
Under review as a conference paper at ICLR 2019

CORRECTION NETWORKS: META-LEARNING FOR
ZERO-SHOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a model that learns to perform zero-shot classification using a meta-
learner that is trained to produce a correction to the output of a previously trained
learner. The model consists of two modules: a task module that supplies an ini-
tial prediction, and a correction module that updates the initial prediction. The
task module is the learner and the correction module is the meta-learner. The cor-
rection module is trained in an episodic approach whereby many different task
modules are trained on various subsets of the total training data, with the rest be-
ing used as unseen data for the correction module. The correction module takes
as input a representation of the task module’s training data so that the predicted
correction is a function of the task module’s training data. The correction module
is trained to update the task module’s prediction to be closer to the target value.
This approach leads to state-of-the-art performance for zero-shot classification on
natural language class descriptions on the CUB and NAB datasets.

1 INTRODUCTION

The ability to solve a task without receiving training examples – zero-shot learning – is desirable.
This ability is particularly valuable when training data is limited, difficult to obtain, and/or expen-
sive. We as humans can learn new tasks from descriptions of the tasks, as we learn from reading
encyclopedia entries, manuals, handbooks, textbooks, etc. Our artificial agents should be able to do
the same. However, generalizing to novel tasks unseen during training is challenging. The agent
must integrate its previous training experience to solve the new task, without individual training
samples from the new task, while avoiding over-fitting on its previous training experience.

We propose a model that learns a correction on predictions in the zero-shot setting, based on the
training data set used to generate the initial prediction. Hence, our model is called Correction Net-
works. The meta-learner corrects for the zero-shot predictions of the learner.

The intuition for our model is that a zero-shot query sample that is different from samples in the
training data will require a different correction than a zero-shot query sample that is similar to
samples in the training data. Consider a simple classification model trained to identify different
color classes. The training dataset for this simple classification problem consists of the classes
of {yellow, green, indigo}. Let there be two zero-shot classes: pink and blue. The deviation of
predicted values from true values of pink are different, possibly larger, than deviations of predicted
values from true values of blue. These deviations would again be different if the training dataset
consisted of the classes of {white, red, purple}.
Correction Networks update the predictions based on the training data. This updated prediction is
trained to be closer to the target value than the original prediction. Correction Networks consist of
two modules: a task module that supplies an initial prediction, and a correction module that provides
a correction to the initial prediction. The task module is the learner and the correction module is
the meta-learner. The final prediction is the task module’s initial prediction combined with the
correction module’s correction. This method is illustrated in Figure 1.

The prediction of the meta-learner is used to modify the output of the learner, unlike other meta-
learning algorithms that learn to update, initialize, or optimize the learner’s weights (Finn et al.,
2017) (Ravi & Larochelle, 2017). Our approach is for zero-shot learning while previous meta-
learning approaches focus on few shot learning and require a few training samples for the new task.

1

Under review as a conference paper at ICLR 2019

Figure 1: Correction Networks consist of two modules: a task module and a correction module. The
task module produces an initial prediction. The correction module provides a correction such that
when the correction is combined with the initial prediction, the resulting prediction is better than the
initial prediction.

Another novelty is that the correction module (the meta-learner) takes as input the dataset used to
train the task module.

Correction Networks can be used for problems for which an updated prediction can be obtained
by applying a correction. Correction Networks are independent of the representation of the task
module. Existing models that provide predictions can be treated as task modules. The correction
module only need the inputs to the task module, the predictions of the task module, and the training
data of the task module. While our focus is on neural network architectures, both the task module
and correction modules can be, but needs not be, neural networks.

Training proceeds by randomly partitioning the training data D to create disjoint sets DS and DU .
In the case of zero-shot classification, the partition is done by class so that the classes inDS andDU

are disjoint. The task module is trained on DS . After the task module is trained, DU is used as the
‘zero-shot’ queries for the task module. The task module supplies initial predictions on DU . The
correction module is trained to predict the corrections that need to be applied to the task module’s
initial predictions to obtain the true values associated with DU . One novelty is that the correction
module, the meta-learner, also takes as input the dataset used to train the task module. The prediction
of the meta-learner is used to modify the output of the learner, unlike other meta-learning algorithms
that learn to update or initialize the learner’s weights (Finn et al., 2017) (Ravi & Larochelle, 2017).

