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ABSTRACT

Machine learning (ML) research has investigated prototypes: examples that are
representative of the behavior to be learned. We systematically evaluate five meth-
ods for identifying prototypes, both ones previously introduced as well as new
ones we propose, finding all of them to provide meaningful but different interpre-
tations. Through a human study, we confirm that all five metrics are well matched
to human intuition. Examining cases where the metrics disagree offers an infor-
mative perspective on the properties of data and algorithms used in learning, with
implications for data-corpus construction, efficiency, adversarial robustness, in-
terpretability, and other ML aspects. In particular, we confirm that the “train on
hard” curriculum approach can improve accuracy on many datasets and tasks, but
that it is strictly worse when there are many mislabeled or ambiguous examples.

1 INTRODUCTION

When reasoning about ML tasks, it is natural to look for a set of training or test examples that is
somehow prototypical—i.e., that is representative of the desired learned behavior. Although such
prototypical examples have been central to several research efforts, e.g., in interpretability (Bien &
Tibshirani, 2011) and curriculum learning (Bengio et al., 2009), no generally-agreed-upon definition
seems to exist for prototypes, or their characteristics. For modern deep-learning models, whose
behavior is often inscrutable, even the very existence and usefulness of prototypical examples has
seemed uncertain until the recent work of Stock & Cisse (2017).

Inspired by that work we (1) identify a set of desirable properties for prototypicality definitions; (2)
systematically explore different metrics used in prior work, as well as new metrics we develop, for
identifying prototypical examples in both training and test data; (3) study the characteristics of those
metrics’ prototypes and their complement set—the outliers—using both quantitative measures and
a qualitative human study; and, (4) evaluate the usefulness of prototypes for machine-learning pur-
poses such as reducing sample complexity or improving adversarial robustness and interpretability.

Our prototypicality metrics are based on adversarial robustness, retraining stability, ensemble agree-
ment, and differentially-private learning. As an independent result, we show that predictive stability
under retraining strongly correlates with adversarial distance, and may be used as an approximation.

Unequivocally, we find that distinct sets of prototypical and outlier examples exist for the datasets we
consider: MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky
& Hinton, 2009), and ImageNet (Russakovsky et al., 2015). Between all of our metrics, as well as
human evaluators, there is overall agreement on the examples that are prototypes and those that are
outliers. Furthermore, the differences between metrics constitute informative exceptions, e.g., iden-
tifying uncommon submodes in the data as well as spurious, ambiguous, or misleading examples.

Usefully, there are advantages to training models using only prototypical examples: the models learn
much faster, their accuracy loss is not great and occurs almost entirely on outlier test examples, and
the models are both easier to interpret and more adversarially robust. Conversely, at the same sample
complexity, significantly higher overall accuracy can be achieved by training models exclusively on
outliers—once erroneous and misleading examples have been eliminated from the dataset.
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2 DEFINING AND IDENTIFYING PROTOTYPES

In designing a metric to identify prototypes, many approaches may seem intuitive. We identify the
following properties as desirable for any prototypicality metric:

• Independent of the learning task: A prototypicality metric should be applicable to all
types of machine-learning tasks, whether they are based upon unsupervised or supervised
approaches, or whether they constitute classification tasks or generative tasks, etc.

• Independent of the modeling approach: A metric should identify the overall same proto-
typical examples regardless of the machine-learning paradigm, model architecture, capac-
ity, or hyperparameters that are used to learn the task.

• Aligned with human intuition: At least for tasks on which humans do well, prototypical
examples identified by a metric should strongly overlap with those identified by humans.

• Covers all apparent data modes: A metric should provide a balanced view of all modes
of prototypical examples (e.g., even when multiple disparate modes have a single output
classification label). In the presence of imbalance in the frequency of data modes, the
metric should provide coverage while reflecting frequency: a mode supported by only a
handful of examples need not be as prototypical as other modes in the same class.

• Provides a stable ranking: A metric should not only identify examples, but also rank
them in terms of prototypicality, and this rank should be stable (i.e., have low variance)
even though the metric is likely computed by a randomized procedure.

