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Abstract

Neural network training is usually accomplished by solving a non-convex opti-
mization problem using stochastic gradient descent. Although one optimizes over
the networks parameters, the main loss function generally only depends on the
realization of the neural network, i.e. the function it computes. Studying the opti-
mization problem over the space of realizations opens up new ways to understand
neural network training. In particular, usual loss functions like mean squared error
and categorical cross entropy are convex on spaces of neural network realizations,
which themselves are non-convex. Approximation capabilities of neural networks
can be used to deal with the latter non-convexity, which allows us to establish that
for sufficiently large networks local minima of a regularized optimization problem
on the realization space are almost optimal. Note, however, that each realization
has many different, possibly degenerate, parametrizations. In particular, a local
minimum in the parametrization space needs not correspond to a local minimum
in the realization space. To establish such a connection, inverse stability of the
realization map is required, meaning that proximity of realizations must imply
proximity of corresponding parametrizations. We present pathologies which pre-
vent inverse stability in general, and, for shallow networks, proceed to establish a
restricted space of parametrizations on which we have inverse stability w.r.t. to a
Sobolev norm. Furthermore, we show that by optimizing over such restricted sets,
it is still possible to learn any function which can be learned by optimization over
unrestricted sets.

1 Introduction and Motivation

In recent years much effort has been invested into explaining and understanding the overwhelm-
ing success of deep learning based methods. On the theoretical side, impressive approximation
capabilities of neural networks have been established [9, 10, 16, 20, 32, 33, 37, 39]. No less im-
portant are recent results on the generalization of neural networks, which deal with the question of
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how well networks, trained on limited samples, perform on unseen data [2, 3, 5–7, 17, 29]. Last
but not least, the optimization error, which quantifies how well a neural network can be trained
by applying stochastic gradient descent to an optimization problem, has been analyzed in different
scenarios [1, 11, 13, 22, 24, 25, 27, 38]. While there are many interesting approaches to the latter
question, they tend to require very strong assumptions (e.g. (almost) linearity, convexity, or extreme
over-parametrization). Thus a satisfying explanation for the success of stochastic gradient descent
for a non-smooth, non-convex problem remains elusive.
In the present paper we intend to pave the way for a functional perspective on the optimization
problem. This allows for new mathematical approaches towards understanding the training of neu-
ral networks, some of which are demonstrated in Section 1.2. To this end we examine degenerate
parametrizations with undesirable properties in Section 2. These can be roughly classified as

C.1 unbalanced magnitudes of the parameters

C.2 weight vectors with the same direction

C.3 weight vectors with directly opposite directions.

Under conditions designed to avoid these degeneracies, Theorem 3.1 establishes inverse stability
for shallow networks with ReLU activation function. This is accomplished by a refined analysis
of the behavior of ReLU networks near a discontinuity of their derivative. Proposition 1.2 shows
how inverse stability connects the loss surface of the parametrized minimization problem to the
loss surface of the realization space problem. In Theorem 1.3 we showcase a novel result on al-
most optimality of local minima of the parametrized problem obtained by analyzing the realization
space problem. Note that this approach of analyzing the loss surface is conceptually different from
previous approaches as in [11, 18, 23, 30, 31, 36].

1.1 Inverse Stability of Neural Networks

We will focus on neural networks with the ReLU activation function ρ(x) := x+, and adapt the
mathematically convenient notation from [33], which distinguishes between the parametrization of
a neural network and its realization. Let us define the set AL of all network architectures with depth
L ∈ N, input dimension d ∈ N, and output dimension D ∈ N by

AL := {(N0, . . . , NL) ∈ N
L+1 : N0 = d,NL = D}. (1)

The architecture N ∈ AL simply specifies the number of neurons Nl in each of the L layers. We
can then define the space PN of parametrizations with architecture N ∈ AL as

PN :=
L
∏

ℓ=1

(

R
Nℓ×Nℓ−1 × R

Nℓ
)

, (2)

the set P =
⋃

N∈AL
PN of all parametrizations with architecture in AL, and the realization map

R : P → C(Rd,RD)

