
Under review as a conference paper at ICLR 2019

DIFFERENTIAL EQUATION NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most deep neural networks use simple, fixed activation functions, such as sigmoids
or rectified linear units, regardless of domain or network structure. We introduce
differential equation networks, an improvement to modern neural networks in
which each neuron learns the particular nonlinear activation function that it requires.
We show that enabling each neuron with the ability to learn its own activation
function results in a more compact network capable of achieving comperable,
if not superior performance when compared to much larger networks. We also
showcase the capability of a differential equation neuron to learn behaviors, such
as oscillation, currently only obtainable by a large group of neurons. The ability
of differential equation networks to essentially compress a large neural network,
without loss of overall performance makes them suitable for on-device applications,
where predictions must be computed locally. Our experimental evaluation of real-
world and toy datasets show that differential equation networks outperform fixed
activatoin networks in several areas.

1 INTRODUCTION AND RELATED WORK

Driven in large part by advancements in storage, processing, and parallel computing, deep neural
networks (DNNs) have become capable of outperforming other methods across a wide range of
highly complex tasks. Although DNNs often produce better results than shallow methods from a
performance perspective, one of the main drawbacks of DNNs in practice is computational expense.
One could attribute much of the success of deep learning in recent years to cloud computing, and
GPU processing. While deep learning based applications continue to be integrated into all aspects
of modern life, future advancements will continue to be dependent on the ability to perform more
operations, faster, and in parallel unless we make fundamental changes to the way these systems
learn.

State-of-the-art DNNs for computer vision, speech recognition, and healthcare applications require
too much memory, computation, and power to be run on current mobile or wearable devices. To run
such applications on mobile, or other resource-constrained devices, either we need to use these devices
as terminals and rely on cloud resources to do the heavy lifting, or we have to find a way to make
DNNs more compact. For example, ProjectionNet by Ravi (Ravi, 2017), and MobileNet by Howard
et al. (Howard et al., 2017) are both examples of methods that use a compact DNN representations
with the goal of on-device applications. In ProjectionNet, a compact ”projection” network is trained
in parallel to the primary network, and used for the on-device network tasks. MobileNet proposes a
streamlined architecture in order to achieve network compactness. One drawback to these approaches
is that network compactness is achieved at the expense of performance. In this paper, we propose
a different method for learning compact, powerful, stand-alone networks; we allow each neuron to
learn its individual activation function.

Up to this point, advancements in deep learning have been largely associated with one of four areas:
optimization, regularization, activation, and network structure. Some of these advancements, such as
network structure, address issues related to the type of problem at hand, and the nature of the data.
Since the advent of the classic feed-forward neural network (FFNN), researchers have introduced
highly effective network structures such as convolutional neural networks (CNN (Krizhevsky et al.,
2012), popular in computer vision, and Recurrent Neural Networks (RNN) for sequences. The advent
of new activation functions such as rectified linear units (ReLU) (Nair & Hinton, 2010), exponential
linear units (ELU) (Clevert et al., 2015), and scaled exponential linear units (SELU) (Klambauer
et al., 2017) address a networks ability to effectively learn complicated functions, thereby allowing
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them to perform more complicated tasks. The choice of an activation function is typically determined
empirically by tuning, or due to necessity. For example, in modern deep networks, the ReLU
activation function is often favored over the sigmoid function, which used to be a popular choice in
the earlier days of neural networks. A reason for this preference is that the ReLU function is non-
saturating and does not have the vanishing gradient problem when used in deep structures (Hochreiter,
1998). Recently, searching algorithms have proven to be valuable for automatic construction of
previously hand-designed network components and activation functions (Zoph et al., 2017; Bello
et al., 2017; Ramachandran et al., 2017). Zoph et al. (2017); Bello et al. (2017); Ramachandran et al.
(2017) have proposed one such method for searching for more effective activation functions.

