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Abstract. We introduce a simulation model for cell-nuclei in immuno-
histology that is enhanced by a cycle-consistent adversarial network to
construct realistic virtual ground-truth data. This model is applied to the
task of cell-nuclei detection in immunohistologically stained whole-slide
images (WSI) and achieves a standalone median performance of 83.1%
F1-score learning purely from synthetic annotations. We thoroughly eval-
uate different training scenarios with varying contributions of manual
labels. It is shown that through the simulation model, the amount of
required annotations can significantly be reduced without major perfor-
mance losses. If only limited amounts of annotations are available, the
simulation can lead to a stabilization in the detection of immune-cells.
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1 Motivation

Quantification of immunological markers is a frequent and important task in the
analysis of digital microscopic images in histopathology. The detection of immune
cell lineages or activation markers relies on specific diagnostic antibodies that
are conjugated with chromogenic or fluorescent labels for microscopic analysis.
With advances in digital pathology, cell counting can be automated to a large
extent, supporting medical personnel by taking over time-consuming tasks such
as large-scale quantification of microscopic image objects.

In recent research, numerous cell-nuclei detection and segmentation methods
were presented [1, 4, 3, 6, 8, 9], with strong focus on hematoxylin and eosin (HE)
stains. In the HE stain, cell-nuclei appear purple while the surrounding tissue
is stained in pink. Immunohistochemically (IHC) stained images are different in
appearance, since the antibodies used in this stain may bind the stain to a cell
component other than the nucleus. In practice, analysis of specific binding to
the cell-nucleus, cytoplasm or the cell membrane are relevant characteristics, see
Figure 1 for an example from the dataset.

Algorithms built on destaining and blob-detection [1, 4] also perform well for
cell-nuclei bound components, but fail to reliably detect cytoplasm and mem-
brane bound stains. In this work, we address the challenging problem of IHC



Fig. 1. Example of the binding characteristics in IHC stains. Ground-truth immune
cells are denoted as green ’+’ and normal cell nuclei as blue ’x’ (best viewed digital).

analysis of cytoplasm and membrane-binding stains by building a state-of-the-
art deep learning pipeline and evaluating different training scenarios with a focus
on the amount of annotations required. As the availability of labeled data often
constitutes a limitation in medical image analysis, we aim at reducing the re-
quired amount of labels and incorporate synthetic ground-truth data from our
developed simulation model. A manually defined basic simulation is improved
by data driven enhancement using a Cycle-Consistent Generative-Adversarial
Network (CycleGAN, [10]), which emerged as the state-of-the-art for unpaired
image- and domain-translation. The lack of pairing is a double-edged sword: it
enables training on nearly arbitrary image sets, but does not provide defined cor-
respondence for the mapping. For example, [2] deployed a CycleGAN to translate
different histological stains into a reference stain for a universal segmentation
algorithm and added an L1 loss to guide the initial phase of the training. In [5],
a set of multiple CycleGANs has been employed to translate between a ground-
truth domain (binary masks) and multiple organ domains for an organ-agnostic
segmentation of nuclei in the HE stain. Contrary to our work, detection prob-
lems in HE lack the sub-classes of IHC stains that have to be reflected in the
synthetic ground-truth generation, adding complexity to our task. Sub-classes
enable various ways in which a CycleGAN can translate an image such that it
appears valid for its domain, but does not reflect a corresponding ground-truth.

Contribution: We define a basic simulation model that can be enhanced
by a CycleGAN for data augmentation in the training of a detection network.
As unpaired image translations are not bound to form correspondences to the
domain of origin, we formulate a transform-consistency loss to ensure a ground-
truth correspondence. Furthermore, we evaluate different settings that consider
training with purely synthetic ground-truth and compare this to scenarios that
incorporate expert labels to varying extent.

In the title of this work, we refer to scenarios that exclusively rely on synthetic
data as unsupervised, because no expert labels are used in training. Supervised
then refers to scenarios that incorporate expert labels and thereby human su-
pervision.

2 Method

A simulation model is a simple way to increase the amount of training data,
thereby encouraging the network to learn certain useful data aspects. A brightfield-



Fig. 2. From left to right: samples from the basic simulation, the synthetic ground-
truth, the proposed CycleGAN-enhanced simulation with transform-consistency loss,
and examples from a training with a standard MSE loss instead of the transform-
consistency loss. The ground-truth shows the segmentation contour in green, all cell
nuclei in red and immune cells in magenta.

microscopic image is constructed as follows: The background is simulated by
iteratively adding shot-noise and applying a strong Gaussian blur to an average-
white background. Between iterations, the image is normalized and clipped to
ensure valid intensity ranges. We then place nuclei objects on this background
at positions from a randomized grid using varying opacities to simulate differ-
ent z-planes of the nuclei. A nucleus is modeled as circular object of blue color
with a random radius sampled from a uniform distribution. The nucleus object
is modified by random transforms to stretch and rotate it resulting in an arbi-
trarily oriented ellipse. To mimic inner nuclei structures, noise is added inside
the ellipse. If an immune-cell is generated, a morphological gradient contour on
the boundary is colorized in brown. Furthermore, we deploy the random elastic
deformation recommended for U-net training [7].