Θ = ((Aℓ, bℓ))
L
ℓ=1 7→ R(Θ) := WL ◦ ρ ◦WL−1 . . . ρ ◦W1,

(3)

where Wℓ(x) := Aℓx + bℓ and ρ is applied component-wise. We refer to Aℓ and bℓ as the weights
and biases in the ℓ-th layer.
Note that a parametrization Θ ∈ Ω ⊆ P uniquely induces a realization R(Θ) in the realization
space R(Ω), while in general there can be multiple non-trivially different parametrizations with the
same realization. To put it in mathematical terms, the realization map is not injective. Consider the
basic counterexample

Θ =
(

(A1, b1), . . . , (AL−1, bL−1), (0, 0)
)

and Γ =
(

(B1, c1), . . . , (BL−1, cL−1), (0, 0)
)

(4)

from [34] where regardless of Aℓ, Bℓ, bℓ and cℓ both realizations coincide with R(Θ) = R(Γ) = 0.
However, it it is well-known that the realization map is locally Lipschitz continuous, meaning that
close1 parametrizations in PN induce realizations which are close in the uniform norm on compact

1On the finite dimensional vector space PN all norms are equivalent and we take w.l.o.g. the maximum
norm ‖Θ‖∞, i.e. the maximum of the absolute values of the entries of the Aℓ and bℓ.
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sets, see e.g. [2, Lemma 14.6], [7, Theorem 4.2], and [34, Proposition 5.1].
We will shed light upon the inverse question. Given realizations R(Γ) and R(Θ) that are close, do
the parametrizations Γ and Θ have to be close? In an abstract setting we measure the proximity of
realizations in the norm ‖ · ‖ of a Banach space B with R(P) ⊆ B, while concrete Banach spaces of
interest will be specified later. In view of the above counterexample we will, at the very least, need
to allow for the reparametrization of one of the networks, i.e. we arrive at the following question.

Given R(Γ) and R(Θ) that are close, does there exist a parametrization Φ with
R(Φ) = R(Θ) such that Γ and Φ are close?

As we will see in Section 2, this question is fundamentally connected to understanding the redundan-
cies and degeneracies of the way that neural networks are parametrized. By suitable regularization,
i.e. considering a subspace Ω ⊆ PN of parametrizations, we can avoid these pathologies and es-
tablish a positive answer to the question above. For such a property the term inverse stability was
introduced in [34], which constitutes the only other research conducted in this area, as far as we are
aware.

Definition 1.1 (Inverse stability). Let s, α > 0, N ∈ AL, and Ω ⊆ PN . We say that the realization
map is (s, α) inverse stable on Ω w.r.t. ‖ · ‖, if for all Γ ∈ Ω and g ∈ R(Ω) there exists Φ ∈ Ω with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ s‖g −R(Γ)‖α. (5)

In Section 2 we will see why inverse stability fails w.r.t. the uniform norm. Therefore, we consider
a norm which takes into account not only the maximum error of the function values but also of the
gradients. In mathematical terms, we make use of the Sobolev norm ‖ · ‖W 1,∞(U) (on some domain

U ⊆ R
d) defined for every (locally) Lipschitz continuous function g : Rd → R

D by ‖g‖W 1,∞(U) :=
max{‖g‖L∞(U), |g|W 1,∞(U)} with the Sobolev semi-norm | · |W 1,∞(U) given by

|g|W 1,∞(U) := ‖Dg‖L∞(U) = ess sup
x∈U

‖Dg(x)‖∞. (6)

See [15] for further information on Sobolev norms, and [8] for further information on the derivative
of ReLU networks.

