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ABSTRACT

Domain transfer is an exciting and challenging branch of machine learning be-
cause models must learn to smoothly transfer between domains, preserving lo-
cal variations and capturing many aspects of variation without labels. However,
most successful applications to date require the two domains to be closely related
(e.g., image-to-image, video-video), utilizing similar or shared networks to trans-
form domain-specific properties like texture, coloring, and line shapes. Here, we
demonstrate that it is possible to transfer across modalities (e.g., image-to-audio)
by first abstracting the data with latent generative models and then learning trans-
formations between latent spaces. We find that a simple variational autoencoder
is able to learn a shared latent space to bridge between two generative models in
an unsupervised fashion, and even between different types of models (e.g., varia-
tional autoencoder and a generative adversarial network). We can further impose
desired semantic alignment of attributes with a linear classifier in the shared la-
tent space. Through qualitative and quantitative evaluations, we demonstrate that
the proposed model preserves both locality and semantic alignment through the
transfer process. Finally, the hierarchical structure decouples the cost of training
the base generative models and semantic alignments, enabling computationally
efficient and data efficient retraining of personalized mapping functions.

1 INTRODUCTION

Domain transfer has long captured the imagination of inventors and artists alike. The early pre-
cursor of the phonograph, the phonautograph, was actually inspired by the idea of ”words which
write themselves”, where the shape of audio waveforms would transform into the shape of writing,
capturing the content and character of the speaker’s voice in shape and stroke of the written char-
acters (Feaster, 2009). While perhaps fanciful at the time, modern deep learning techniques have
shown similar complex transformations are indeed possible.

Deep learning enables domain transfer by learning a smooth mapping between two domains such
that the variations in one domain are reflected in the other. This has been demonstrated to great
effect within a data modality, for example transferring between two different styles of image (Isola
et al., 2016; Zhu et al., 2017; Li et al., 2018; Li, 2018), video (Wang et al., 2018) and music (Mor
et al., 2018). The works have been the basis of interesting creative tools, as small intuitive changes
in the source domain are reflected by small intuitive changes in the target domain. Furthermore, the
strong conditioning signal of the source domain makes learning transformations easier than learning
a full generative model in each domain.

Despite these successes, this line of work in domain transfer has several limitations. The first limi-
tation is that it requires that two domains should be closely related (e.g. image-to-image or video-
to-video). This allows the model to focus on transferring local properties like texture and coloring
instead of high-level semantics. For example, directly applying these image-to-image transfer such
as CycleGAN (Zhu et al., 2017) or its variants to images from distant domains leads to distorted and
unrealistic results (Li et al., 2018). This agrees with the findings of Chu et al. (2017) who show that
CycleGAN transformations are more akin to adversarial examples than style transfer, as the model
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Figure 1: Architecture and training. Our method aims at transfer from one domain to another domain
such that the correct semantics (e.g., label) is maintained across domains and local changes in the
source domain should be reflected in the target domain. To achieve this, we train a model to transfer
between the latent spaces of pre-trained generative models on source and target domains. (a) The
training is done with three types of loss functions: (1) The VAE ELBO losses to encourage modeling
of z1 and z2, which are denoted as L2 and KL in the figure. (2) The Sliced Wasserstein Distance
loss to encourage cross-domain overlapping in the shared latent space, which is denoted as SWD. (3)
The classification loss to encourage intra-class overlap in the shared latent space, which is denoted as
Classifier. The training is semi-supervised, since (1) and (2) requires no supervision (classes) while
only (3) needs such information. (b) To transfer data from one domain x1 (an image of digit “0”) to
another domain x2 (an audio of human saying “zero”, shown in form of spectrum in the example),
we first encode x1 to z1 ∼ q(z1|x1), which we then further encode to a shared latent vector z′ using
our conditional encoder, z′ ∼ q(z′|z1, D = 1), where D donates the operating domain. We then
decode to the latent space of the target domain z2 = g(z|z′, D = 2) using our conditional decoder,
which finally is used to generate the transferred audio x2 = g(x2|z2).

learns to hide information about the source domain in near-imperceptible high-frequency variations
of the target domain.