A corresponding ground-truth image is generated by placing a small disk at
the exact nuclei positions in the red channel (all cell-nuclei, CN) and additionally
in the blue channel (immune cell-nuclei, IC). All CN boundaries are denoted as
the morphological gradient of the simulated cell-nuclei. Pixels outside the CN
are labeled as background. We refer to this as our basic model.

Since there is no notion of artifacts included and it represents only a very
rough background model, the algorithm trained purely on the basic model op-
erates in the high-recall – low-precision range.

To further improve the appearance with respect to the simulated data, we
deploy a cycle-consistent generative-adversarial network [10] as a domain transfer
mechanism between the simulation and real data. Samples from the simulation
and its corresponding domain transfer are shown in Figure 2. For unpaired image



samples S from the simulation domain and R of the real WSI domain, the
CycleGAN model consists of four networks: the generators F : S → R and
G : R → S translate between domains, while the discriminators DS and DR

estimate the probability of a sample belonging to their respective domain. The
translation functions F,G are realized by U-nets with four down- and upsampling
stages, while the discriminators DS , DR are built repeating the pattern: conv –
instance norm – leaky ReLU repeated five times with downsampling after the
first three blocks. From the definition in [10], we obtain two GAN losses LGAN

and the cycle-consistency loss Lcyc that contribute to the training:

L = LGAN(F,DR, S,R) + LGAN(G,DS , S,R) + λLcyc(F,G).

For the details on the different CycleGAN losses, please refer to [10].
While this loss enables a translation to images of similar appearance in the

other domain, the image content may still change drastically as there is no loss
term that explicitly defines a correspondence of structures. In consequence, the
network is capable of changing spatial relations and to some degree ’imagining’
new structures, which would be detrimental for an augmentation utilizing a
synthetic ground-truth. This is not trivial to solve, as an additive pseudo-pairing
by an MSE loss, see the last column in Figure 2, still results in major artifacts in
the target domain. Thus, we contribute an additive transform-consistency loss
LT to enforce the image objects to remain in place and limit the changes to
textural and color appearance:

LT = αMSElog(F (S), R) + βMSElog(G(R), S),

where MSElog is the mean-squared-error computed from its logarithmic argu-
ments and the hyperparameters α, β are loss weights. The logarithm is a design-
choice to emphasize signals in brightfield microscopy, as cell-nuclei intensities
are low and the background has high values. In our experience, β can be cho-
sen constant without restriction, while a fix choice of α introduces the dilemma
of punishing a change we actually require, with little control about the conse-
quences for gradient-descent learning. Herein, the challenge is to allow a certain
amount of change for the translation, but just enough to ensure that cell-nuclei
objects appear with consistent class and location (for example, to avoid splitting
of cell-nuclei, random new objects, and object shadows). As a solution for more
control over the learning behavior, we propose a feedback that intensifies the
weight of this additional loss contribution dynamically and aims at maintaining
a reference loss:

α = max(αref +A(LT − ΦT ), αmin),

with a reference loss ΦT , reference contribution αref , minimal loss contribution
αmin, and amplification A. In this formulation, the loss fluctuates around the
reference contribution αref , which typically is in the same order of magnitude
as the other CycleGAN loss contributions. Note that LT is now computed it-
eratively, first with α = 1 then α is computed based on LT |α=1 and finally LT



is recomputed with the dynamic α value. αmin ensures a positive transform-
consistency loss contribution and should be a small positive number, in our case
αmin = 0.5 (empirically chosen). A was chosen empirically to increase the order
of magnitude for unrealistic samples by a factor of 20. This choice was based on
an initial training with small amplification, e.g A = 1, in which we monitored
output examples during training to identify unrealistic outliers and artifacts.
We observed a strong correspondence to LT for these samples, which can con-
veniently be used to select a suitable range for A. From the same observation,
ΦT can be determined from output samples of decent quality.

Applying the U-net [7] for the actual detection, we predict the location of
cell-nuclei centers, immune-cell-nuclei centers, the cell boundary and image back-
ground. Depending on the coupling properties of the stain-antibody, the predic-
tions are not necessarily mutually exclusive. For example, in nuclei-bound com-
ponents, the locations of a normal cell nucleus (CN) in hematoxylin blue and
a highlighted immune-cell (IC) in diaminobenzidine brown are mutually exclu-
sive. Membrane-bound components, however, characterize an immune-cell by a
blue CN with brown surrounding. Thus, the detection can also be considered as
multi-labeling task: CN positions with additional IC label, see magenta dots in
Figure 2 and 5. This formulation implies using sigmoid output activations.