1.2 Implications of inverse stability for neural network optimization

We proceed by demonstrating how inverse stability opens up new perspectives on the optimiza-
tion problem which arises in neural network training. Specifically, consider a loss function
L : C(Rd,RD) → [0,∞) on the space of continuous functions. For illustration, we take the com-

monly used mean squared error (MSE) which, for training data ((xi, yi))ni=1 ∈ (Rd × R
D)n, is

given by

L(g) = 1
n

n
∑

i=1

‖g(xi)− yi‖22, for g ∈ C(Rd,RD). (7)

Typically, the optimization problem is solved over some subspace of parametrizations Ω ⊆ PN , i.e.

min
Γ∈Ω

L(R(Γ)) = min
Γ∈Ω

1
n

n
∑

i=1

‖R(Γ)(xi)− yi‖22. (8)

From an abstract point of view, by writing g = R(Γ) ∈ R(Ω), this is equivalent to the corresponding
optimization problem over the space of realizations R(Ω), i.e.

min
g∈R(Ω)

L(g) = min
g∈R(Ω)

1
n

n
∑

i=1

‖g(xi)− yi‖22. (9)

However, the loss landscape of the optimization problem (8) is only properly connected to the loss
landscape of the optimization problem (9) if the realization map is inverse stable on Ω. Otherwise
a realization g ∈ R(PN ) can be arbitrarily close to a global minimum in the realization space but
every parametrization Φ with R(Φ) = g is far away from the corresponding global minimum in the
parametrization space. Moreover, local minima of (8) in the parametrization space must correspond
to local minima of (9) in the realization space if and only if we have inverse stability.
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Proposition 1.2 (Parametrization minimum ⇒ realization minimum). Let N ∈ AL, Ω ⊆ PN and
let the realization map be (s, α) inverse stable on Ω w.r.t. ‖ · ‖. Let Γ∗ ∈ Ω be a local minimum of
L ◦ R on Ω with radius r > 0, i.e. for all Φ ∈ Ω with ‖Φ− Γ∗‖∞ ≤ r it holds that

L(R(Γ∗)) ≤ L(R(Φ)). (10)

Then R(Γ∗) is a local minimum of L on R(Ω) with radius ( rs )
1/α, i.e. for all g ∈ R(Ω) with

‖g −R(Γ∗)‖ ≤ ( rs )
1/α it holds that

L(R(Γ∗)) ≤ L(g). (11)

See Appendix A.1.2 for a proof and Example A.1 for a counterexample in the case that inverse sta-
bility is not given. Note that in (9) we consider a problem with convex loss function but non-convex
feasible set, see [34, Section 3.2]. This opens up new avenues of investigation using tools from
functional analysis and allows utilizing recent results [19, 34] exploring the topological properties
of neural network realization spaces.
As a concrete demonstration we provide with Theorem A.2 a strong result obtained on the realiza-
tion space, which estimates the quality of a local minimum based on its radius and the approxima-
tion capabilities of the chosen architecture for a class of functions S. Specifically let C > 0, let
Λ: B → [0,∞) be a quasi-convex regularizer, and define

S := {f ∈ B : Λ(f) ≤ C}. (12)

We denote the sets of regularized parametrizations by

ΩN := {Φ ∈ PN : Λ(R(Φ)) ≤ C} (13)

and assume that the loss function L is convex and c-Lipschitz continuous on S. Note that virtually
all relevant loss functions are convex and locally Lipschitz continuous on C(Rd,RD). Employing
Proposition 1.2, inverse stability can then be used to derive the following result for the practically
relevant parametrized problem, showing that for sufficiently large architectures local minima of a
regularized neural network optimization problem are almost optimal.

Theorem 1.3 (Almost optimality of local parameter minima). Assume that S is compact in the
‖ · ‖-closure of R(P) and that for every N ∈ AL the realization map is (s, α) inverse stable on
ΩN w.r.t. ‖ · ‖ . Then for all ε, r > 0 there exists n(ε, r) ∈ AL such that for every N ∈ AL with
N1 ≥ n1(ε, r), . . . , NL−1 ≥ nL−1(ε, r) the following holds:
Every local minimum Γ∗ with radius at least r of minΓ∈ΩN

L(R(Γ)) satisfies

L(R(Γ∗)) ≤ min
Γ∈ΩN

L(R(Γ)) + ε. (14)