We demonstrate Correction Networks on the problem of zero-shot image classification based on
natural language class descriptions. Zero-shot image classification involves classifying images into
classes that were unseen in the training data, given a natural language description of the new class.

The main contribution of this paper is a zero-shot learning model that corrects zero-shot predictions
based on training data. We demonstrate our model on zero-shot image classification with class text
descriptions. Our evaluation shows that Correction Networks compares favorably to state-of-the-art
zero-shot learning methods.

The rest of this paper is as follows: Section 2 covers related work, Section 3 describes our Correction
Network model, Section 4 summarizes the experiments and results, and Section 5 finishes with
conclusions.

2

Under review as a conference paper at ICLR 2019

2 RELATED WORKS

For zero-shot learning for images, the majority of state-of-the-art methods are embedding-based
methods. This often involves learning a mapping from the visual space to the semantic space of
class labels or vice versa. Alternatively, the embedding function between the visual and semantic
spaces is jointly learned through a latent space.

To represent the new, novel classes, hand crafted attributes are often used. The idea is that given a
defined attribute ontology, each class name can be converted to an attribute vector against which im-
age features are compared (Lampert et al., 2009) (Palatucci et al., 2009) (Farhadi et al., 2009) (Akata
et al., 2013). Attribute based embedding spaces more recently gave way to text based embeddings.
These text-based embeddings learn from a large external text corpus e.g. Wikipedia or WordNet on
a natural language task to learn word embeddings into which class names are then projected (Oquab
et al., 2014) (Socher et al., 2013) (Frome et al., 2013) (Fu et al., 2014).

Semantic representations for zero-shot classes have also been created from text documents of the
classes eg. Wikipedia articles corresponding to the class. This includes learning attribute represen-
tations from a web source by ranking the visualness of attribute candidates (Berg et al., 2010). Inter-
net sources have also been mined for semantic relatedness of attribute-class association (Rohrbach
et al., 2013). Directly measuring the compatibility between documents describing the class and vi-
sual features have also been modeled using deep learning (Zhu et al., 2018) (Ba et al., 2015) and
non-deep learning models (Elhoseiny et al., 2013) (Romera-Paredes & Torr, 2015) (Fu et al., 2015)
(Qiao et al., 2016) (Elhoseiny et al., 2017a).

A more recent strategy frames zero-shot recognition as a conventional supervised classification prob-
lem by hallucinating samples for unseen classes. Classification performance thus depends on the
quality of the hallucinated samples. Guo et al. (2017a) assumes the visual features of each class is
distributed as a Gaussian and estimates the distribution of unseen classes by linearly combining the
distributions of seen classes. Long et al. (2017) synthesizes visual data from attributes of classes
in a one-to-one mapping. Guo et al. (2017b) assigns pseudo labels to samples from seen classes.
Zhu et al. (2018) uses generative adversarial training with the generator learning to generate image
features from text and then query samples are classified based on k-nearest neighbors to labeled or
generated samples. In contrast, our approach avoids the data generation phase and instead, directly
predicts the center of classes in image feature space. Classification regions are thus defined based
on the class of the nearest class center.

Our work is similar to gradient boosting which produces a prediction model using an ensemble of
weak models, where each additional model adds an estimator to provide a better model. Unlike
gradient boosting, our approach takes in the training data used to create the initial estimate so that
the model learns how the initial estimate deviates due to the training data. While the initial learner
in gradient boosting is a weak learner, we use a strong learner.

3 CORRECTION NETWORKS

3.1 NOTATION

Let DS denote our training data and DU our testing data. DS is subdivided into disjoint sets Ds
S and

Du
S . For classification, the classes in Ds

S are disjoint from the classes in Du
S .

3.2 MODEL

Correction Networks M consists of two modules: a task module MT and a correction module MC .
The model components and their inputs and outputs are illustrated in Figure 2.

The task module MT is so-called because it is task specific and related to the application. The task
module is trained on Ds

S . The output of MT is an estimate µ̂ of a target µ. The predictions of the
task module on its training data Ds

S is µ̂s
S . Training the task module proceeds by minimizing the

distance between µ̂s
S and the ground truth µs

S . A sparsity regularization term is added to the input
layer of MT . The loss is:

LMT
= E[d(MT (T s

S), µs
S)] + α||wMT,input

||2 (1)

3

Under review as a conference paper at ICLR 2019

Figure 2: Inputs and outputs of Correction Networks demonstrated on zero-shot image classification
based on a natural language description of the zero-shot class. The task module takes as input the
natural language description of the zero-shot class and makes an initial prediction of the cluster
center of the class in image feature space. The correction module improves this initial prediction
by applying a correction, taking as input the task module’s initial prediction, training data, and the
zero-shot class description.

where T is the class text description, µ is the empirical mean of samples that belong to the class,
and d is a distance function. We use the L2 norm as the distance function.