• Applies to both training and test data: A metric should allow both training examples and
test examples to be ranked in terms of prototypicality.

• Predicts test accuracy: Models that are trained only on prototypical training examples
should still achieve good accuracy on the prototypical test examples—at least when the
training and test datasets are balanced and the models use machine-learning methods known
to perform well overall. Other cases need not be so predictive (e.g., if training is done only
on outliers); we explore this experimentally in Section 3 and Section 4.

Although metrics for prototypicality should generally satisfy the above properties, they need not
do so perfectly. In fact, our experimental results show that the differences between metrics can
be highly informative. In particular, as described in Section 3.3, such differences can improve
interpretability and provide insights into model behavior that are not achievable by a single, overall
accuracy number, e.g., by giving explanations of failures by example (Caruana et al., 1999).

2.1 METRICS FOR PROTOTYPICALITY

A number of metrics for identifying prototypes might satisfy the desirable properties we identified
above, possibly even the early methods based on concept similarity introduced by Zhang (1992). In
addition to the work presented below, a complete survey of related work is found in the Appendix.

To start with, consider two strawmen prototypicality metrics based on either learning order or gra-
dient magnitude. A model may be expected to learn prototypes early in training because they are
presumably more common and somehow “simpler” than all the edge-case outliers. Conversely, near
the end of training, one might expect the relative magnitude of the gradient ‖∇θ`(fθ(x))‖ to be
small for prototypical examples x, as each such example should have very little to teach the model.
From this, two metrics can be defined, which we evaluated in experiments that averaged hundreds
of model training runs to minimize random-initialization and stochastic-learning effects. Unfortu-
nately, both of these metrics exhibited both very high variance as well as apparently-low signal,
defining prototypes sets that appeared random upon inspection and that did not satisfy our stated
desirable property of predicting test accuracy. Thus, we do not present results for these two metrics.

Instead, we define and apply the following five metrics, each of which ranks examples by their
relative ordinal number (i.e., position in the sorted order of the measured value):

Adversarial Robustness (adv): Prototypical examples should be more adversarially robust. As
a measure of prototypicality, the distance to the decision boundary measured by an adversarial-
example attack was recently proposed and utilized by Stock & Cisse (2017). Specifically, for an
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example x, the measure finds the perturbation δ with minimal ‖δ‖ such that the original x and the
adversarial example x+ δ are classified differently (Biggio et al., 2013; Szegedy et al., 2013).

To compare prototypicality, the work of Stock & Cisse (2017) that inspired our current work used
a simple and efficient `∞-based adversarial-example attack based on an iterative gradient descent
introduced by Kurakin et al. (2016). That attack procedure computes gradients to find directions that
will increase the model’s loss on the input within an `∞-norm ball. They define prototypicality as
the number of gradient descent iterations necessary to change the class of the perturbed input.

Instead, the adv metric ranks by the `2 norm (or faster, less accurate `∞ norm) of the minimal-found
adversarial perturbation (Carlini & Wagner, 2017). This is generally more accurate at measuring the
distance to the decision boundary, but comes at a performance cost (it is on average 10-100× slower).

Holdout Retraining (ret): The intuition beind our ret metric is that a model should treat a proto-
typical example the same regardless of whether, or when, it was used in the training process.

Assume we are given a training dataset X , a disjoint holdout dataset X̄ , and an example x ∈ X for
which to assess prototypicality. To begin, we train a model f(·) on the training data X to obtain
model weights θ. We train this model just as how we would typically do—i.e., with the same
learning rate schedule, hyper-parameter settings, etc. Then, we fine-tune the weights of this first
model fθ(·) on the held-out training data X̄ to obtain new weights θ̄. To perform this fine-tuning,
we use a smaller learning rate and train until the training loss stops decreasing. (We have found it is
important to obtain θ̄ by fine-tuning θ as opposed to training from scratch; otherwise, the randomness
of training leads to unstable rankings that yield specious results.) Finally, given these two models,
we compute the prototypicality of x as the difference ‖fθ(x) − fθ̄(x)‖. The exact choice of metric
‖·‖ is not important; the results in this paper use the symmetric KL-divergence.