See Appendix A.1.2 for a proof and note that here it is important to have an inverse stability result,
where the parameters (s, α) do not depend on the size of the architecture, which we achieve for
L = 2 and B = W 1,∞. Suitable Λ would be Besov norms which constitute a common regularizer in
image and signal processing. Moreover, note that the required size of the architecture in Theorem 1.3
can be quantified, if one has approximation rates for S. In particular, this approach allows the use
of approximation results in order to explain the success of neural network optimization and enables
a combined study of these two aspects, which, to the best of our knowledge, has not been done
before. Unlike in recent literature, our result needs no assumptions on the sample set (incorporated
in the loss function, see (7)), in particular we do not require “overparametrization” with respect to
the sample size. Here the required size of the architecture only depends on the complexity of S,
i.e. the class of functions one wants to approximate, the radius of the local minima of interest, the
Lipschitz constant of the loss function, and the parameters of the inverse stability.
In the following we restrict ourselves to two-layer ReLU networks without biases, where we present
a proof for (4, 1/2) inverse stability w.r.t. the Sobolev semi-norm on a suitably regularized space of
parametrizations. Both the regularizations as well as the stronger norm (compared to the uniform
norm) will shown to be necessary in Section 2. We now present, in an informal way, a collection
of our main results. A short proof making the connection to the formal results can be found in
Appendix A.1.2.

Corollary 1.4 (Inverse stability and implications - colloquial). Suppose we are given data
((xi, yi))ni=1 ∈ (Rd × R

D)n and want to solve a typical minimization problem for ReLU networks
with shallow architecture N = (d,N1, D), i.e.

min
Γ∈PN

1
n

n
∑

i=1

‖R(Γ)(xi)− yi)‖22. (15)
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First we augment the architecture to Ñ = (d+2, N1+1, D), while omitting the biases, and augment
the samples to x̃i = (xi

1, . . . , x
i
d, 1,−1). Moreover, we assume that the parametrizations

Φ =
((

[a1| . . . |aN1+1]
T , 0

)

, ([c1| . . . |cN1+1], 0)
)

∈ Ω ⊆ PÑ (16)

are regularized such that

C.1 the network is balanced, i.e. ‖ai‖∞ = ‖ci‖∞,

C.2 no non-zero weight vectors in the first layer are redundant, i.e. ai 6‖ aj ,

C.3 the last two coordinates of each weight vector ai are strictly positive.

Then for the new minimization problem

min
Φ∈Ω

1
n

n
∑

i=1

‖R(Φ)(x̃i)− yi‖22 (17)

the following holds:

1. If Φ∗ is a local minimum of (17) with radius r, then R(Φ∗) is a local minimum of

ming∈R(Ω)
1
n

∑n
i=1 ‖g(x̃i)− yi‖22 with radius at least r2

16 w.r.t. | · |W 1,∞ .

2. The global minimum of (17) is at least as good as the global minimum of (15), i.e.

min
Φ∈Ω

1
n

n
∑

i=1

‖R(Γ)(x̃i)− yi‖22 ≤ min
Γ∈PN

1
n

n
∑

i=1

‖R(Γ)(xi)− yi‖22. (18)

3. By further regularizing (17) in the sense of Theorem 1.3, we can estimate the quality of its
local minima.

This argument is not limited to the MSE loss function but works for any loss function based on
evaluating the realization. The omission of bias weights is standard in neural network optimization
literature [11, 13, 22, 24]. While this severely limits the functions that can be realized with a given
architecture, it is sufficient to augment the problem by one dimension in order to recover the full
range of functions that can be learned [1]. Here we augment by two dimensions, so that the third
regularization condition C.3 can be fulfilled without loosing range. Moreover, note that, for sim-
plicity of presentation, the regularization assumptions stated above are stricter than necessary and
possible relaxations are discussed in Section 3.

2 Obstacles to inverse stability - degeneracies of ReLU parametrizations

In the remainder of this paper we focus on shallow ReLU networks without biases and define the cor-
responding space of parametrizations with architecture N = (d,m,D) as NN := R

m×d × R
D×m.