The second limitation is data efficiency. Most conditional GAN techniques, such as Pix2Pix (Isola
et al., 2016) and vid2vid (Wang et al., 2018), require very dense supervision from large volumes of
paired data. This is usually accomplished by extracting features, such as edges or a segmentation
map, and then training the conditional GAN to learn the inverse mapping back to pixels. For many
more interesting transformations, no such easy alignment procedure exists, and paired data is scarce.
We demonstrate the limitation of existing approaches in Appendix C.

For multi-modal domain transfer, we seek to train a model capable of transferring instances from a
source domain (x1) to a target domain (x2), such that local variations in source domain are trans-
ferred to local variations in the target domain. We refer to this property as locality. Thus, local
interpolation in the source domain would ideally be similar to local interpolation in target domain
when transferred.

There are many possible ways that two domains could align such that they maintain locality, with
many different alignments of semantic attributes. For instance, for a limited dataset, there is no a
priori reason that images of the digit “0” and spoken utterances of the digit “0” would align with each
other. Or more abstractly, there may be no agreed common semantics for images of landscapes and
passages of music, and it is at the liberty of the user to define such connections based on their own
intent. Our goal in modeling is to respect the user’s intent and make sure that the correct semantics
(e.g., labels) are shared between the two domains after transfer. We refer to this property as semantic
alignment. A user can thus sort a set of data points from in each domain into common bins, which
we can use to constrain the cross-domain alignment. We can quantitatively measure the degree of
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semantic alignment by using a classifier to label transformed data and measuring the percentage of
data points that fall into the same bin for the source and target domain. Our goal can thus be stated
as learning transformations that preserve locality and semantic alignment, while requiring as few
labels from a user as possible.

To achieve this goal and tackle prior limitations, we propose to abstract the domain domains with
independent latent variable models, and then learn to transfer between the latent spaces of those
models. Our main contributions include:

• We propose a shared ”bridging” VAE to transfer between latent generative models. Locality
and semantic alignment of transformations are encouraged by applying a sliced-wasserstein
distance, and a classification loss respectively to the shared latent space.

• We demonstrate with qualitative and quantitative results that our proposed method enables
transfer both within a modality (image-to-image) and between modalities (image-to-audio).

• Since we training a smaller secondary model in latent space, we find improvements in
training efficiency, measured by both in terms of the amount of required labeled data and
well training time.

2 METHOD

Figure 1 diagrams our hierarchical approach. We first independently pre-train separate generative
models, either a VAE or GAN, for both the source and target domain. For VAEs, data is encoded
from the data domain to the latent space through a learned encoding function z ∼ q(z|x), and
decoded back to the data space with a decoder function x̂ ∼ g(x|z). For GANs, we choose latent
samples from a spherical Gaussian prior z ∼ p(z) and then use rejection sampling to only select
latent samples whose associated data x = g(z) is classified with high confidence by an auxiliary
classifier.

We then add the bridging conditional VAE with shared weights, tasked with modeling both latent
spaces z1, z2. The VAE has a single shared latent space z′, that corresponds to both domains. Shar-
ing the weights encourages the model to seek common structures between the latent domains, but
we also find it helpful to condition both the encoder qshared(z′|z,D) and decoder gshared(z|z′, D),
with an additional one-hot domain label,D, to allow the model some flexibility to adapt to variations
particular to each domain. While the low-level VAEs have a spherical Gaussian prior, we penalize
the KL-Divergence to be less than 1, allowing the models to achieve better reconstructions and retain
some structure of the original dataset for the bridging VAE to model. Full architectural and training
details can be found in the Appendix.

The conditional bridging VAE objective consists of three types of loss loss terms:

1. Evidence Lower Bound (ELBO). Standard value that is maximized for training a VAE.
For each domain d ∈ {1, 2},

LELBO
d = −Ez′∼Z′

d
[log π(zd; g(z′, D = d)] + βKLDKL (q(z′|zd, D = d)‖p(z′))

where the likelihood π(z; g) is a spherical Gaussian N (z; g, σ2I), and σ and βKL are hy-
perparmeters set to 1 and 0.1 respectively to encourage reconstruction accuracy.