While this metric is similar to the one considered in Ren et al. (2018), it differs in important ways:
notably, our holdout retraining metric is conceptually simpler, more stable numerically, and more
computationally efficient (because it does not require a backward pass to estimate gradients in addi-
tion to the forward pass needed to compare model outputs). Because our metric is only meaningful
for data used to train the initial model, in order to measure the prototypicality of arbitrary test points,
we actually train on the test data and perform holdout retraining on the original training data.

Ensemble Agreement (agr): Prototypical examples should be easy for many types of models to
learn. We train multiple models of varying capacity on different subsets of the training data (see
Appendix C). The agr metric ranks examples’ prototypicality based on the agreement within this
ensemble, as measured by the symmetric KL-divergence between the models’ output. Concretely,
we train many models fθi(·) and, for each example x, evaluate the model predictions, and then
compute 1

N2

∑N
i=1

∑N
j=1 JS-Divergence(fθi(x), fθj (x)) to rank the example’s prototypicality.

Model Confidence (conf): We expect models to be confident on prototypical examples. Based
on an ensemble of models like that used by the agr metric, the conf metric ranks examples by the
mean confidence in the models’ predictions, i.e., ranking each example x by 1

N

∑N
i=1 max fθi(x).

Privacy-preserving Training (priv): We can expect prototypical, well-represented modes of ex-
amples to be classified properly by models (e.g., deep neural networks) even when trained with
guarantees of differential privacy (Abadi et al., 2016; Papernot et al., 2016). However, such privacy-
preserving models should exhibit significantly reduced accuracy on any rare or exceptional exam-
ples, because differentially-private learning attenuates gradients and introduces noise to prevent the
details about any specific training examples from being memorized. Outliers are disproportionally
likely to be impacted by this attenuation and added noise, whereas the common signal found across
many prototypes must have been preserved in models trained to reasonable accuracy.

Our priv metric is based on training an ensemble of models with increasingly greater ε privacy (i.e.,
more attenuation and noise) using ε-differentially-private stochastic gradient descent (Abadi et al.,
2016). Our metric then ranks the prototypicality of an example based on the maximum ε privacy at
which the example is correctly classified in a reliable manner (which we take as being also classified
correctly in 90% of less-private models). This ranking embodies the intuition that the more tolerant
an example is to noise and attenuation during learning, the more prototypical it is.
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Figure 1: Correlation coefficients for our five prototypicality metrics on four common datasets.

3 EVALUATING THE FIVE DIFFERENT PROTOTYPICALITY METRICS

As the first step in an evaluation, it is natural to consider how the above five metrics satisfy the
properties we identified earlier—in Section 2—as being desirable for all prototypicality metrics.

In general, all our five metrics satisfy these desirable properties. All five metrics can be applied to
both training and test data to induce a ranking and, empirically, we find this ranking is stable when
computed multiple times. Furthermore, overall, each of the five metrics exhibits good coverage, with
a few informative exceptions, and provides a view of all distinct, prototypical data modes that is pro-
portionally balanced—even in the presence of data skew—in particular across output class labels.
Notably, none of the metrics fails by ranking some class of labeled examples (e.g., the easiest-to-
learn class) as being strictly more prototypical than all examples with other labels; even within each
class, any substantial fraction of the most prototypical examples exhibits good modal coverage. Our
metrics are widely applicable, as they are not specific to any learning task or model (some, like ret
and priv might be applicable even to unsupervised learning), and experimentally we have confirmed
that the metrics give overall the same results despite large changes in hyperparameters or even the
model architecture. Finally, as described further in Section 4, all of our metrics provide strong pre-
dictive accuracy: training on prototypes gives good test performance on prototypes. (Experimental
results supporting the above observations can be seen in the Appendices.)

