
Applications of a disintegration transformation

Praveen Narayanan
Indiana University

Chung-chieh Shan
Indiana University

Abstract

We describe examples of applying a disintegration transformation on probabilistic
programs to obtain posterior distributions, calculate symbolic representations of
densities, and generate Markov Chain Monte Carlo (MCMC) samplers.

Conditioning and density are critical components of probabilistic inference. The measure-theoretic
notion of disintegration generalizes both conditioning and density (Chang and Pollard, 1997), and it
can be implemented as a source-to-source transformation on probabilistic programs (Shan and Ram-
sey, 2017). In this work we describe example applications of such a disintegration transformation.

Disintegration may be implemented to condition first-order probabilistic programs that apply
piecewise-invertible mathematical operations to observable expressions. Such a transformation can
be formally verified given a semantics of s-finite kernels (Staton, 2017) and a calculus of distribu-
tions based on this semantics. Given a language with primitives for manipulating stochastic arrays, a
disintegration technique can be improved to scale efficiently over arbitrary numbers of observations
(Narayanan and Shan, 2017). Furthermore, the transformation can be implemented to correctly ad-
dress programs over sophisticated measure spaces, including discrete-continuous mixtures, disjoint
sums, and dependent products (Narayanan and Shan, 2019).

Our first example is that of using disintegration to condition a Gaussian mixture model. Here by con-
ditioning we mean producing a program representation of a posterior distribution given a program
representation of the model and a term (expression) representing our observation(s). We illustrate
the output of our conditioning tool on a mixture model that observes an array of labeled real numbers
arising from a mixture of an arbitrary number of Gaussian distributions.

Next we use our disintegration transformation to implement a generalized density tool more power-
ful (in terms of distribution types) than existing density calculation techniques. We illustrate this tool
on an application of mutual information estimation (Gao et al., 2017), showing that it can produce
exact representations of the density between discrete-continuous mixture distributions.

Finally, we describe how to automatically generate a single-site Metropolis-Hastings MCMC sam-
pler (as a probabilistic program), an application that calls for using our disintegration transformation
both as a conditioning tool as well as a density calculator. First, we use the conditioning tool to ob-
tain the target distribution for MCMC sampling. Second, we use the density tool to calculate the
acceptance ratio for a measure-theoretic Metropolis-Hastings-Green transformation (Green, 1995).
This is a transformation in that it takes as input and produces as output probabilistic programs.

1 Conditioning a Gaussian mixture model

We start by using a disintegration transformation to perform conditioning, i.e., to go from a Bayesian
model to a posterior distribution, both represented as probabilistic programs in the same language.
The language we use in this work is Hakaru, which is strongly-typed and first-order, and in which
programs are written in a monadic style and denote s-finite kernels.

In the center of Figure 1 we show a program written in Hakaru (Narayanan et al., 2016). Named
gmm , it represents a Gaussian mixture model over N real numbers drawn from K Gaussian clusters.

Preprint. Under review.

θ

µ z

σ x
K N

gmm : N→ N→M ((AR× AN)× AR)
gmm = λK. λN.

do {θ⃗ ¢ dirichlet(array K _. 1);
µ⃗¢ plateK _.

normal 0 0.01;
σ⃗ ¢ plateK _.

gamma 2 0.05;
z⃗ ¢ plateN _.

categorical θ⃗;
x⃗¢ plateN i.

normal µ⃗[z⃗[i]] σ⃗[z⃗[i]]
return ((x⃗, z⃗), µ⃗)}

disintegrate (gmm K N) (tx, tz)
=⇒ do {θ⃗ ¢ dirichlet(array K _. 1);

µ⃗¢ plateK _.normal 0 0.01;
σ⃗ ¢ plateK _.gamma 2 0.05;
_¢ plateN i.