2. Sliced Wasserstein Distance (SWD) (Bonneel et al., 2015). The distribution distance
between mini-batches of samples from each domain in the shared latent space (z′1, z

′
2).

LSWD = 1/|Ω|
∑
ω∈Ω

W 2
2 (proj(z′1, ω),proj(z′2, ω))

where Ω is a set of random unit vectors, proj(A, a) is the projection of A on vector a, and
W 2

2 (A,B) is the quadratic Wasserstein distance.
3. Classification Loss (Cls). For each domain d ∈ {1, 2}, we enforce semantic alignment

with attribute labels y and a classification loss in the shared latent space:

LCls
d = Ez′∈Z′

d
H(f(z′), y)

where H is the cross entropy loss, f(z′) is a one-layer linear classifier.
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Figure 2: Synthetic data to demonstrate latent transformations. Both the low-level latent spaces and
the shared latent space are two dimensional. Best viewed in color. (a) Synthetic data. The left red
eclipse denotes the domain 1, while the right green eclipse denotes domain 2. The color gradient
denotes the continuity of local changes. There are two classes, A (denoted as dots) and B (denoted
as crosses), for both domains. Also note that for domain 1, label A and B are arranged up-and-
down, while for domain 2 they are left-and-right. This is intentionally designed to force the model
to learn a rotation instead of “cheating” by squeezing the shape of ellipses. (b) Reconstructions
using shared VAE. (c) Domain 1 transferred to domain 2. Note that the transfer correctly handles
classes as well as continuity of local changes (d) Domain 2 transferred to domain 1. Observation
is similar to (c). (e) The shared latent space where the blue line is the decision boundary of the
classifier. Here, the points from both domains are overlapping, class-separated, spread evenly, and
maintain the continuity of color gradient.

Including terms for both domains, the total training loss is then

L = (LELBO
1 + LELBO

2 ) + βSWDLSWD + βCls(LCls
1 + LCls

2 )

Where βSWD and βCls are scalar loss weights. The transfer procedure is illustrated Figure 2 us-
ing synthetic data. For reconstructions, data x1 is passed through two encoders, z1 ∼ q(z1|x1),
z′ ∼ qshared(z′|z1, D = 1), are reconstructed through two decoders, ẑ1 ∼ gshared(ẑ1|z′, D = 1),
x̂1 ∼ g(x̂1|ẑ1). For transformations, the encoding is the same, but decoding uses decoders (and con-
ditioning) from the second domain, ẑ2 ∼ gshared(ẑ2|z′, D = 2), x̂2 ∼ g(x̂2|ẑ2). Further analysis of
this example and intuition behind loss terms is summarized in Figure 2 and detailed in Appendix A.

3 RELATED WORK

We discuss two aspects of existing research focuses that are related to our work, followed by how
our work differentiates itself from them in order to deal with the challenge identified in this paper.

Latent Generative Models: Deep latent generative models are usually constructed to transfer a
simple, tractable distribution p(z) into the approximation of population distribution p∗(x), through
an expressive neural network function. Such models include VAE (Kingma & Welling, 2013) and
GAN (Goodfellow et al., 2014). GANs are trained with an accompany classifier that attempts to
distinguish between samples from the decoder and the true dataset. VAEs, in contrast, are trained
with an encoder distribution q(z|x) as an approximation to the posterior p(z|x) using variational
approximation through the use of evidence lower bound (ELBO). These classes of models have
been thoroughly investigated in many applications and variants (Gulrajani et al., 2017; Li et al.,
2017; Bikowski et al., 2018) including conditional generation (Mirza & Osindero, 2014), generation
of one domain conditioned on another (Dai et al., 2017; Reed et al., 2016), generation of high-quality
images (Karras et al., 2018) and long-range structure in music (Roberts et al., 2018). In terms of
overall VAE structure, Zhao et al. (2017) studies options to build hierarchical VAEs.