3.1 QUANTITATIVE EVALUATION OF CORRELATION COEFFICIENTS

Figure 1 shows the correlation coefficients computed pairwise between each of our metrics for all
our datasets, as well as on three metrics for ImageNet1 (the tables are symmetric across the diago-
nal). The metrics are overall strongly correlated, and the differences in correlation are informative.
Unsurprisingly, since they measure very similar properties, the agr (ensemble agreement) and the
conf (model confidence) show the highest correlation, However, somewhat unexpectedly, we find
that the adv (adversarial robustness) correlates very strongly with ret (retraining distance). This is
presumably because these two metrics both measure the distance to a model’s decision boundary—
even though adv measures this distance by perturbing each example while ret measures how the
evaluation of each example is affected when models’ decision boundaries themselves are perturbed.

(This strong correlation between adv and ret is a new result that may be of independent interest and
some significance. Measurement of adversarial distance is a useful and highly-utalized technique,
but it is undefined or ill-defined on many learning tasks and its computation is difficult, expensive,
and hard to calibrate. On the other hand, given any holdout dataset and any measure of divergence,
the ret metric we define in Section 2.1 should be easily computable for any ML model or task.)

3.2 QUALITATIVE EVALUATION BY INFORMAL INSPECTION AND BY A HUMAN STUDY

It remains to be established that our five metrics rank examples in a manner that corresponds to
human intuition. For this, we perform a subjective visual inspection of how the different metrics
rank the example training and test data for different machine-learning tasks. We establish that there
is a clear, intuitive difference between the prototype and outlier extremes of the ranking. Informally,

1Computational constraints prevented us from completing experiments on the 1.2M ImageNet examples as
our ret and priv metrics are resource demanding. The full data will be included in a revision of this paper.
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Figure 2: Our five metrics’ least and most prototypical training examples, separated by a red/green
bar, for three classes of MNIST, Fashion-MNIST, and CFIAR-10 (all classes shown in Appendix C).
The separation is clearly informative e.g., revealing an outlier “9” mislabeled as a three; also, looking
at the conf prototypes reveals an atypical dress-like “shirt” that was memorized during training.
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Table 1: Results of a human study of Mechancial Turk workers selecting the best or worst example
among a random collection of 9 training-data images. For each prototypicality metric, the tables
show what percent of workers selected examples in each 10% split of the metric’s sorted ranking
(e.g., 52% of the MNIST images picked as the best one rank in the 90th percentile on the agr metric).

Figure 2 and the figures in Appendix C confirm that there is an obviously apparent difference be-
tween at least the extreme outliers and prototypes in the MNIST, Fashion-MNIST, and CIFAR-10
training examples, and the ImageNet validation examples—although between datasets and classes,
the five metrics differ in how clearly this difference can be seen.

To validate and quantify how our metrics correlate with human perception, we performed an online
human study using Amazon’s Mechanical Turk service. For each output class in the training and test
data of MNIST, Fashion-MNIST, and CIFAR-10, the study had human evaluators choose the image
that was most or least representative of the class from amongst 9 randomly-selected images. In the
study, over 100,000 images were assessed by over 400 different human evaluators.

Concretely, in this study (as shown in Appendix E), each human evaluator saw a 3x3 grid of 9
random images and was asked to pick the worst image—or the best image—and this was repeated
multiple times. Evaluators exclusively picked either best or worst images and were only shown
random images from one output class under a heading with the label name of that class; thus one
person would pick only the best MNIST digits “7” while another picked only the worst CIFAR-
10 “cars.” (As dictated by good study design, we inserted “Gold Standard” questions with known
answers to catch workers answering randomly or incorrectly, eliminating the few such workers from
our data.) For all datasets, picking non-representative images proved to be the easier task: in a side
study where 50 evaluators were shown the same identical 3x3 grids, agreement was 80% on the
worst image but only 27% on the best image (random choice would give 11% agreement).