The realization map2 R is, for every Θ = (A,C) =
(

[a1| . . . |am]T , [c1| . . . |cm]
)

∈ NN , given by

R
d ∋ x 7→ R(Θ)(x) = Cρ(Ax) =

m
∑

i=1

ciρ(〈ai, x 〉). (19)

Note that each function x 7→ ciρ(〈ai, x〉) represents a so-called ridge function which is zero on the

half-space {x ∈ R
d : 〈ai, x〉 ≤ 0} and linear with constant derivative cia

T
i ∈ R

D ×R
d on the other

half-space. Thus, the ai are the normal vectors of the separating hyperplanes {x ∈ R
d : 〈ai, x〉 = 0}

and consequently we refer to the weight vectors ai also as the directions of Θ. Moreover, for
Θ ∈ NN it holds that R(Θ)(0) = 0 and, as long as the domain of interest U ⊆ R

d contains the
origin, the Sobolev norm ‖ · ‖W 1,∞(U) is equivalent to its semi-norm, since

‖R(Θ)‖L∞(U) ≤
√
d diam(U)|R(Θ)|W 1,∞ , (20)

2This is a slight abuse of notation, justified by the the fact that R acts the same on PN with zero biases
b1, b2 and weights A1 = A and A2 = C.
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Figure 1: The figure shows gk for k = 1, 2.

see also inequalities of Poincaré-Friedrichs type [14, Subsection 5.8.1]. Therefore, in the rest of the
paper we will only consider the Sobolev semi-norm3

|R(Θ)|W 1,∞(U) = ess sup
x∈U

∥

∥

∥

∑

i∈[m] : 〈ai,x〉>0

cia
T
i

∥

∥

∥

∞
. (21)

In (21) one can see that in our setting | · |W 1,∞(U) is independent of U (as long as U contains a

neighbourhood of the origin) and will thus be abbreviated by | · |W 1,∞ .

2.1 Failure of inverse stability w.r.t. uniform norm

All proofs for this section can be found in Appendix A.2.2. We start by showing that inverse stability
fails w.r.t. the uniform norm. This example is adapted from [34, Theorem 5.2] and represents, to the
best of our knowledge, the only degeneracy which has already been observed before.

Example 2.1 (Failure due to exploding gradient). Let Γ := (0, 0) ∈ N(2,2,1) and gk ∈ R(N(2,2,1))
be given by (see Figure 1)

gk(x) := kρ(〈(k, 0), x〉)− kρ(〈(k,− 1
k2 ), x〉), k ∈ N. (22)

Then for every sequence (Φk)k∈N ⊆ N(2,2,1) with R(Φk) = gk it holds that

lim
k→∞

‖R(Φk)−R(Γ)‖L∞((−1,1)2) = 0 and lim
k→∞

‖Φk − Γ‖∞ = ∞. (23)

In particular, note that inverse stability fails here even for a non-degenerate parametrization of the
zero function Γ = (0, 0). However, for this type of counterexample the magnitude of the gradient of
R(Φk) needs to go to infinity, which is our motivation for looking at inverse stability w.r.t. | · |W 1,∞ .

2.2 Failure of inverse stability w.r.t. Sobolev norm

In this section we present four degenerate cases where inverse stability fails w.r.t. | · |W 1,∞ . This
collection of counterexamples is complete in the sense that we can establish inverse stability under
assumptions which are designed to exclude these four pathologies.