4



Under review as a conference paper at ICLR 2019

Domain Transfer: The domain transfer enables transfer between images (Isola et al., 2016; Zhu
et al., 2017; Li et al., 2018; Li, 2018), audio (Mor et al., 2018) and video (Wang et al., 2018),
intuitively mapping between two domains where the variations in one domain should be reflected
in the other. Besides visually appealing results, domain transfer also enables application such as
image colorization Zhang et al. (2017). Domain transfer is also proposed to be done through jointly
training of generative models (Lu, 2018). Also, the behavior of domain transfer models also attracts
attention. For example, Chu et al. (2017) suggests that image transfer does only local, texture level
transfer.

To enable transfer between possibly drastically different domains, Our work proposes to use VAE in
modeling the latent space of pre-trained generative models, in several aspects differentiating itself
from related work. Generally, the modeling of latent space is different from modeling directly the
data domains as most of latent generative models naturally do, also, the transfer in a more abstract
semantics and between heterogeneous domains differs from most domain transfer method which
focusing on locality and similar domains.

More specifically, regarding modeling latent spaces, Zhao et al. (2017) suggests training a hierarchi-
cal VAE on a single domain should be done end-to-end, whose extension to multiple domains seems
non-trivial and likely to suffer from data efficient issues. Instead, our proposed work, though en-
abling separation of pre-trained model and conditional shared VAE, apply to domain transfer setting
while overcoming this shortcoming. Moreover, regarding shared latent space, Liu et al. (2017) pro-
poses to use shared latent space for two generative models on data domains. It requires joint training
of generative models on both domains using dense supervision which is infeasible for drastically
different domains. Our work that leverages pre-trained generative model and model the latent space
instead of data domains addresses to this limitation.

4 EXPERIMENTS

4.1 DATASETS

While the end goal of our method is to enable creative mapping between datasets with arbitrary
alignments, for quantitative studies we restrict ourselves to three domains where there exist a some-
what natural alignment to compare against:

1. MNIST (LeCun, 1998), which contains images of hand-written digits of 10 classes from
“0” to “9”.

2. Fashion MNIST (Xiao et al., 2017), which contains fashion related objects such as shoes, t-
shirts, categorized into 10 classes. The structure of data and the size of images are identical
to MNIST.

3. SC09, a subset of Speech Commands Dataset 1, which contains the record of audio of
humans saying digits from “0” to “’9”.

For MNIST and Fashion MNIST, we prepare VAE with MLP encoder and decoder following setting
up in Engel et al. (2018). More specifically, we use stacks of fully-connected linear layers activated
by ReLU, together with a “Gated Mixing Layer”. The full network architecture of the bridging
VAE is detailed in Appendix B. For SC09 we use the publicly available WaveGAN (Donahue et al.,
2018)2. We would like to emphasize that we only use class level supervision for enforcing semantic
alignment with the latent classifier.

We examine three scenarios of domain transfer:

1. MNIST ↔ MNIST. We first train two lower-level VAEs from different initial conditions.
The bridging autoencoder is then tasked with transferring between latent spaces while
maintaining the digit class from source to target.

2. MNIST↔ Fashion MNIST. In this scenario, we specify a global one-to-one mapping be-
tween 10 digit classes and 10 fashion object classes (See Table 6 in Appendix for details).

1Available at https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.
html. License: https://creativecommons.org/licenses/by/4.0/

2Available at https://github.com/chrisdonahue/wavegan
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The bridging autoencoder is tasked with preserving this mapping as it transfers between
images of digits and clothing.

3. MNIST↔ SC09. For the speech dataset, we first train a GAN to generate audio waveforms
(Donahue et al., 2018) of spoken digits. We chose to use a WaveGAN because we wanted
a global latent variable for the full waveform (as opposed to a distributed latent code as in
Engel et al. (2017)). It also gives us an opportunity to explore transferring between different
classes of models. The bridging autoencoder is then tasked with transferring between a
VAE of written digits and a GAN of spoken digits.

4.2 RECONSTRUCTION AND DOMAIN TRANSFER

For reconstructions and domain transfer, we present both qualitative and quantitative results. Quan-
titative measurements of semantic alignment are performed with pre-trained classifiers in each data
domain. Given that the datasets have pre-aligned classes, when evaluating transferring from data xd1

to xd2
, the reported accuracy is the portion of instances that xd1

and xd2
have the same predicted

class.