The results of our human study are presented in Table 1. One of the takeaways is that the as-
sessment of human evaluators is strongly correlated with each one of our metrics: humans mostly
picked low-prototypicality images as the worst examples and examples with significantly higher-
prototypicality as being the best. Somewhat surprisingly, there are some large, notable differences
between metrics and datasets in their correspondence to human perception—e.g., for Pick Worst,
the lowest percentile split of the priv metric does poorly (at 8%) whereas the next does extremely
well (at 29%)—suggesting that further investigation is warranted.
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(a) Scatter plot comparing
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(d) Outliers vs. prototypes

(b-d) The Jaccard distance between the sets of the 25% most lowest-ranked outliers
and the 25% most highest-ranked prototypes for each class on Fashion-MNIST.

Figure 3: Comparing the differences between the metrics on (a) MNIST and (b-d) Fashion-MNIST.

3.3 COMPARING PROTOTYPICALITY METRICS AND THEIR CHARACTERISTICS

Because our five metrics for prototypicality are not perfectly correlated, there are likely to be many
examples that are highly prototypical under one metric but not under another. To quantify the number
and types of those differences we can try looking at their visual correlation in a scatter plot; doing
so can be informative, as can be seen in Figure 3(a) where the easily-learned, yet fragile, examples
of class “1” in MNIST models have high confidence but low adversarial robustness. To further
quantify, we can also compute the Jaccard distance to assess the relative size of the intersections
between different sets of prototypes and outliers; the rest of Figure 3 shows the results of doing so at
the 25% threshold for Fashion-MNIST. The results show substantial disagreement between metrics.

To understand disagreements, we can consider examples that are prototypical in one metric but
outliers in others, first combining the union of adv and ret prototypes into a single boundary metric,
and the union of adv and ret prototypes into an ensemble metric, because of their high correlation.

Figure 4: Exceptional “shirts.”

Memorized exceptions: Recalling the unusual dress-looking
“shirt” of Figure 2, and how it seemed to have been memorized
with high confidence, we can intersect the top 25% prototypi-
cal ensemble images with the bottom-half outliers in both the
boundary and priv metrics. For the Fashion-MNIST “shirt” class,
this set—visually shown in Figure 4 on the right—includes not
only the dress-looking example but a number of other atypical
“shirt” images, including some looking like shorts. Also ap-
parent in the set are a number of T-shirt-like and pullover-like
images, which are misleading, given the other output classes of
Fashion-MNIST. For these sets, which are likely to include spuri-
ous, erroneously-labeled, and inherently ambiguous examples, we
use the name memorized exceptions because they must be memorized as exceptions for models to
have been able to reach very high confidence during training. Similarly, Figure 5(a) shows a large
(green) cluster of highly ambiguous boot-like sneakers, which appear indistinguishable from a clus-
ter of memorized exceptions in the Fashion-MNIST “ankle boot” class (see Appendix C).

Uncommon submodes: On the other hand, the priv metric is based on differentially-private learn-
ing which ensures that no small group of examples can possibly be memorized: the privacy stems
from adding noise and attenuating gradients in a manner that will mask the signal from rare ex-
amples during training. This suggests that we can find uncommon submodes of the examples in
learning tasks by intersecting the bottom-most outlier examples on the priv metric with the union of
top prototypes in the boundary and ensamble metrics. Figure 5(b) shows uncommon submodes
discovered in MNIST using the 25% lowest outliers on priv and top 50% prototypes on other met-
rics. Notably, all of the “serif 1s” in the entire MNIST training set are found as a submode.

Canonical prototypes: Finally, we can simply consider the intersection of the sets of all the top-
most prototypical examples in all of our metrics. The differences between our metrics should ensure
that this intersection is free of spurious or misleading examples; yet, our experiments and human
study suggest the set will provide good coverage. Hence, we call this set canonical prototypes.
Figure 5(c) shows the airplanes that are canonical prototypes in CIFAR-10.
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(a) Memorized exceptions in the
Fashion-MNIST “sneaker” class.

(b) Uncommon submodes found
within the MNIST “1” class.