(θ⃗[tz[i]]÷ sum θ⃗)
⊙ return ();

_¢ plateN i.
dnorm µ⃗[tz[i]] σ⃗[tz[i]] tx[i]
⊙ return ();

return µ⃗}
: M (AR)

Figure 1: A Bayes net for a Gaussian mixture model (bottom-left), the Hakaru program gmm (cen-
ter), and the disintegration of gmm K N at the observed point (tx, tz) (right)

The first line of this program is its type, a function from two natural numbers (K and N) to a mea-
sure (M) over pairs containing arrays (A). The program gmm is written in a monadic sequence of
statements that bind random variables to distributions. We distinguish the notation of random vari-
ables that represent arrays, such as θ⃗ bound to dirichlet, from that of variables representing scalar
values, such as x bound to normal. The plate construct expresses repeated independent sampling
and returns an array. This program overall represents a joint distribution over two dimensions. In
one dimension, each element pairs an array of reals (x⃗, points drawn from the mixture) with an array
of natural numbers (z⃗, the cluster labels for those points). In the other dimension, each element is
an array of reals (µ⃗, the cluster centers).

To condition this model we use the disintegrate transformation of type

disintegrate : M (α× β)→ α→{Mβ}. (1)

This type informs us that disintegrate transforms a joint distribution M (α× β) into a set of condi-
tional distributions {Mβ} given the observed expression α. This set may be empty to account for
failure. In the case of gmm , α = AR× AN and β = AR.

On the right-hand-side of Figure 1 we show the result of using disintegrate to condition gmm
with a symbolic observation term (tx, tz). Each unobserved term from the input model remains
untouched in the output program. For the observed terms, here x⃗ and z⃗, the binding distributions get
converted into densities. Here we use the ⊙ operator (found in other languages as factor or score)
to re-weight or scale a distribution by a non-negative number (of type R+). The dnorm construct
is syntactic sugar for the density of normal with respect to Lebesgue. This output program of
type M (AR) represents the unnormalized posterior distribution, which disintegrate can produce
without unrolling the arrays in the input. The process takes time linear in the number of indices
needed to select any array element (which in this case is 1).

Disintegration can be used in this manner to transform joint measures into unnormalized posterior
measures for a large class of probabilistic programs. It effectively handles programs whose observed
(or conditioned) sub-parts arise from distributions over arrays, discrete-continuous mixture spaces,
disjoint sums, and dependent products.

2 Calculating density to estimate mutual information

A disintegration transformation can also be used to build density calculation tools. In this section
we define two density calculators, classify them as restricted and unrestricted in terms of the base
measures with respect to which they operate, and apply the latter tool to estimate mutual information
between pairs of random variables.

To build the restricted density calculator, we use the typical understanding of the density of distribu-
tion Mα as a α→ R+ function. Here our density tool becomes a special case of disintegrate:

density : Mα→ α→{M1} (2)
density m = disintegrate (m ⊗ return ()). (3)

2

density : Mα→Mα→ α→{R+}
density µ ν t= let µ′ = µ ⊗ return ()

ν′ = ν ⊗ return ()
λ = infer µ′ t+ infer ν′ t

in |check µ′ λ t| ÷ |check ν′ λ t|

Figure 2: Unrestricted density calculation using ratios of Radon-Nikodym derivatives

Informally, densities are disintegrations obtained by observing all dimensions of the joint measure.
In order to do this correctly using disintegrate, we use ⊗ to convert a measure m : Mα into an
equivalent measure of type M (α× 1):

(⊗) : Mα→Mβ →M (α× β) (4)
m ⊗ n = do {x¢m; y ¢ n; return (x, y)}. (5)

The type 1 has just one element (). The result of (3) is an α→{M 1} function since densities (just
like disintegrations) can fail to exist. The M 1 produced by disintegration is isomorphic to R+.

The density tool of Equation (3), however, is insufficient for applications such as mutual informa-
tion estimation (Gao et al., 2017), or MCMC sampling (considered in the next section). Given a
probability measure µ (on a space α×β) and its marginals µa and µb, mutual information is defined
in terms of a Radon-Nikodym derivative dµ/dν with respect to a measure ν = µa × µb. Gao et al.
show that this derivative exists (µ ≪ ν) and describe a novel algorithm to estimate this derivative
for discrete-continuous mixture distributions. We want to calculate an exact representation of the
derivative dµ/dν, but density from Equation (3) only takes µ as argument, remaining implicit about
the base measure ν. To calculate this derivative we need a tool that allows arbitrary Hakaru measures
as base measures, i.e., a tool of type Mα→Mα→ α→{R+}.