The task module MT is not trained on Du
S nor DU . The task module’s predictions on Du

S are µ̂u
S .

Likewise, the task module’s predictions on DU are µ̂U . The correction module MC computes a
correction ε̂uS that is applied to the prediction µ̂u

S of the task module MT , where ε̂uS is calculated
based on the data used to train MT , such that the corrected prediction (µ̂u

S + ε̂uS) is closer than µ̂u
S to

the ground truth µu
S . Training the correction module proceeds by minimizing the distance between

µu
S and (µ̂u

S + ε̂uS). We use the L2 norm. The training data for the task module Ds
S is input into the

correction module by representing the training data Ds
S as an un-ordered collection of data by using

a pooling function. We use linear layers followed by sum pooling. The objective function of the
correction module is to minimize:

LMC
= E[d(MC(Tu

S), µu
S −MT (Tu

S))] (2)
We adopt the meta-learning sampling strategy for training as in Snell et al. (2017). Training data for
Correction Networks is formed by randomly selecting a subsetDs

S from the training dataDS . Then,
the task module MT , is trained on Ds

S . The remaining tasks that the task module MT does not train
on are treated as Du

S for MT . The algorithm is detailed in Algorithm 1.

To use Correction Networks for evaluation, the task module MT outputs µ̂U and the correction
network supplies ε̂U . The output of the Correction Networks is µ̄U = µ̂U + ε̂U . The evaluation
algorithm is outlined in Algorithm 2.

Correction Networks can be used for zero-shot problems for which an updated prediction can be
obtained by applying a correction. Appropriate problems are those with continuous valued outputs.
For classification, samples can be represented as continuous values in a feature space and then
classified based on the nearest class center. In our experiments, both the base network and the
Correction Network are deep neural networks.

3.3 CORRECTION NETWORKS FOR ZERO-SHOT CLASSIFICATION

In zero-shot classification, there are seen classes S available during training and unseen classes U
during evaluation, where S and U are disjoint.

We are given data DS = {(xn, yn), tm}) containing samples {xn, n = 1, ..., N} ∈ X and class
labels {yn, i = 1, ..., N, yn ∈ Y } such that yn ∈ S, along with class text descriptions {tm,m =

4

Under review as a conference paper at ICLR 2019

1, ...,M} ∈ TS where there exists exactly one tm for each class in S. For image classification, each
sample xn is an image’s features extracted from a pre-trained model. There is no textual data per
image. The only text data is tm with one text description per class.

At evaluation, we are given new class descriptions for classes in U , denoted by TU . We seek to learn
a function f to minimize the 0-1 loss between the predicted f(xi) and true class labels yi for each
sample xi where the samples and class labels can be from the new classes in U .

Correction Networks will map the class text descriptions TU to their corresponding class centers
in image feature space µ̂U . Classification of a single image is done by assigning it the class label
of the closest class center, measured by L2 distance. We subdivide the training classes S into Ss

and Su. Then, Ds
S corresponds to the data from DS that belong to the classes in Ss. Similarly,

Du
S corresponds to the data from DS that belong to the classes in Su. Training and evaluation

then proceed as described in the previous section. Correction Networks predict class cluster centers
for zero-shot classes. Individual samples are classified to the nearest class cluster center using L2
distance. For classes in the training data, the class cluster center is the empirical mean of samples
from the respective class.

In terms of implementation, both the task module and the correction module are feed-forward neural
networks consisting of linear layers, activation functions, and dropout. We found the task module
performance improves slightly when the output of the task module is fed into a classifier with a
single hidden layer that is also trained to classify samples from the task model’s training dataset.
Additional model and training details are in Appendix A.

Algorithm 1 Correction Networks training algorithm. K is the number of classes in the training
set S. S is partitioned into Ss and Su by class. TS denotes the class descriptions of classes in
S. DS is the set of individual samples of (xiyi) for the classes in the training set S. Ds

S denotes
the subset of DS containing all samples from classes in Ss. Dk is the subset of DS containing the
individual elements (xiyi) such that yi = k. MEAN is a function that returns the mean of its inputs.
OPTIMIZER is an optimizer. d is a distance function, for example, L2 distance. MT is the task
module. MC is the correction module.