Qualitative reconstruction results are shown in Figure 3 and the quantitative reconstruction accu-
racies are given in Table 1. For domain transfer, qualitative results are shown in Figure 4 and the
quantitative transfer accuracies are given in Table 2. 3

For both reconstruction and domain transfer, we see very good semantic alignment in the MNIST
→ MNIST and MNIST → Fashion MNIST, and reasonably good alignment in MNIST → SC09.
The lower performance on SC09 is likely due to the comparatively poor performance of the base
generative model, and would improve with a better audio generation model. For reference, the
WaveGAN has to model a much larger signal than the MNIST VAEs (16000 dimensions vs. 768
dimensions).

Figure 3: Qualitative Results for Reconstruction. Images are divided into three groups, representing
MNIST, Fashion MNIST and SC09 reconstruction respectively from left to right. Specifically, for
SC09 we show the log magnitude spectrum of the audio. Within each group, the left is the original
and the right is the reconstruction. We see that the bridging autoencoder is able to archive high-
quality reconstructions for MNIST and Fashion MNIST, and reasonable reconstructions for SC09.

Data Domain MNIST Fashion MNIST SC09

Accuracy 0.989 0.903 0.739

Table 1: Reconstruction Accuracy, for MNIST, Fashion MNIST and SC09 reconstruction respec-
tively. The lower reconstruction accuracies of SC09 are due to the problem domain being much
harder (16000 dimensions vs. 768 dimensions), and less well-modeled by the pre-trained GAN than
the other domains are by the pre-trained VAEs.
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Figure 4: Qualitative Results for Domain Transfer. Images are divided into three groups, repre-
senting MNIST↔MNIST , MNIST↔ Fashion MNIST and MNIST↔ SC09 transfer respectively
from left to right. Within each group, on the left is the data in the source domain and on the right is
the data in the target domain. We see that transfer maintains the label, yet still maintains diversity
of samples, reflecting the transfer of a broad range of attributes.

Transfer MNIST→ MNIST→ Fashion MNIST MNIST SC09→
MNIST Fashion MNIST →MNIST → SC09 MNIST

Pix2Pix(Isola et al., 2016) - 0.773 0.084 × ×
CycleGAN (Zhu et al., 2017) - 0.075 0.132 × ×

This work 0.98 0.945 0.890 0.670 0.982

Table 2: Domain Transfer Accuracy for MNIST ↔ MNIST , MNIST ↔ Fashion MNIST and
MNIST↔ SC09 transfer respectively. We compare to pre-existing approaches trained on raw-pixels
for MNIST ↔ Fashion MNIST only, MNIST → MNIST involves transferring between pretrained
models with different initial conditions which is not directly comparable, and in MNIST→ SC09,
the two data domains were too distinct to provide any reasonable transfer with existing methods.
Further comparisons can be found in Appendix C.

4.3 INTERPOLATION

Interpolation can act as a good proxy for locality and local smoothness of the latent transformations,
as by definition good interpolations require that small changes in the source domain are reflected by
small changes in the target domain. We show inter-class and inter-class interpolation in Figure 5 and
Figure 6 respectively. Particularly, we are interested in two comparing three rows of interpolations:
(1) the interpolation in the source domain’s latent space, which acts a baseline for smoothness of
interpolation for a pre-trained generative model, (2) transfer fixed points to the target domain’s latent
space and interpolate in that space, and (3) transfer all points of the source interpolation to the target
domain’s latent space, which shows how the transferring warps the latent space. We use spherical
interpolation (e.g.,

√
pv1 +

√
(1− p)v2)since we are interpolating in the Gaussian latent space.

Note in Figure 5 that the second and third rows have comparably smooth trajectories, reflecting that
locality has been preserved. For inter-class interpolation in Figure 5 interpolation is smooth within a
class, but between classes the second row blurs pixels to create blurry combinations of digits, while
the full transformation in the third row makes sudden transitions between classes. This is expected
from our training procedure as the bridging autoencoder is modeling the marginal posterior of each
latent space, and thus always stays on the manifold of the actual data during interpolation.