At first glance, and from an applicability perspective, our approach is similar to max-out networks
(Goodfellow et al., 2013), adaptive piecewise linear units by Agostinelli et al. (2014), and
Ramachandran et al. (2017). However, in Ramachandran et al. (2017), their functions do not
transform themselves during network training, and all neurons utilize the same activation function.
We introduce differential equation networks (DifENs), where the activation function of each neuron
is the nonlinear, possibly periodic solution of a second order, linear, ordinary differential equation.
While the number of parameters learned by max-out and PLU is proportional to the number of input
weights to a neuron, and the number of linear units in that neuron, for each DifEN activation function
we learn only five additional parameters.

One feature of DifENs that is particularly interesting within the healthcare industry is the ability of
DifENs to regress decaying and periodic functions. Although efforts have been made to explore the
usefulness of periodic functions in neural networks since the 1990s, their applicability has not yet
been appreciated (Sopena et al., 1999). Thanks to the successes of deep learning in recent years,
researchers have begun re-exploring the potential of periodic functions as activations (Parascandolo
et al., 2016). This capability makes DifENs particularly well suited to problems where the desired
output signals display combinations of periodicity and decay. Some examples include disease
management, modeling chronic conditions such as exacerbation of COPD, medication adherence,
and acute conditions that are expected to get better over time such as cancer with a successful course
of treatment. Inversely, healthiness indices that might decay over time, and that could drastically
effect a patients health if effectively modelled (e.g. cancer with an unsuccessful course of treatment).

Our contributions in this paper include the following: We introduce differential equation networks,
which can learn complex concepts in compact representations. We propose a learning process to
learn the parameters of a differential equation for each neuron. Finally, we empirically show that
a differential equation network is effective when applied to real-world problems, and that they are
capable of changing activation functions during the learning process.

2 NETWORK COMPRESSION

The size of a neural network is delineated its number of hidden neurons and their interconnections,
which together determine the network’s complexity. The ideal size of a network depends on the
intricacy of the concept it is required to learn. A network that is too small cannot entirely, and
circumstantially learn a hard problem.

The existing, successful structures of neural networks Sutskever et al. (2014); LeCun et al. (2015);
Bahdanau et al. (2014) use hundreds of thousands to millions of parameters to learn common tasks,
such as translation or object recognition. Although these tasks are complex to model, and still
challenging for modern neural networks (Sutskever et al., 2014), they are considered ”easy” when
performed by a qualified human. It follows that, if we want to create a neural network with abilities
that are beyond average human level aptitude, the size of such a network would need to grow
considerably. For example, we have seen accuracy improvements in state-of-the-art DNNs applied to
massive image classification problems resulting in part from a large increase in the number of layers
He et al. (2016). If this trend continues to subsist, shortly, we will witness neural networks with
billions of parameters that are designed for sophisticated tasks such as live speech understanding and
translation, as well as controlling robots or humanoids, which would require an immense increase in
storage and computational resources.
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For these reasons, we want to highlight the importance of efficient network design, and the
opportunities presented by network contraction methodologies. We show that differential equation
networks learn a given task with a smaller network when compared to a fixed activation DNNs.

3 METHOD

Inspired by functional analysis and calculus of variations, instead of using a fixed activation function
for each layer, we propose a novel solution for learning an activation function for each neuron in
the network. In the results section we show that by allowing each neuron to learn its own activation
function, the network as a whole can perform on par with (or even outperform) much larger baseline
networks. In the supplementary material, we have briefly outlined how in Calculus of Variations, the
Euler-Lagrange formula can be used to derive a differential equation from an optimization problem
with function variables (Gelfand & Fomin, 1963; Gelfand et al., 2000).

The idea of this paper is to find the parameters of an ordinary differential equation (ODE) for each
neuron in the network, whose solution would be used as the activation function of the neuron. As
a result, the differential equation network enables each neuron to learn a personalized activation
function flexibly. We select (learn) the parameters of the differential equation from a low dimensional
space (i.e., five). By minimizing the network loss function, our learning algorithm smoothly updates
the parameters of the ODE, which would result in an uncountably 1 extensive range of possible
activation functions.