(c) Canonical prototypes in the
CIFAR-10 “airplane” class.

Figure 5: Our metrics’ prototype and outlier sets reveal interesting examples, which can be clustered.

To further aid interpretability in Figures 4 and 5, we perform a combination of dimensionality re-
duction and clustering. Concretely, we apply t-SNE (Maaten & Hinton, 2008) on the pixel space
(for MNIST and Fashion-MNIST) or ResNetv2 feature space (for CIFAR10) to project the example
sets into two dimensions. We then cluster this two-dimensional data using HDBSCAN (Campello
et al., 2013), a hierarchical and density-based clustering algorithm which does not try to assign all
points to clusters—which not only can improve clusters but also identify spurious data. We believe
that other types of data projection and clustering could also be usefully applied to our metrics, and
offer significant insight into ML datasets. (See Appendix G for this section’s figures shown larger.)

4 UTILIZING PROTOTYPES TO IMPROVE ASPECTS OF MACHINE LEARNING

By using prototype metrics, we can improve models’ sample complexity, accuracy, or robustness.

We perform two experiments on the three datasets to investigate whether it is better to train on
outliers or on prototypes—exploring the “train on hard data” vs. “train on easy data” question of
curriculum learning (Ren et al., 2018), which is discussed in Appendix A. To begin, we order all
training data according to its prototypicality as measured by our adv metric.2

First, we experiment with training on splits of 5, 000 training examples (approximately 10% of the
training data) chosen by taking the k-th most prototypical example to the (k+5000)-th most pro-
totypical. As shown in Figure 6, we find that the split that yields the most accurate model varies
substantially across the datasets and tasks. On MNIST, training on the least prototypical examples
gives the highest accuracy; conversely, on CIFAR-10, training on nearly-the-most prototypical ex-
amples gives the highest accuracy. We conjecture this is due to the dataset complexity: because
nearly all of MNIST is very easy, it makes sense to train on the hardest, most outlier examples.
However, because CIFAR-10 is very difficult, training on very prototypical examples is better.

Notably, many of the CIFAR-10 and Fashion-MNIST outliers appear to be inherently misleading or
ambiguous examples, and several are simply erroneously labeled. We find that about 10% of the
first 5,000 outliers meet our definition of memorized exceptions. Also, we find that inserting 10%
label noise causes model accuracy to decrease by about 10%, regardless of the split trained on—
i.e., that to achieve high accuracy on small training data erroneous and misleading outliers must be
removed—and explaining the low accuracy shown on the left in the graph of Figures 6(b) and 6(c).

The prior experiment assumes the amount of data is fixed, and we must choose which percentile of
data to use. Now, we examine what the best strategy is to apply if the amount of training data is
not fixed, and ask: is it better to train on the k-most or k-least prototypical examples? Again, we
find the answer depends on the dataset. On MNIST, training on the k-least prototypical examples is
always better. However, on Fashion-MNIST and CIFAR-10, training on the prototypical examples
is better when k is small, but as soon as we begin to collect more than roughly 10, 000 examples
for Fashion-MNIST or 20, 000 for CIFAR-10, training on the outliers begins to give more accurate
models. However, we find that training only on the most prototypical examples found in the training
data gives extremely high test accuracy on the prototypical examples found in the test data.

2We use the adv metric since it is well-correlated to human perception and unrelated to model performance.
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Figure 6: Comparing training on the k-most prototypical and k-least prototypical examples (as
determined by the adv metric). The first row of subfigures plots the model accuracy resulting
from training on a slice of 5, 000 training examples consecutively ranked by prototypicality; in
each prototypicality increases from left to right (i.e., most extreme outliers are on the far left, most
protypical training examples are on the far right). On MNIST (a) training on the outliers gives
strictly higher accuracy. However, on Fashion-MNIST (b) and CIFAR-10 (c), given only a limited
amount of training data, prototype-training is better; but if more data is available outlier-training
becomes superior. At least for some datasets, heavy data augmentation and regularization tech-
niques like dropout can partially recover the utility loss that results from training only with more
protoypical examples; the dotted line in subfigure (a) shows the result of one such experiment for
MNIST.