4.4 DATA AND COMPUTATION EFFICIENCY, AND ABLATION ANALYSIS

Since our method is a semi-supervised method, we want to know how effectively our method lever-
ages the labeled data. In Table 3 we show for the MNIST→MNIST setting the performance mea-
sured by transfer accuracy with respect to the number of labeled data points. Labels are distributed

3In Figure 3 and 4 we show the spectrum of audio samples for demonstration purpose. The corresponding
audio samples themselves are available here: https://drive.google.com/drive/u/8/folders/
12u6fKvg0St6gjQ_c2bThX9B2KRJb7Cvk
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Figure 5: Intra-class Interpolation. Interpolations are divided into three groups, representing MNIST
→ MNIST , MNIST → Fashion MNIST and MNIST → SC09 transfer respectively from top to
bottom. Images in a red square are fixed points in the interpolations, which means interpolation
happens between two neighboring fixed points. In each group, there are three rows of interpolations:
(1) Interpolate in source domain between fixed data points, (2) Transfer fixed data points in source
domain to target domain and interpolate between transferred fixed points there, (3) Transfer all
points in first row to the target domain. Note that in this intra-class setting, transferring preserves
the smoothness of data when interpolating within one class.

Figure 6: Inter-class Interpolation. The arrangement of images is the same as Figure 5, except that
interpolation now happens between classes. It can be shown that, unlike regular generative model
(row 1 and row 2 in each group) that exhibits pixel (data) level interpolation, especially the blurriness
and distortion half way between instances of different labels, our proposed transfer (row 3) resorts
to produce high-quality, in-domain data. This is an expected behavior since our proposed method
learns to model the marginalized posterior of data distribution.

evenly among classes. The accuracy of transformations grows monotonically with the number of
labels and reaches over 50% with as few as 10 labels per a class. Without labels, we also observe
accuracies greater than chance due to unsupervised alignment introduced by the SWD penalty in the
shared latent space.
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# Supervised 0 10 100 1000 10000 60000

Accuracy 0.1390 0.339 0.524 0.6810 0.898 0.980

Table 3: MNIST→ MNIST transfer accuracy as a function of labeled data points. The supervised
data points are split evenly among all 10 classes.

Besides data efficiency, pre-training the base generative models has computational advantages. For
large generative models that take weeks to train, it would be infeasible to retrain the entire model for
each new cross-domain mapping. The bridging autoencoder avoids this cost by only retraining the
latent transfer mappings. As an example from these experiments, training the bridging autoencoder
for MNIST↔ SC09 takes about one hour on a single GPU, while retraining the SC09 WaveGAN
takes around four days.

Finally, we perform an ablation study to confirm the benefits of each architecture component to
transfer accuracy. For consistency, we stick to the MNIST → MNIST setting with fully labeled
data. In Table 4, we see that the largest contribution to performance is the giving the bridging VAE
a domain conditioning signal, allowing it to share weights between domains, but also adapt to the
specific structure of each domain. Further, the increased overlap in the shared latent space induced
by the SWD penalty is reflected in the greater transfer accuracies.

Data Domain Vanilla, Unconditional VAE Conditional VAE Conditional VAE + SWD

Accuracy 0.149 0.849 0.980

Table 4: Ablation study of MNIST→MNIST transfer accuracies.

5 CONCLUSION

We have demonstrated an approach to learn mappings between disparate domains by bridging the
latent codes of each domain with a shared autoencoder. We find bridging VAEs are able to achieve
high transfer accuracies, smoothly map interpolations between domains, and even connect different
model types (VAEs and GANs). Here, we have restricted ourselves to datasets with intuitive class-
level mappings for the purpose of quantitative comparisons, however, there are many interesting
creative possibilities to apply these techniques between domains without a clear semantic alignment.
As a semi-supervised technique, we have shown bridging autoencoders to require less supervised
labels, making it more feasible to learn personalized cross-modal domain transfer based on the
creative guidance of individual users.
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APPENDIX A TRAINING TARGET DESIGN

We want to archive following three goals for the proposed VAE for latent spaces:

1. It should be able to model the latent space of both domains, including modeling local
changes as well.

2. It should encode two latent spaces in a way to enable domain transferability. This means
encoded z1 and z2 in the shared latent space should occupy overlapped spaces.

3. The transfer should be kept in the same class. That means, regardless of domain, zs for the
same class should occupy overlapped spaces.