1: for k in 1 to K do
2: µk ←MEAN(Dk)
3: end for
4: while not done do
5: Ss ← RANDOMSAMPLE({1, ...,K}, s)
6: Su ← {1, ...,K}\Ss

7: while MT has not finished training do
8: µ̂s

S ←MT (T s
S)

9: JMT
← d(µ̂s

S , µ
s
S) + α||wMT

||2
10: wMT

← OPTIMIZER(∇wMT
JMT

, wMT
)

11: end while
12: µ̂u

S ←MT (Tu
S)

13: ε̂uS ←MC(Tu
S , µ̂

u
S , T

s
S)

14: εuS ← µu
S − µ̂u

S
15: JMC

← d(ε̂uS , ε
u
S)

16: wMC
← OPTIMIZER(∇wMC

JMC
, wMC

)
17: end while

Algorithm 2 Correction Networks evaluation algorithm. S is the set of classes in the training set. U
is the set of zero-shot classes. TU denotes the class descriptions of zero-shot classes in U .
Require Trained MT on T s

S , trained MC

Output: Prediction µ̄U

1: µ̂U ←MT (TU)
2: ε̂←MC(TU , µ̂U , T

s
S)

3: µ̄U = µ̂U + ε̂U

5

Under review as a conference paper at ICLR 2019

Figure 3: Examples from the dataset where there is one natural language description of a class and
the goal is to classify images for new classes without training sample images for the new classes.

4 EXPERIMENTS

4.1 TASK SETUP

We demonstrate Correction Networks on fine-grained zero-shot classification based on natural lan-
guage text descriptions of the class. Fine-grained image classification is image classification when
classes are very similar. This requires the ability to distinguish between minute details and subtle
differences between classes. An example of fine-grained classification is distinguishing between
different birds that may be very similar.

Features of a class described in a text description may not be visible in all images belonging to that
class. This loss of visibility can be due to image cropping, posture, camera angle, age, and gender
of the bird, among other reasons. For example, an image shown from the front results in obfuscation
of the back. An image may only be a head shot. Other objects such as branches or leaves may also
block the object of interest. This is illustrated in Figure 5.

4.2 DATASETS

Image Data We evaluate our method on Caltech UCSD Birds 2011 (CUB) (Wah et al., 2011) and
North America Birds (NAB) (Van Horn et al., 2015). The CUB dataset contains 200 classes of birds
with a total of 11,788 images. We only use the images and their associated labels. We use a newer
version of the NAB dataset that contains 404 classes with a total of 48,562 images. Two splits were
proposed for each dataset (Elhoseiny et al., 2017b). The splits are named Super-Category-Shared
(SCS) and Super-Category-Exclusive (SCE). In the SCS split, unseen classes and seen classes share
the same parent category. In the SCE split, the parent categories are disjoint between seen and
unseen classes. The SCE splits are more difficult than the SCS splits because the unseen classes are
more different than the seen classes. Where published validation sets are not available, we create
our own validation sets by holding out part of the training set, where the classes in the validation set
are randomly sampled from among the training classes.

Visual Features The visual features are activations extracted from the FC layer of a pre-trained
detector network (Elhoseiny et al., 2017b). We use the published features from (Zhu et al., 2018).

Text Features Each class is associated with a Wikipedia article. The articles are tokenized into
words, stop words are removed, and words are reduced to their word stems. Then, the processed
text is represented by TF-IDF features. We use the published text features from (Zhu et al., 2018).
Examples of the text and images are shown in Figure 3.

6

Under review as a conference paper at ICLR 2019

Table 1: Zero-shot learning classification results accuracy @ 1 on the CUB-200-2011 dataset and
the NAB dataset using class descriptions from Wikipedia on the Super-Category-Shared (SCS) and
Super-Category-Exclusive (SCE) zero-shot splits