3.1 DIFFERENTIAL EQUATION ACTIVATION

We parametrize the activation function of each neuron using a linear, second order ordinary
differentiatial equation ay′′(t) + by′(t) + cy(t) = g(t), parameterized by five coefficients (a ,b
,c ,c1 ,c2), which can be learned by the backpropagation algorithm. These coefficients are the
only additional parameters that we learn for each neuron. a ,b and c are the scalars that we use to
parametrize the ODE, and c1 and c2 represent the initial conditions of the ODE’s solution. g(t) is a
regulatory function that we have called the ”core activation function”. Mainly to simplify the math,
and because it is a standard practice in control theory, we have set g(t) to the Heaviside step function.
Therefore, the ODE that we have chosen is the following:

ay′′(t) + by′(t) + cy(t) = u(t), where u(t) =

{
0 x ≤ 0

1 x > 0
(1)

In engineering and physics, such a model is often used to denote the exchange of energy between
mass and stiffness elements in a mechanical system, or between capacitors and inductors in an
electrical system (Ogata & Yang, 2002). Interestingly by using the solutions of this formulation as
activation functions, we can gain a few key properties: approximation or reduction to some of the
standard activation functions such as sigmoid or ReLU; the ability to capture oscillatory forms; and,
exponential decay or growth. The latter commonly appear in health-care problems.

3.2 THE LEARNING ALGORITHM

For fixed a, b and c, the solution of the differential equation will be y = f(t; a, b, c)+c1f1(t; a, b, c)+
c2f2(t; a, b, c) for some functions f , f1, f2. y lies on an affine space parametrized by scalars c1 and
c2 that represent the initial conditions of the solution. As described in the following two subsections,
our learning algorithm has two main parts: solving the differential equations once, and using a
backpropagation-based algorithm for jointly learning the network weights and the five parameters of
each neuron.

3.2.1 CLOSED-FORM SOLUTIONS

First, we solve the differential equations parametrically and take the derivatives of the closed-form
solutions: ∂y

∂t with respect to its input t, and ∂y
∂a , ∂y

∂b , ∂y
∂c with respect to parameter a, b, c. Moreover,

1Up to computational precision limitations.
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the derivative with respect to c1 and c2 will be f1 and f2, respectively. This is done once. We
solved the equations and took their derivatives using the software package Maple (Maple 2018).
Maple also generates optimized code for the solutions, by breaking down equations in order to reuse
computations. 2. Although we used Maple here, this task could have been done simply by pen and
paper (although more time consuming).

Singularity of solutions. If one or two of the coefficients a, b or c are zero, then solution of the
differential equation falls into a singularity subspace that is different than the affine function space of
neighboring positive or negative values for those coefficients. For example, for b = 0 and a ∗ c > 0 ,
the solution will be y(t) = sin

(√
ct√
a

)
c2 +cos

(√
ct√
a

)
c1− u(t)

c

(
cos
(√

ct√
a

)
− 1
)

, but for b = c = 0,

we will have y(t) = 1/2 u(t)t2

a + c1t+ c2. We observe that changing c > 0 to c = 0 will change the
resulting activation function from a pure ocsillatory form to a (parametric) leaky rectified quadratic
activation function. Our learning algorithm allows the activation functions to jump over the singularity
subspaces. However, if they fall into a singular subspace, the derivative with respect the parameter
that has become zero, and will be zero for the rest of training. Therefore, the training algorithm will
continue to search for a better activation function only withing the singular subspace.

In practice, for some hyperparameter ε, if any one of a, b or c is less than ε, we project that value
to exactly zero, and use the corresponding solution form the singular sub-space. We do not allow
a = b = c = 0, in this rare case we force c = ε. During the learning process at most two of a,
b and c can be zero, which creates seven possible subspaces (with a, b, c ∈ {R − {0}, {0}}) that
are individually solved. Similarly, when b2 − 4ac is close to zero, the generic solution will be
exponentially large, therefore if −ε < b2 − 4ac < ε, we explicitly set b =

√
(4ac) to stablize the

solution and to avoid large function values.