Example 2.2 (Failure due to complete unbalancedness). Let r > 0, Γ :=
(

(r, 0), 0
)

∈ N(2,1,1) and

gk ∈ R(N(2,1,1)) be given by (see Figure 2)

gk(x) =
1
kρ(〈(0, 1), x〉), k ∈ N. (24)

Then for every k ∈ N and Φk ∈ N(2,1,1) with R(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ r. (25)

This is a very simple example of a degenerate parametrization of the zero function, since R(Γ) = 0
regardless of choice of r. The issue here is that we can have a weight pair, i.e. ((r, 0), 0), where the
product is independent of the value of one of the parameters. Note that in Example A.4 one can see a
slightly more subtle version of this pathology by considering Γk :=

(

(k, 0), 1
k2

)

∈ N(2,1,1) instead.
In that case one could still get an inverse stability estimate for each fixed k; the parameters of inverse

3For m ∈ N we abbreviate [m] := {1, . . . ,m}.
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Figure 2: Shows R(Γ) (r = 0.5) and g3. Figure 3: Shows R(Γ) and g2.

stability (s, α) would however deteriorate with increasing k. In particular this demonstrates the need
for some sort of balancedness of the parametrization, i.e. control over ‖ci‖∞ and ‖ai‖∞ individually
relative to ‖ci‖∞‖ai‖∞.
Inverse stability is also prevented by redundant directions as the following example illustrates.

Example 2.3 (Failure due to redundant directions). Let

Γ :=

([

1 0
1 0

]

, (1, 1)

)

∈ N(2,2,1) (26)

and gk ∈ R(N(2,2,1)) be given by (see Figure 3)

gk(x) := 2ρ(〈(1, 0), x〉) + 1
kρ(〈(0, 1), x〉), k ∈ N. (27)

Then for every k ∈ N and Φk ∈ N(2,2,1) with R(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ 1. (28)

The next example shows that not only redundant weight vectors can cause issues, but also weight
vectors of opposite direction, as they would allow for a (balanced) degenerate parametrization of the
zero function.

Example 2.4 (Failure due to opposite weight vectors 1). Let ai ∈ R
d, i ∈ [m], be pairwise linearly

independent with ‖ai‖∞ = 1 and
∑m

i=1 ai = 0. We define

Γ :=
(

[a1| . . . |am| − a1| . . . | − am]T ,
(

1, . . . , 1,−1, . . . ,−1
))

∈ N(d,2m,1). (29)

Now let v ∈ R
d with ‖v‖∞ = 1 be linearly independent to each ai, i ∈ [m], and let gk ∈

R(N(d,2m,1)) be given by (see Figure 4)

gk(x) =
1
kρ(〈v, x〉), k ∈ N. (30)

Then there exists a constant C > 0 such that for every k ∈ N and every Φk ∈ N(d,2m,1) with

R(Φk) = gk it holds that

|R(Φk)−R(Γ)|W 1,∞ = 1
k and ‖Φk − Γ‖∞ ≥ C. (31)

Thus we will need an assumption which prevents each individual Γ in our restricted set from having
pairwise linearly dependent weight vectors, i.e. coinciding hyperplanes of non-differentiability. This,
however, does not suffice as is demonstrated by the next example, which shows that the relation
between the hyperplanes of the two realizations matters.

Example 2.5 (Failure due to opposite weight vectors 2). We define the weight vectors

ak1 = (k, k, 1
k ), ak2 = (−k, k, 1

k ), ak3 = (0,−
√
2k, 1√

2k
), ck = (k, k,

√
2k) (32)

and consider the parametrizations (see Figure 5)

Γk :=
(

[

− ak1
∣

∣− ak2
∣

∣− ak3
]T

, ck
)

∈ N(3,3,1), Θk :=
(

[

ak1
∣

∣ak2
∣

∣ak3
]T

, ck
)

∈ N(3,3,1). (33)

Then for every k ∈ N and every Φk ∈ N(3,3,1) with R(Φk) = R(Θk) it holds that

|R(Φk)−R(Γk)|W 1,∞ = 3 and ‖Φk − Γk‖∞ ≥ k. (34)

Note that Γ and Θ need to have multiple exactly opposite weight vectors which add to something
small (compared to the size of the individual vectors), but not zero, since otherwise reparametrization
would be possible (see Lemma A.5).
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Figure 4: Shows R(Γ) and g3 (a1 = (1,− 1
2 ),

a2 = (−1,− 1
2 ), a3 = (0, 1), v = (1, 0)).

Figure 5: Shows the weight vectors of Θ2

(grey) and Γ2 (black).