METHOD CUB NAB
SCS SCE SCS SCE

MCZSL (Akata et al., 2016) 34.7 - - -
WAC-Linear (Elhoseiny et al., 2013) 27.0 5.0 - -
WAC-Kernel (Elhoseiny et al., 2017a) 33.5 7.7 11.4 6.0
ESZSL (Romera-Paredes & Torr, 2015) 28.5 7.4 24.3 6.3
SJE (Akata et al., 2015) 29.9 - - -
ZSLNS (Qiao et al., 2016) 29.1 7.3 24.5 6.8
SynCfast (Changpinyo et al., 2016) 28.0 8.6 18.4 3.8
SynCOVO (Changpinyo et al., 2016) 12.5 5.9 - -
ZSLPP (Elhoseiny et al., 2017b) 37.2 9.7 30.3 8.1
GAZSL (Zhu et al., 2018) 43.7 10.3 35.6 8.6
Correction Networks 45.8 10.0 37.4 9.5

Table 2: Generalized Zero-shot learning classification area under Seen-Unseen Curve on CUB

METHOD CUB NAB
SCS SCE SCS SCE

WAC-Linear (Elhoseiny et al., 2013) 23.9 4.9 23.5 -
WAC-Kernel (Elhoseiny et al., 2017a) 22.5 5.4 0.7 2.3
SynCFast (Changpinyo et al., 2016) 13.1 4.0 2.7 0.8
ESZSL (Romera-Paredes & Torr, 2015) 18.5 4.5 9.2 2.9
ZSLNS (Qiao et al., 2016) 14.7 4.4 9.3 2.3
SynCOvO (Changpinyo et al., 2016) 1.7 1.0 0.1 -
ZSLPP (Elhoseiny et al., 2017b) 30.4 6.1 12.6 3.5
GAZSL (Zhu et al., 2018) 35.4 8.7 20.4 5.8
CorrectionNet 41.9 9.0 25.4 7.6

4.3 CONVENTIONAL ZERO-SHOT RECOGNITION

The top-1 accuracy of our method and eight state-of-the-art algorithms for the CUB and NAB
datasets for both the SCS split and the SCE split are tabulated in Table 1. The eight comparison
models are MCZSL (Akata et al., 2016), ZSLNS (Qiao et al., 2016), SJE (Akata et al., 2015), WAC
(Elhoseiny et al., 2017a), SynC (Changpinyo et al., 2016), ZSLPP (Elhoseiny et al., 2017b), and
GAZSL (Zhu et al., 2018). The performance numbers are copied from (Zhu et al., 2018). MCZSL
directly uses manual part annotations to extract visual representations. On the other hand, our ap-
proach, GAZSL, and ZSLPP merely use detected parts for both training and testing. Thus, methods
that use detected parts are expected to perform poorer than MCZSL, which uses manual parts anno-
tations. Our model performs favorably against the other models, showing a relative improvement of
up to 10% over the previous state-of-the-art. Qualitative results are shown in Figure 4 in Appendix
B.

4.4 GENERALIZED ZERO-SHOT LEARNING

The conventional zero-shot learning setting considers queries that come from unseen classesDU and
classification of queries is restricted to be among the unseen classes U . In contrast, the generalized
zero-shot learning setting classifies queries from both seen DS and unseen classes DU into S ∪ U .
A metric for generalized zero-shot learning performance is the area under the seen-unseen curve
(Chao et al., 2016). This is tabulated in Table 2 with values from competitors copied from Zhu et al.
(2018). For Correction Networks, Correction Networks is used to predict µ̂ for the unseen classes

7

Under review as a conference paper at ICLR 2019

Table 3: Effects of different components on zero-shot classification accuracy (%) on CUB SCS

METHOD CUB

Task module only 43.8
Correction module without task module’s training dataset 43.4
Correction Networks 45.8

while the empirical µ is used for the seen classes. Correction Networks consistently outperforms
previous approaches in the generalized zero-shot learning setting. This improvement is between
3-31% relative to the runner-up.

4.5 ABLATION STUDIES

To examine the contributions of separate components of our model, we conduct ablation studies
by removing selected components. Then, the model is retrained and evaluated on the test set. The
resulting performance of the ablated models are reported in Table 3.

Removing the correction module degrades the performance, but the task module itself already
achieves the state of the art. The correction module improves the performance by 2% in abso-
lute accuracy. This suggests that the correction modules makes a slight change to the output of the
task module. When we remove the task module’s training data as input into the correction module,
the zero-shot accuracy decreases by 2.4%. This demonstrates that the task module’s training data is
important to the correction module’s prediction.