Approximation of Dirac’s delta function. The derivative of activation function with respect to twill
have Dirac’s delta function δ(t) which is the derivative of the Heaviside function. In the parametric
derivatives, we substituded the delta function with its approximation s ∗ e−s∗t/(1 + e−s∗t))2, which
is the derivative of σ(s ∗ t) = 1/(1 + es∗t)). This approximation is a commonly used in practice for
the delta function (Zahedi & Tornberg, 2010). The larger s is, the more accurate the approximation
of delta function will be.

In all of our experiments, we set ε = .01, and s = 100, although tuning might improve the results.
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Figure 1: A sample set of DifEN activation functions and their derivatives. The bold blue line is the
activation fucntion, and the orange solid line is its derivative with respect to t. The dashed lines are
its derivatives with respect to a, b and c. First and second on the top row from left are ReLU and
ReQU. The bump in the derivative of ReLU is an artifact of approximating Dirac’s delta.

2The code will be accessible, upon request.
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3.2.2 GRADIENT DESCENT-BASED LEARNING

We adopt regular backpropagation to update the values of parameters a, b, c, c1 and c2 for each
neuron, along with using ∂y

∂t for updating network parameters w (input weights to the neuron), and
for backpropagating the error to lower layers.

We initialize network parameters using current best practices with respect to the layer type (e.g.
linear layer, convolutional layer, etc.). We initialize parameters a, b, c for all neurons with a random
positive number less than one, and strictly greater than zero. We initialize c1 = c2 = 0.0. To learn the
parameters θ = [a, b, c, c1, c2]T along with the weights w on input values to each neuron, we deploy
a gradient descent algorithm. Both the weights w, as well as θ are learned using the conventional
backpropagation algorithm with Adam updates (Kingma & Ba, 2014).

During training, we treat a, b, c, c1 and c2 like biases to the neuron (i.e., with input weight of 1.0) and
update their values based on the direction of the corresponding gradients in each mini-batch.

3.3 DIFEN IS UNIVERSAL APPROXIMATOR

Feedforward neural networks with monotonically-increasing activation functions are universal
approximators (Hornik et al., 1989; Barron, 1993). Networks with radial basis activation functions
that are bounded, increasing and then decreasing are also shown to be universal approximators (Park
& Sandberg, 1991). In this subsection we show that DifEN is also a universal approximator.
Lemma 1. If b2 − 4ac < 0, the solutions of ay′′(t) + by′(t) + cy(t) = u(t) will oscillate with
frequency ω =

√
4ac−b2

2a , and in particular, if b = 0, then ω =
√

c
a .

Proof. If b2 − 4ac < 0, the roots of the characteristic equation of the ODE will be −b±i
√

4ac−b2
2a ,

where i =
√
−1. By substituting the solutions in Euler’s formula the resulting sine and cosine

functions will have frequency ω =
√

4ac−b2
2a . In particular, if b = 0, we’ll have ω =

√
c
a .

Moreover, the solution of the ODE ay′′(t) + cy(t) = u(t) for ac > 0 is y(t) = sin
(√

ct√
a

)
c2 +

cos
(√

ct√
a

)
c1 − u(t)

c

(
cos
(√

ct√
a

)
− 1
)

. We will use this in the proof of the following theorem:

Theorem 2. Differential equation network is a universal approximator.