3 Inverse stability for two-layer ReLU Networks

We now establish an inverse stability result using assumptions designed to exclude the pathologies
from the previous section. First we present a rather technical theorem for output dimension one
which considers a parametrization Γ in the unrestricted parametrization space NN and a function g
in the the corresponding function space R(NN ). The aim is to use assumptions which are as weak
as possible, while allowing us to find a parametrization Φ of g, whose distance to Γ can be bounded
relative to |g−R(Γ)|W 1,∞ . We then continue by defining a restricted parametrization space N ∗

N , for
which we get uniform inverse stability (meaning that we get the same estimate for every Γ ∈ N ∗

N ).

Theorem 3.1 (Inverse stability at Γ ∈ NN ). Let d,m ∈ N, N := (d,m, 1), β ∈ [0,∞), let

Γ =
(

[

aΓ1
∣

∣ . . .
∣

∣aΓm
]T

, cΓ
)

∈ NN , g ∈ R(NN ), and let IΓ := {i ∈ [m] : aΓi 6= 0}.

Assume that the following conditions are satisfied:

C.1 It holds for all i ∈ [m] with ‖cΓi aΓi ‖∞ ≤ 2|g −R(Γ)|W 1,∞ that |cΓi |, ‖aΓi ‖∞ ≤ β.

C.2 It holds for all i, j ∈ IΓ with i 6= j that
aΓ
j

‖aΓ
j
‖∞

6= aΓ
i

‖aΓ
i
‖∞

.

C.3 There exists a parametrization Θ =
(

[

aΘ1
∣

∣ . . .
∣

∣aΘm
]T

, cΘ
)

∈ NN such that R(Θ) = g and

(a) it holds for all i, j ∈ IΓ with i 6= j that
aΓ
j

‖aΓ
j
‖∞

6= − aΓ
i

‖aΓ
i
‖∞

and for all i, j ∈ IΘ with

i 6= j that
aΘ
j

‖aΘ
j
‖∞

6= − aΘ
i

‖aΘ
i
‖∞

,

(b) it holds for all i ∈ IΓ, j ∈ IΘ that
aΓ
i

‖aΓ
i
‖∞

6= − aΘ
j

‖aΘ
j
‖∞

where IΘ := {i ∈ [m] : aΘi 6= 0}.

Then there exists a parametrization Φ ∈ NN with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ β + 2|g −R(Γ)|
1
2

W 1,∞ . (35)

The proof can be found in Appendix A.3.2. Note that each of the conditions in the theorem above
corresponds directly to one of the pathologies in Section 2.2. Condition C.1, which deals with
unbalancedness, only imposes an restriction on the weight pairs whose product is small compared
to the distance of R(Γ) and g. As can be guessed from Example 2.2 and seen in the proof of
Theorem 3.1, such a balancedness assumption is in fact only needed to deal with degenerate cases,
where R(Γ) and g have parts with mismatching directions of negligible magnitude. Otherwise a
matching reparametrization is always possible. Note that a balanced Γ (i.e. |cΓi | = ‖aΓi ‖∞) satisfies

Condition C.1 with β = (2|g −R(Γ)|W 1,∞)1/2.
It is also possible to relax the balancedness assumption by only requiring |cΓi | and ‖Γi‖∞ to be

close to ‖cΓi aΓi ‖
1/2
∞ , which would still give a similar estimate but with a worse exponent. In order to

see that requiring balancedness does not restrict the space of realizations, observe that the ReLU is
positively homogeneous (i.e. ρ(λx) = λρ(x) for all λ ≥ 0, x ∈ R). Thus balancedness can always
be achieved simply by rescaling.
Condition C.2 requires Γ to have no redundant directions, the necessity of which is demonstrated by
Example 2.3. Note that prohibiting redundant directions does not restrict the space of realizations,
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see (87) in the appendix for details. From a practical point of view, enforcing this condition could
be achieved by a regularization term using a barrier function. Alternatively on could employ a non-
standard approach of combining such redundant neurons by changing one of them according to (87)
and either setting the other one to zero or removing it entirely4.
From a theoretical perspective the first two conditions are rather mild, in the sense that they only
restrict the space of parametrizations and not the corresponding space of realizations. Specifically
we can define the restricted parametrization space