4.6 EXTENSIONS

Correction Networks are independent of the architectures of the modules and can be used for prob-
lems for which an updated prediction can be obtained by applying a correction. Additional inves-
tigations include applying Correction Networks to other tasks with outputs that can be updated,
including for example, estimates for regression problems, classification probabilities, or probabil-
ity distributions for reinforcement learning policies. The type of update can also be multiplicative,
weighted sum, or another function. In addition to the zero-shot classification problem presented
here, Correction Networks can also be applied to correct outputs in the few shot setting.

The magnitude of the correction vector predicted by the Correction Network can be interpreted as
the size of the update applied. It would be interesting to use an interpretable output space where
different dimensions correspond to human-understandable variables. Then, the size and direction of
corrections in individual dimensions can be interpreted. The size of the correction can be compared
against the number of training samples given to the base network, defined as the number of seen
classes. One would expect that the size of the correction decreases as the number of seen classes
increases. Also, one would expect that the accuracy stays constant or else improves with the number
of seen classes. It would be interesting to see if correction networks can be used to understand bias
in the training data.

5 CONCLUSION

We propose a zero-shot learning model that consists of a task module and a correction module that
is trained to extrapolate from training data to unseen data. The training data is partitioned into a set
of data used to train the task module and a disjoint set of data used to train the correction module.
This later data is zero-shot with respect to the task module and the correction module is trained to
update the task module’s zero-shot predictions to create a better prediction.

Our model is demonstrated on zero-shot fine-grained classification using only a single natural lan-
guage description per zero-shot class. Our model performs favorably against the state-of-the-art
on zero-shot classification. This framework is flexible to different representations of the task and
correction modules and can be extended to other types of model predictions that can be updated to
improve predictions.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. Label-embedding for
attribute-based classification. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pp. 819–826. IEEE, 2013.

Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt Schiele. Evaluation of output
embeddings for fine-grained image classification. In Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, pp. 2927–2936. IEEE, 2015.

Zeynep Akata, Mateusz Malinowski, Mario Fritz, and Bernt Schiele. Multi-cue zero-shot learning
with strong supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 59–68, 2016.

Lei Jimmy Ba, Kevin Swersky, Sanja Fidler, and Ruslan Salakhutdinov. Predicting deep zero-shot
convolutional neural networks using textual descriptions. In ICCV, pp. 4247–4255, 2015.

Tamara L Berg, Alexander C Berg, and Jonathan Shih. Automatic attribute discovery and characteri-
zation from noisy web data. In European Conference on Computer Vision, pp. 663–676. Springer,
2010.

Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei Sha. Synthesized classifiers for zero-
shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5327–5336, 2016.

Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei Sha. An empirical study and analysis
of generalized zero-shot learning for object recognition in the wild. In European Conference on
Computer Vision, pp. 52–68. Springer, 2016.

Mohamed Elhoseiny, Babak Saleh, and Ahmed Elgammal. Write a classifier: Zero-shot learning us-
ing purely textual descriptions. In Computer Vision (ICCV), 2013 IEEE International Conference
on, pp. 2584–2591. IEEE, 2013.

Mohamed Elhoseiny, Ahmed Elgammal, and Babak Saleh. Write a classifier: Predicting visual clas-
sifiers from unstructured text. IEEE transactions on pattern analysis and machine intelligence,
39(12):2539–2553, 2017a.

Mohamed Elhoseiny, Yizhe Zhu, Han Zhang, and Ahmed Elgammal. Link the head to the” beak”:
Zero shot learning from noisy text description at part precision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017b.

Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by their attributes.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 1778–
1785. IEEE, 2009.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1126–1135, 2017. URL http:
//proceedings.mlr.press/v70/finn17a.html.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas Mikolov, et al. Devise:
A deep visual-semantic embedding model. In Advances in neural information processing systems,
pp. 2121–2129, 2013.

Yanwei Fu, Timothy M Hospedales, Tao Xiang, Zhenyong Fu, and Shaogang Gong. Transductive
multi-view embedding for zero-shot recognition and annotation. In European Conference on
Computer Vision, pp. 584–599. Springer, 2014.

Zhenyong Fu, Tao Xiang, Elyor Kodirov, and Shaogang Gong. Zero-shot object recognition by
semantic manifold distance. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2635–2644, 2015.

Yuchen Guo, Guiguang Ding, Jungong Han, and Yue Gao. Synthesizing samples fro zero-shot
learning. IJCAI, 2017a.