With these goals in mind, we propose to use an optimization target composing of three kinds of
losses. In the following text for notational convenience, we denote approximated posterior Z ′d ,
q(z′|zd, D = d), zd ∼ q(zd|xd), xd ∼ p(xd) for d ∈ {1, 2}, the process of sampling z′d from
domain d.

1. Modeling two latent spaces with local changes. VAEs are often used to model data with local
changes in mind, usually demonstrated with smooth interpolation, and we believe this property also
applies when modeling the latent space of data. Consider for each domain d ∈ {1, 2}, the VAE is fit
to data to maximize the ELBO (Evidence Lower Bound)

LELBO
d = Ez′∼Z′

d
[log π(zd; g(z′, D = d)]− βKLDKL (q(z′|zd, D = d)‖p(z′))

where both q and g are fit to maximize LELBO
d . Notably, the latent space zs are continuous, so we

choose the likelihood π(z; g) to be the product ofN (z; g, σ2I), where we set σ to be a constant that
effectively sets log π(z; g) = ||z − g||2, which is the L2 loss in Figure 1 (a). Also, DKL is denoted
as KL loss in Figure 1 (a).

2. Cross-domain overlapping in shared latent space. Formally, we propose to measure the
cross-domain overlapping through the distance between following two distributions as a proxy: the
distribution of z′ from source domain (e.g., z′1 ∼ Z ′1) and that from the target domain (e.g., z′2 ∼ Z ′1).
We use Wasserstein Distance (Arjovsky et al., 2017) to measure the distance of two sets of samples
(this notion straightforwardly applies to the mini-batch setting) S′1 and S′2, where S′1 is sampled from
the source domain z′1 ∼ Z ′1 and S′1 from the target domain z′2 ∼ Z ′d. For computational efficiency
and inspired by Deshpande et al. (2018), we use SWD, or Sliced Wasserstein Distance (Bonneel
et al., 2015) between S′1 and S′2 as a loss term to encourage cross-domain overlapping in shared
latent space. This means in practice we introduce the loss term

LSWD =
1

|Ω|
∑
ω∈Ω

W 2
2 (proj(S′1, ω),proj(S′2, ω))

where Ω is a set of random unit vectors, proj(A, a) is the projection ofA on vector a, andW 2
2 (A,B)

is the quadratic Wasserstein distance, which in the one-dimensional case can be easily solved by
monotonically pairing points in A and B, as proven in Deshpande et al. (2018).

3. Intra-class overlapping in shared latent space. We want that regardless of domain, zs for
the same class should occupy overlapped spaces, so that instance of a particular class should retain
its label through the transferring. We therefore introduce the following loss term for both domain
d ∈ {1, 2}

LCls
d = Ez′∈Z′

d
H(f(z′), lx′)

where H is the cross entropy loss, f(z′) is a one-layer linear classifier, and lx′ is the one-hot repre-
sentation of label of x′ where x′ is the data associated with z′. We intentionally make classifier f as
simple as possible in order to encourage more capacity in the VAE instead of the classifier. Notably,
unlike previous two categories of losses that are unsupervised, this loss requires labels and is thus
supervised.

In Figure 7 we show the intuition to design and the contribution to performance from each loss
terms.
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(a)                                 (b)                                   (c)                                 (d)                                  (e)

(1)

(2)

(3)

(4)

Figure 7: Synthetic data to demonstrate the transfer between 2-D latent spaces with 2-D shared latent
space. Better viewed with color and magnifier. Columns (a) - (e) are synthetic data in latent space,
reconstructed latent space points using VAE, domain 1 transferred to domain 2, domain 2 transferred
to domain 1, shared latent space, respectively, follow the same arrangement as Figure 2. Each row
represent a combination of our proposed components as follows: (1) Regular, unconditional VAE.
Here transfer fails and the shared latent space are divided into region for two domains. (2) Condi-
tional VAE. Here exists an overlapped shared latent space. However the shared latent space are not
mixed well. (3) Conditional VAE + SWD. Here the shared latent space are well mixed, preserving
the local changes across domain transfer. (4) Conditional + SWD + Classification. This is the best
scenario that enables both domain transfer and class preservation as well as local changes. It is
also highlighted in Figure 2. An overall observation is that each proposed component contributes
positively to the performance in this synthetic data, which serves as a motivation for our decision to
include all of them.