To build this unrestricted density calculator, we choose a measure—such as λ = µ+ ν—with re-
spect to which both µ and ν have Radon-Nikodym derivatives, then calculate the derivative dµ/dν
as a ratio of two derivatives, i.e., by dividing two real numbers (Geyer, 2011, p. 40, eq. 1.26):

dµ

dν
=

dµ/dλ

dν/dλ
. (6)

To obtain common base measures such as λ, we can use an infer routine found within disintegrate:

disintegrate : M (α× β)→ α→{Mβ} (7)
disintegrate m t = let b = infer m t in check m b t (8)

We see that disintegration is composed of two tools, one that infers a base measure for an input joint
measure, and another that checks the disintegration of an input joint measure with respect to a given
base measure.

infer : M (α× β)→ α→ Bα (9)
check : M (α× β)→ Bα→ α→Mβ (10)

The type B represents base measures, and it is a subset of the type M of measures expressible in full
Hakaru. The base measures are implicit in the types of density and disintegrate. Their restricted
language makes it possible to define tools such as infer , and it is by extending this language that we
are able to handle the large class of probabilistic programs mentioned in the previous section.

In Figure 2 we show how infer can be used to obtain the common base measure λ and build the
unrestricted density tool. We sum two base measures using a + operator that acts as a join on the
density preorder. Since λ remains in the restricted language Bα, we may use check to calculate
two separate Radon-Nikodym derivatives and output their ratio. Note that we also use a total map
λν. |ν| that is easy to implement as a program transformation, though it can produce integrals and
sums that witness the fundamental intractability of probabilistic inference.

With the unrestricted density of Figure 2 we can now obtain an exact representation of dµ/dν
needed for mutual information estimation:

dMI : M (α× β)→ (α× β)→{R+} (11)
dMI µ = density µ (fmap fst µ ⊗ fmap snd µ). (12)

3

Here ν is represented as the product of marginals obtained using fmap : (α→ β)→Mα→Mβ.

For example, here is the model defined by by Gao et al. (2017) as Experiment I, modified with a
simpler covariance matrix for the two-dimensional normal distribution.

ξ : M (R× R) (13)
ξ = (normal 0 1 ⊗ normal 0 1)
⦶ atoms [(0.45, (1, 1)), (0.45, (−1,−1)), (0.05, (1,−1)), (0.05, (−1, 1))]

(14)

This is a discrete-continuous mixture of a two-dimensional normal distribution and weighted point-
mass distributions at atoms such as (1, 1) and (−1, 1). The mutual information density transforma-
tion of Equation (12) produces exact values for this mixture; for example, the unnormalized density
of ξ at the point (1, 1) is 9/5.

3 Generating a Metropolis-Hastings-Green MCMC sampler

As our final application, we use density from Figure 2 to build an MCMC transformation. This tool
takes two probabilistic programs as input—a target distribution η and a proposal kernel Q—and
produces an output program that when run can produce a sample for the Markov chain.

mhg : Mα→ (α→Mα)→ α→Mα
mhg η Q x = do {y ¢Q x;

rxy ¢ return (greenRatio η Q (x, y));
axy ¢ return min(1, rxy);
b¢ bern axy;
return (if b then y else x)}

Figure 3: A program transformation implementing the Metropolis-Hastings-Green update

We show this transformation in Figure 3. It implements the Metropolis-Hastings-Green (MHG)
update (Geyer, 2011; Green, 1995; Tierney, 1998), which is more general than the similarly struc-
tured Metropolis-Hastings (MH) update (Hastings, 1970; Metropolis et al., 1953) due to a Radon-
Nikodym derivative between two joint measures. We use density to calculate this derivative, in a
tool which we follow Geyer in naming greenRatio.

greenRatio : Mα→ (α→Mα)→ (α× α)→{R+}
greenRatio η Q = density (fmap switch (η ⊗=Q)) (η ⊗=Q)

switch : (α× β)→ (β × α) (⊗=) : Mα→ (α→Mβ)→M (α× β)
switch p = (snd p, fst p) m ⊗= k = do {x¢m; y ¢ k x; return (x, y)}

Figure 4: The Green ratio used to calculate the acceptance probability of an MHG update