3 Evaluation

We extracted five regions-of-interest (ROI) from each of seven immunohisto-
logically stained WSI and denoted nuclei positions and immune-cells. In total,
the ROIs contain approx. 18000 annotated cell-nuclei (CN) of which 3000 are
immune-cells (IC). On this dataset, we evaluate a slide-wise leave-one-out cross-
validation (LOOCV) and the inverse one-versus-rest cross-validation (OVRCV)
scenario to simulate a varying availability of expert annotations. As a second
degree of freedom, we evaluate the contribution of simulated data to the per-
formance, including the extreme cases of no real data and no simulated data.
Throughout the training, the number of samples per epoch and the number of
epochs are kept constant to guarantee that the respective scenario only influences
the dataset’s composition of real and synthetic data.

Performance is measured in terms of the F1-score, which requires definitions
for a true positive (TP), false positive (FP) and false negative (FN). We define
these as follows: TP means a prediction is within a 12px radius of a labeled
nucleus, FP implies a prediction is outside this radius or multiple predictions
are within the same radius, and FN means no prediction falls inside a labeled
nucleus radius.

4 Results

Focusing on the extreme case of purely synthetic ground-truth for training first,
we observe a strong increase in performance from the basic simulation to the
CycleGAN enhanced model, as seen in Figure 3.



While the basic simulation model detects CN with a median F1-score of
71.3%, the domain transfer improves the detection to a median value of 83.1%.
This is only a few percent lower than the best performance of the system using
real data, see upper Figure 4. Although the F1-score for IC nuclei remains low,
there is a notable 15% margin from the basic to the CycleGAN enhanced model.

In the LOOCV scenario without GAN augmentation (Figure 4, upper-left),
we obtain an estimate for the performance using conventional annotation-driven
training at a median value of 89.3% (CN) and 79.5% (IC). The median F1-
scores decrease slightly to 88.7% (CN) and 77.6% (IC) when training with the
CycleGAN augmentation, which is likely due to the influence of a small model
error that is introduced by the simulation.

On the other hand, the OVRCV scenario models a system trained with a
limited amount of annotations available (lower Figure 4). In this setting, the
augmentation leads to an increase of the respective median F1-scores from 84.4%
to 85.9% (CN) and from 63.9% to 67% (IC). Providing a realistic augmentation
model enables at least a basic detection of IC, increasing the median from ap-
prox. 17% to 60% in slide two and from 52% to 69% in slide three. Additionally,
it should be noted that with a slide containing numerous IC annotations, e.g. in
slides one or seven, we obtain a performance in the overall CN detection that is
close to the observed maximum, while training on only a fraction of the labels.
In Figure 5, example images of the characteristics of the U-net detector is shown
for different training conditions.

5 Discussion

Using a simulation in conjunction with an unsupervised domain transfer proved
to be a viable model for training with virtual annotations in a cell-nuclei detec-
tion problem. Our technical contribution, a very strict domain transfer loss that
controls the consistency between simulated and real-domain image, is necessary
to utilize the virtual ground-truth generated by the simulation. This drastically
reduces the workload in annotations and, in the extreme case of purely synthetic

Fig. 3. Detection performance (F1-score) of the purely synthetic training scenario,
based on the basic simulation (left) and a CycleGAN enhanced model (right). Evaluated
on manually annotated real-data including all labels from all slides.



Fig. 4. Detection results under different training scenarios including real and simu-
lated data. Upper row: leave-one-out cross-validation, lower row: one-versus-rest cross-
validation, left: without simulated data, right: including the GAN-enhanced simulation.

training, entirely removes the requirement for expert supervision from the train-
ing. For medical image analysis, a data-driven training process with large labeled
ground-truth is preferable, in practice. However, we see the strength of this ap-
proach not in an immediate application, but in a tool to quickly pre-generate
labels for an expert supervision and semi-automatic annotation. To this end, the
synthetic labeling approach facilitates rapid generation of an inital ground-truth
to train a system that can continuously be enhanced. Notably, the majority of
non-IC nuclei are detected reliably, while the more rare IC class likely requires
manual correction. However, judging from the overall occurrence of CN vs. IC
class, this already reduces the workload drastically, as there are many scenarios
with far less IC than non-IC nuclei. For scenarios with high numbers of IC, the
inclusion of representative labeled data to support the simulation model is to
prefer. In cases of underrepresentation, looking particularly at slides two and
three in lower Figure 4 (OVRCV scenario), the synthetic ground-truth can have
a stabilizing effect. Furthermore, from the samples in Figure 5, we can assume
that – despite the lack of quantitative measures – this model has the potential
to learn a segmentation of nuclei boundaries implicitly from the simulation.
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