N ′
(d,m,D) := {Γ ∈ N(d,m,D) : ‖cΓi ‖∞ = ‖aΓi ‖∞ for all i ∈ [m] and Γ satisfies C.2} (36)

for which we have R(N ′
N ) = R(NN ). Note that the above definition as well as the following defi-

nition and theorem are for networks with arbitrary output dimensions, as the balancedness condition
makes this extension rather straightforward.
In order to satisfy Conditions C.3a and C.3b we need to restrict the parametrization space in a way
which also restricts the corresponding space of realizations. One possibility to do so is the follow-
ing approach, which also incorporates the previous restrictions as well as the transition to networks
without biases.

Definition 3.2 (Restricted parametrization space). Let N = (d,m,D) ∈ N
3. We define

N ∗
N :=

{

Γ ∈ N ′
N : (aΓi )d−1, (a

Γ
i )d > 0 for all i ∈ [m]

}

. (37)

While we no longer have R(N ∗
N ) = R(NN ), Lemma A.6 shows that for every Θ ∈ P(d,m,D) there

exists Γ ∈ N ∗
(d+2,m+1,D) such that for all x ∈ R

d it holds that

R(Γ)(x1, . . . , xd, 1,−1) = R(Θ)(x1, . . . , xd). (38)

In particular, this means that for any optimization problem over an unrestricted parametrization
space P(d,m,D), there is a corresponding optimization problem over the parametrization space
N ∗

(d+2,m+1,D) whose solution is at least as good (see Corollary 1.4). Our main result now states that

for such a restricted parametrization space we have uniform (4, 1/2) inverse stability w.r.t. | · |W 1,∞ ,
a proof of which can be found in Appendix A.3.2.

Theorem 3.3 (Inverse stability on N ∗
N ). Let N ∈ N

3. For all Γ ∈ N ∗
N and g ∈ R(N ∗

N ) there exists
a parametrization Φ ∈ N ∗

N with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ 4|g −R(Γ)|
1
2

W 1,∞ . (39)

4 Outlook

This contribution investigates the potential insights which may be gained from studying the opti-
mization problem over the space of realizations, as well as the difficulties encountered when trying
to connect it to the parametrized problem. While Theorem 1.3 and Theorem 3.3 offer some com-
pelling preliminary answers, there are multiple ways in which they can be extended.
To obtain our inverse stability result for shallow ReLU networks we studied sums of ridge functions.
Extending this result to deep ReLU networks requires understanding their behaviour under com-
position. In particular, we have ridge functions which vanish on some half space, i.e. colloquially
speaking each neuron may “discard half the information” it receives from the previous layer. This
introduces a new type of degeneracy, which one will have to deal with.
Another interesting direction is an extension to inverse stability w.r.t. some weaker norm like ‖·‖L∞

or a fractional Sobolev norm under stronger restrictions on the space of parametrizations (see
Lemma A.7 for a simple approach using very strong restrictions).
Lastly, note that Theorem 1.3 is not specific to the ReLU activation function and thus also incen-
tivizes the study of inverse stability for any other activation function.
From an applied point of view, Conditions C.1-C.3 motivate the implementation of corresponding
regularization (i.e. penalizing unbalancedness and redundancy in the sense of parallel weight vec-
tors) in state-of-the-art networks, in order to explore whether preventing inverse stability leads to
improved performance in practice. Note that there already are results using, e.g. cosine similar-
ity, as regularizer to prevent parallel weight vectors [4, 35] as well as approaches, called Sobolev
Training, reporting better generalization and data-efficiency by employing a Sobolev norm based
loss [12].

4This could be of interest in the design of dynamic network architectures [26, 28, 40] and is also closely
related to the co-adaption of neurons, to counteract which, dropout was invented [21].
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