Proof. By Lemma 1, for b = 0 and c = 1, the oscilation frequency of the activation function of
a neuron will be ω = 1/

√
a. Therefore, by varying a ∈ R+, a neuron activation function can

generate all oscillation frequencies. Now, consider a neural network with one hidden layer of
differential equation neurons and one linear output layer. For a target function h(t), we take the
fourier transformation of h(t), and find the set of present frequencies Ω. For each present frequency
ωi ∈ Ω, we add two differential equation neuron i1 and i2 to the hidden layer with c = 1, b = 0
and a = 1/ω2

i . Let βi and γi be the corresponding coefficient of the sine and cosine functions
from the Fourier transformation. Then, we let c1i1 = γi, c2i1 = βi and c1i2 = c2i2 = 0, and
corresponding weights wi1 and wi2 from neurons i1 and i2 to the output linear layer to be equal
to 1.0 and −1.0, respectively. This way, the two neurons will cancel the particular solution term
of the function, and we’ll have: yi1(t)− yi2(t) = βi sin(ωit) + γi cos(ωt). By construction, after
adding all frequencies from the Fourier transformation of h(t), the neural network will output∑

i∈Ω βi sin(ωit) + γi cos(ωt) = h(t).

There are multiple other ways to prove this theorem. For example, since the sigmoid, ReLU, and
ReLU-like functions are among the solutions of differential equations, we can directly apply results
of the Stone-Weierstrass approximation theorem (De Branges, 1959).

3.4 A GEOMETRIC INTERPRETATION

The solution set of a differential equation forms a functional manifold that is affine with respect
to c1 and c2, but is nonlinear in a, b, and c. Clearly, this manifold has a trivially low dimensional
representation in R5 (i.e., {a, b, c, c1, c2}). Gradient descent changes the functionals in this low
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dimensional space, and the corresponding functional on the solution manifold is used as the learned
activation function. Figure 2 attempts to visually explain how, for example, a ReLU activation
function transforms to a cosine activation function.

Figure 2: Left: The solutions of ay′′ + by′ + cy = u(t) lie on a manifold of functions. Right:
Every point on this manifold can be equivalently represented as a point on a 5-dimentional space of
{a, b, c, c1, c2} (three shown in the cartoon). The red arrow shows a path an initialized function takes
to be gradually transformed to a different one.

One DifEN neuron approximating the sine functions in Figure 3 shows an empirical example
of this scenario where we initialized the activation functions with random parameters, and the
learned differential equation coefficients {a, b, c} and initial condition coefficients {c1, c2} perfectly
represented a sine function after training. In contrast, the learned model by ordinary fixed activation
FFNNs were much less accurate with significantly larger networks. Figure 5. in the appendix material
visually shows how changing a parameter changes the activation function’s behavior.

3.5 REDUCTION TO COMMON ACTIVATION FUNCTIONS

Two common activation functions are the sigmoid σ(t) = 1
1+e−t , and the rectified linear unit

ReLU(t) = max(0, t). The sigmoid function is a smooth approximation of the Heavyside step
function, and ReLU can be approximated by integrating sigmoid of s ∗ t for a large enough s:
max(0, t) ≈

∫ t

−∞
1

1+e−sz dz = log(1+est)/s. Equivalently, y(t) = log(1+et)+c1 ≈ ReLU(t)+c1
will be a solution of the following first order linear differential equation: y′(t) = 1

1+e−st ≈ u(t)

We can set g(t) to σ(t) = 1
1+e−st , or to the step function u(t). For g(t) = σ(t), the particular

solutions of this differential equation when a 6= 0 involve the Gauss hypergeometric and Li2
functions, which are expensive to evaluate. Fortunately, if we set the right hand side to u(t), then
the particular solutions will only involve common functions such as linear, logarithmic, exponential,
quadratic, trigonometric, and hyperbolic functions.

