	Stack State
	Push-Away State
	Bookshelf State
	Launch-Block State
	Transfer States
	Action Spaces

	Additional Baselines