9

http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html

Under review as a conference paper at ICLR 2019

Yuchen Guo, Guiguang Ding, Jungong Han, and Yue Gao. Zero-shot learning with transferred
samples. IEEE Transactions on Image Processing, 26(7):3277–3290, 2017b.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pp. 951–958. IEEE, 2009.

Yang Long, Li Liu, Ling Shao, Fumin Shen, Guiguang Ding, and Jungong Han. From zero-shot
learning to conventional supervised classification: Unseen visual data synthesis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level im-
age representations using convolutional neural networks. In Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on, pp. 1717–1724. IEEE, 2014.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell. Zero-shot learning with
semantic output codes. In Advances in neural information processing systems, pp. 1410–1418,
2009.

Ruizhi Qiao, Lingqiao Liu, Chunhua Shen, and Anton van den Hengel. Less is more: zero-shot
learning from online textual documents with noise suppression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2249–2257, 2016.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2017.

Marcus Rohrbach, Sandra Ebert, and Bernt Schiele. Transfer learning in a transductive setting. In
Advances in neural information processing systems, pp. 46–54, 2013.

Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple approach to zero-shot learn-
ing. In International Conference on Machine Learning, pp. 2152–2161, 2015.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077–4087, 2017.

Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-shot learning
through cross-modal transfer. In Advances in neural information processing systems, pp. 935–
943, 2013.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 595–604, 2015.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Yizhe Zhu, Mohamed Elhoseiny, Bingchen Liu, Xi Peng, and Ahmed Elgammal. A generative ad-
versarial approach for zero-shot learning from noisy texts. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

10

Under review as a conference paper at ICLR 2019

APPENDIX A: EXPERIMENTAL DETAILS

Architecture

The task module is a feed-forward network consisting of linear layers. The input is the TF-IDF
feature for a class. There are two outputs: the predicted mean in image embedding space and
softmaxes over the classes in TS . The loss function is the sum of the L2 loss between µ̂u

S and µu
S

and the classification loss, with a sparsity regualarizer on the input layer.

The correction module is also a feed-forward network consisting of linear layers. Each sample in T s
S

is fed through linear layers, then sum pooled across classes, and fed through an additional layer. The
final transformation of T s

S is concatenated with Tu
S and µ̂u

S and then passed through linear layers to
output ε̂uS . The loss function is L2 loss between ε̂uS and εuS . Architectures are illustrated in Figure 4.

(a) Task module architecture (b) Correction module architecture

Figure 4: Architecture of the modules

Training

The publicly available SCS and SCE splits (Elhoseiny et al., 2017b) define a test set. The remaining
classes are randomly divided into a validation set and a training set. The size of the validation set is
the same size as the training set. For example, CUB has 200 classes with the conventional SCS split
consisting of 50 test classes. We divided the remaining 150 classes into a 50 class validation set and
a 100 class training set.

The Correction Network is first trained by considering the training set as TS . Training proceeds as in
Algorithm 1. That is, TS is randomly divided into disjoint sets T s

S and Tu
S . A task module is trained

on T s
S , stopping based on performance on the validation set. The trained task module predicts µ̂u

S
based on Tu

S . The correction module is updated using Tu
S , µ̂

u
S , and T s

S . The correction module is
trained across multiple episodes of task module training, where the task module in each episode
is trained on a randomly sampled T s

S from TS . Training of different episodes of task modules is
parallelizable as they are independent of one another and independent of the correction module.

Training of the correction module stops based on performance on the validation set. The stopping
iterations of the task modules and correction module on the validation set is used to determine the
stopping iterations of the task modules and the correction module on the test set.

To evaluate on the test set, the validation and training sets are combined and treated as TS while the
test set becomes TU . Training again proceeds as in Algorithm 1. The Adam optimizer is used to
train the models.

11

Under review as a conference paper at ICLR 2019

APPENDIX B: RESULTS VISUALIZATIONS

Correctly and incorrectly classified images are shown in Figure 4 below. Each row is a different
class. The left-most three images are correctly classified. The middle three images are false nega-
tives, and the right-most images are false positives.

Figure 5: Qualitative classification results. Each row is a different class with correctly classified
examples (left three), false negatives (middle three), and false positives (right three).

12

	Introduction
	Related Works
	Correction Networks
	Notation
	Model
	Correction Networks for Zero-Shot Classification

	Experiments
	Task Setup
	Datasets
	Conventional Zero-Shot Recognition
	Generalized Zero-Shot Learning
	Ablation Studies
	Extensions

	Conclusion