APPENDIX B MODEL ARCHITECTURE

The model architecture of our proposed VAE is illustrated in Figure B. The model relies on Gated
Mixing Layers, or GML. We find empirically that GML improves performance by a large margin
than linear layers, for which we hypothesize that this is because both the latent space (z1, z2) and
the shared latent space z′ are Gaussian space, GML helps optimization by starting with a good
initialization. We also explore other popular network components such as residual network and
batch normalization, but find that they are not providing performance improvements. Also, the
condition is fed to encoder and decoder as a 2-length one hot vector indicating one of two domains.

For all settings, we use the dimension of shared latent space 100, βSWD = 1.0 and βCLs = 0.05,

Specifically, for MNIST↔MNIST and MNIST↔ Fashion MNIST, we use the dimension of shared
latent space 8, 4 layers of FC (fully connected layers) of size 512 with ReLU, βKL = 0.05, βSWD =
1.0 and βCLs = 0.05; while for MNIST↔ SC09, we use the dimension of shared latent space 16,
8 layers of FC (fully connected layers) of size 1024 with ReLU βKL = 0.01, βSWD = 3.0 and
βCLs = 0.3. The difference is due to that GAN does not provide posterior, so the latent space points
estimated by the classifier is much harder to model.

For optimization, we use Adam optimizer(Kingma & Ba, 2014) with learning rate 0.001, beta1 =
0.9 and beta2 = 0.999. We train 50000 batches with batch size 128. We do not employ any other
tricks for VAE training.
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(a) Gated Mixing Layer
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(b) Conditional VAE

Figure 8: Model Architecture for our Conditional VAE. (a) Gated Mixing Layer, or GML, as an
important building component. (b) Our conditional VAE with GML.

APPENDIX C COMPARISON TO EXISTING APPROACHES

We compare our results with two existing approaches, Pix2Pix (Isola et al., 2016) on the left and
CycleGAN (Zhu et al., 2017) on the right, on the same MNIST↔ Fashion MNIST transfer settings
used in Figured 4. We show qualitative results from applying Pix2Pix and CycleGAN in Figure 9,
which can be compared with Figured 4, as well as quantitative results in Table 5. Both qualitative and
quantitative results shows the limitation of existing methods and our proposed approach’s advantage
over them.

Figure 9: Qualitative results from applying Pix2Pix (Isola et al., 2016) on the left and Cycle-
GAN (Zhu et al., 2017) on the right, on the same settings used in Figured 4. Visually, both ex-
isting transfer approaches suffer from less desirable overall visual quality and less diversity in local
changes, compared to our proposed approach. Particularly, Pix2Pix more or less makes semantic
labels correct but suffers from mode collapses in each label, while CycleGAN has slightly better
quality but suffers from label collapse, which is observable here that most of digits are transferred
to Dress and leads to bad transfer accuracy.
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Method Transfer Accuarcy FID (Fréchet Inception Distance)

Pix2Pix(Isola et al., 2016) 0.773 0.0786
CycleGAN (Zhu et al., 2017) 0.075 0.3333
This work 0.945 0.0055

Table 5: Quantitative results of methods using Transfer Accuracy and Fréchet Inception Distance
(FID). Transfer Accuracy is calculated using the same protocol as Table 2 where a higher value
indicates the better performance, while FID is computed using the activation of the classifier on the
target domain (Fashion MNIST) where a lower value indicates a better image quality. Quantitatively
both existing methods perform worse than our proposed method. Here Pix2Pix more or less makes
semantic labels correct but still suffers from lower accuracy and image quality. while CycleGAN
suffers from label collapse, which leads to an even lower transfer accuracy and FID.

APPENDIX D SUPPLEMENTARY FIGURES

MNIST Digits Fashion MNIST Class

0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Table 6: MNIST Digits to Fashion MNIST class Mapping. This mapping is made ac-
cording to Labels information available at https://github.com/zalandoresearch/
fashion-mnist
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