Figure 4 illustrates greenRatio. The first two arguments to greenRatio are the target distribution and
proposal kernel for MCMC sampling. The target is typically a posterior distribution, such as the one
on the right-hand-side of Figure 1. The proposal kernel can be any Hakaru program describing an
MCMC search strategy; for example, here is a single-site proposal scheme (Geyer, 2011; Wingate,
Stuhlmüller, and Goodman, 2011) for when K = 2:

Qss = λ(x1,x2). do {x′
1 ¢ normal x1 0.1; return(x

′
1, x2)}

⦶ do {x′
2 ¢ normal x2 0.1; return(x1, x

′
2)} : R2 →MR2

(15)

We emphasize that greenRatio produces syntax, i.e., an expression (of type R+) for the Radon-
Nikodym derivative at a point (x, y). For example, when (x, y) = ((0.37, 0.42), (0.37, 0.19)),
greenRatio evaluates to the expression exp (−23/240) given Qss and gmm conditioned on
(tx, tz) = ((0.1, 0.2), (0, 1)). Similarly, mhg produces code that may be used, for instance, to chain
samples together or to compose mixtures and cycles of MCMC kernels (Andrieu et al., 2003).

The generality of disintegration facilitates reusable program transformations. One kind of reusability
is within a single inference pipeline: we showed how disintegrate can be used for producing the
target (via conditioning) as well as the acceptance ratio (via density calculation). Another kind is
reusability across general state spaces. For instance, mhg may easily be used with reversible-jump
proposal kernels (Richardson and Green, 1997) when α is a disjoint sum space.

4

References
Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. 2003. An introduc-

tion to MCMC for machine learning. Machine Learning, 50(1):5–43.

Joseph T. Chang and David Pollard. 1997. Conditioning as disintegration. Statistica Neerlandica,
51(3):287–317.

Weihao Gao, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. 2017. Estimating mutual
information for discrete-continuous mixtures. In Advances in Neural Information Processing
Systems 30, pages 5986–5997.

Charles J. Geyer. 2011. Introduction to Markov Chain Monte Carlo. In Handbook of Markov Chain
Monte Carlo, chapter 1. Chapman and Hall/CRC.

Peter J. Green. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732.

Willeen K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57(1):97–109.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller. 1953. Equation of state calculations by fast computing machines. Journal of Chemi-
cal Physics, 21:1087–1092.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016.
Probabilistic inference by program transformation in Hakaru (system description). In Proceedings
of FLOPS 2016, number 9613 in Lecture Notes in Computer Science, pages 62–79. Springer.

Praveen Narayanan and Chung-chieh Shan. 2017. Symbolic conditioning of arrays in probabilistic
programs. Proceedings of the ACM on Programming Languages, 1(ICFP):11:1–11:25.

Praveen Narayanan and Chung-chieh Shan. 2019. Symbolic disintegration with a variety of base
measures. URL http://homes.sice.indiana.edu/ccshan/rational/disint2arg.pdf.

Sylvia Richardson and Peter J. Green. 1997. On bayesian analysis of mixtures with an unknown
number of components. Journal of the Royal Statistical Society. Series B (Methodological), 59
(4):731–792.

Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian inference by symbolic disintegration.
In Proceedings of the 44th Symposium on Principles of Programming Languages, pages 130–144.

Sam Staton. 2017. Commutative semantics for probabilistic programming. In Proceedings of ESOP
2017, number 10201 in Lecture Notes in Computer Science, pages 855–879. Springer.

Luke Tierney. 1998. A note on Metropolis-Hastings kernels for general state spaces. The Annals of
Applied Probability, 8(1):1–9.

David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. 2011. Lightweight implementations
of probabilistic programming languages via transformational compilation. In Proceedings of AIS-
TATS 2011: 14th International Conference on Artificial Intelligence and Statistics, number 15 in
JMLR Workshop and Conference Proceedings, pages 770–778, Cambridge. MIT Press.

5

http://homes.sice.indiana.edu/ccshan/rational/disint2arg.pdf

	Conditioning a Gaussian mixture model
	Calculating density to estimate mutual information
	Generating a Metropolis-Hastings-Green MCMC sampler