In practice, if the learning algorithm decides that a and b should be zero, we use g(t) = 1
1+e−st (i.e.

y(t) = 1
c∗(1+e−st) ). Otherwise, we use a step function to avoid complex-valued solutions that involve

special mathematical functions, and particularly for the reasons mentioned in the previous subsection.
With these conditions in place, if a = 0, b = 0, and c = 1, we recover the sigmoid function; if a = 0,
b = 1, and c = 0 we recover the ReLU function; if a = 1, b = 0, and c = 0 we obtain a parametric
leaky rectified quadratic form y = ReLU(t)2 + c1t + c2 (similar to parametric leaky ReLU (He
et al., 2015; Xu et al., 2015)), which is the solution of y′′(t) = u(t). When b2 − 4ac < 0 we observe
oscillatory behaviour. Depending on the sign of b, this can be decaying or exploding, but when b = 0
observe a purely oscilatory behavior.

The above-mentioned cases are only a few examples of solutions that could be chosen. The point
to emphasize is that an extensive range of functions can be generated by simply varying these few
parameters. (Figure 1 illistraits several examples.)

4 RESULTS AND DISCUSSION

We have conducted several experiments to evaluate the performance and compactness of differential
equation networks.
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4.1 TOY REGRESSION DATASETS

We ran two tests on toy regression problems. In these tests we compared fixed activation networks
using ReLU, LeakyReLU and SELU activations to a significantly smaller DifEN.

Sine. We trained on two periods of a sine function and extrapolated half of one period of unseen
values. As seen in Figure 3, a single differental equation neuron can learn the function almost
perfectly, while the fixed activation baseline networks fail to fit comperable to the training data, even
with a 10x larger network.

A more sophisticated function. Next, we fit a more challnging function (y = (sin(t)−cos(2t)2)/2+
4 ∗ (1 + arccos(sin(t/2)))/3). A DifEN with 25 neurons in one hidden layer fits the function much
more accurately than the fixed activation baseline networks with 250 neurons as shown in Figure 4.
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Figure 3: Learning the sine function. The differential equation neuron learns the function significant;y
better than larger baselines.
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Figure 4: Fitting an arbitrary mathematical function.

4.2 CLASSIFICATION

We compared the performance of DifEN with baselines on MNIST handwritten digit dataset. We
compared the performance of fixed activation convolutional neural networks equipped with ReLU,
SELU, or Swish (Ramachandran et al., 2017) activation functions to a smaller DifEN. The fixed
activation networks all used the following architecture: Three convolutional layers consisting of 20
5x5 filters, 40 5x5 filters, and 60 4x4 filters respectively. A pooling layer and dropout layer was
applied after the second and third activation layers, and two fully connected layers followed with
200 neurons in the first fully connected layer. The DifEN network comprised two convolutional
layers with 20 5x5 filters and 40 3x3 filters, respectively. One pooling and one dropout layer were
applied after the second activation. One fully connected layer was used at the end as opposed to two
for the fixed activation networks, reducing the number of parameters further. Dropout probability,
batch size, epochs and learning rate were consistent across all networks. The goal here was to test the
assumption that a DifEN should be able to at least match the performance of a significantly larger,
fixed activation network, thereby achieving network compression without sacrificing performance.
For these experiments, we ran three-fold cross-validation and reported the mean result for each
network.

While the performance boost here is negligable, the notable achievement is that the CNN with DifEN
activations was able to learn a representation on par with that of the significantly larger fixed activation
networks.

4.3 REGRESSION

We compare the performance of DifEN to that of fixed activation DNNs applied to a standard diabetes
regression dataset. In this section we compared the performance of a simple, one hidden layer FFNN
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Table 1: Comparison of performance on MNIST by activation. Compactness DifEN performance is
on par with significantly larger fixed activation networks

Activation ReLU LReLU SeLU Swish DifEN

Accuracy 0.9891 0.9890 0.9903 0.9918 0.9919

equipped with fixed activations to that with DifEN neurons. Again, we use 3-fold cross validation and
report the average performance. The following experiments were conducted using the open source
diabetes regression data.

Table 2: Comparison of performance on diabetes regression dataset by network size and activation
size DifEN ReLU LReLU SeLU Swish

1 2490.781 7391.783 6977.1 6289.9 4298.493
2 2446.003 3759.527 4562.308 3793.336 3249.608
4 2412.504 2931.891 2720.555 2912.025 2839.323
8 2313.98 2465.16 2398.2 2488.361 2664.854
16 2117.47 2334.454 2357.557 2165.465 2236.137

We ran the test in Figure 3, numerous times with different initializations, each time the differential
transformed itself to have a sine-like solution. This supports that DifEN activation functions transform
during the training process. We also demonstrated the capability of DifENs to learning complex
concepts, and with a significantly reduced network size. Table 2 shows a DifEN can perform on par,
or better than a network with over 2x the number of parameters when compared to a fixed activation
network. Moreover, DifENs can learn a better approximation when compared to a network with
fixed activations throughout. The ability of DifENs to achieve top-notch performance with a compact
representation makes them a good candidate for on-device applications. Moreover, DifENs seem well
suited to applications that require the capabilities of a big neural network, but are currently limited by
memory, or where latency issues are a factor, such as space applications and robotics.

5 CONCLUSION

To the best of the authors’ knowledge, the machine learning community has yet to explore differential
equations in neural networks, dictionary learning (Mairal et al., 2009a;b; Zhang & Li, 2010), or
kernel methods (Shawe-Taylor & Cristianini, 2004; Schölkopf et al., 1999). While the presented
model, algorithms and results in this paper are the first application of ODEs in neural networks, they
show a promising and successful example of the potential of differential equations in the development
of new machine learning algorithm.

In this paper we introduced Differential Equation Networks (DifEN). We have showcased the ability of
DifENs to learn complicated concepts with a compact network representation. We have demonstrated
DifENs’ potential to outperform conventional DNNs across a number of tasks, and with a reduced
network size. Modern DNNs achieve performance gains in large by increasing the size of the network,
which is not a sustainable trend. DifENs represent a new spin on deep learning, and possibly a way
to expand the capabilities of machine learning and on-device AI. The proposed algorithm introduces
a mechanism for learning the activation functions for each neuron in a network, and empirical results
support a promising advancement in learning complex concepts in a compact representation.
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A THE EULER-LAGRANGE EQUATION IN CALCULUS OF VARIATIONS

As practiced in calculus of variations, a functional is a function of functions, and it is usually
expressed as a definite integral over a mapping L from the function of interest y and its derivatives at
point t to a real number: J[y] =

∫
t∈T L(t, y, y′, y′′, . . . , y(n))dt. y(t) is the function of interest, and

y′, y′′, . . . , y(n) are its derivatives up to the nth order.

Intuitively, L is a combining function, which reflects the cost (or the reward) of selecting the function
y at point t, and the integral sums up the overall costs for all t ∈ T . Therefore, the functional
J : (R → R) → R can represent the cost of choosing a specific input function. The minimum
of the functional is a function y∗(t) = arg miny J(y) that incurs the least cost. Among other
methods, y∗(t) can be found by solving a corresponding differential equation obtained by the Euler-
Lagrange equation (Gelfand & Fomin, 1963; Gelfand et al., 2000). In particular, the extrema to
J[y] =

∫ t2
t1
L(t, y, y′, y′′)dt are the same as the solutions of the following differential equation:

∂L

∂y
− d

dt

∂L

∂y′
+
d2

dt2
∂L

∂y′′
= 0 (2)
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Figure 5: The spectra of functions generated by varying one of a, b, c, and fixing the other two with
c1 = c2 = 0.

B EXAMPLE SPECTRA OF POSSIBLE ACTIVATION FUNCTIONS

Figure 5 shows how changing a coefficient in the low dimensional differential equation space
representation will affect the resulting functional on the manifold.

C COMPARATIVE CONVERGENCE OF RESULTS FOR THE DIABETES DATASET
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Figure 6: Diabetes Regression Model Convergence Comparison

Figure 6 above shows that the differential equation network achieves performance on par with
significantly larger fixed activation networks. We see that the fixed activation networks do not surpass
the single neuron DifEN performance untill they 8 or more neurons.
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