The second row of subfigures (d), (e), and (f) plots the model accuracy resulting from train-
ing on a fractional slice of prototypicality-ranked training examples, with the fraction increased
from small percentages (on the left) to the entire training data (extreme right). One solid line
(blue) shows the accuracy resulting from training on training data fractions that are becoming
increasingly more prototypical (i.e., the left-most part of the blue line results from training on the
most outlier fraction of training examples); conversely, the other solid line (yellow) shows accuracy
from training on an increasing, less-and-less prototypical fraction of training data, from left to
right. Finally, the dotted line (yellow) in subfigures (d), (e), and (f) shows the models’ test accuracy
on only those examples in the test data that have been deemed prototypical; as can be seen, even
training only on a small fraction of the most prototypical training examples can suffice to achieve
high accuracy on prototypical test examples.
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4.1 TRAINING ON PROTOTYPES GIVES SIMPLER DECISION BOUNDARIES

While training exclusively on prototypes often gives inferior accuracy compared to training on the
outliers, the former has the benefit of obtaining models with simpler decision boundaries. Thus,
it is natural to ask whether training on prototypes gives models that are more robust to adversarial
examples. In fact, prior work has found that discarding outliers from the training data can help with
both classifying and detecting adversarial examples (Liu et al., 2018).

To show that simpler boundaries can lead to more robustness, we train models on fixed-sized subsets
of the data where we vary the prototypicality of the 5, 000 training points included in the subset. For
each model, we then compute the mean `∞ adversarial distance needed to find adversarial examples.
As shown in Figure 10 of Appendix F, the Fashion-MNIST and CIFAR-10 models that are trained
on prototypical examples are more robust to adversarial examples than those trained on a slice of
training data that is mostly made up of outliers. However, these models trained on a slice of 5, 000
prototypical examples remain comparably robust to a baseline model trained on the entire data.

5 CONCLUSION

This paper explores prototypes: starting with the properties we would like them to satisfy, then
evaluating metrics for computing them, and discussing how we can utilize them during training. The
five metrics we study all are highly correlated, and capture human intuition behind what is meant by
“prototypical”. When the metrics disagree on the prototypicality of an example, we can often learn
something interesting about that example (e.g., that it is from a rare submode of a class). Further,
we explore the many reasons to utalize prototypes: we find that models trained on prototypes often
have simpler decision boundaries and are thus more adversarially robust. However, training only on
prototypes often yields inferior accuracy compared to training on outliers. We believe that further
exploring metrics for identifying prototypes and developing methods for using them during training
is an important area of future work, and hope that our analysis will be useful towards that end goal.
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APPENDIX

A RELATED WORK

Prototypes. At least since the work of Zhang (1992) which was based on intra- and inter-concept
similarity, prototypes have been examined using several metrics derived from the intuitive notion
that one could find “quintessential observations that best represent clusters in a dataset” (Kim et al.,
2014). Several more formal variants of this definition were proposed in the literature—along with
corresponding techniques for finding prototypes. Kim et al. (2016) select prototypes according to
their maximum mean discrepancy with the data, which assumes the existence of an appropriate ker-
nel for the data of interest. Li et al. (2017) circumvent this limitation by prepending classifiers with
an autoencoder projecting the input data on a manifold of reduced dimensionality. A prototype layer,
which serves as the classifier’s input, is then trained to minimize the distance between inputs and
a set of prototypes on this manifold. While this method improves interpretability by ensuring that
prototypes are central to the classifier’s logic, it does require that one modify the model’s architec-
ture. Instead, metrics considered in our manuscript all operate on existing architectures. Stock &
Cisse (2017) proposed to use distance to the boundary—approximately measured with an adversarial
example algorithm—as a proxy for prototypicality.

Other interpretability approaches. Prototypes enable interpretability because they provide a
subset of examples that summarize the original dataset and best explain a particular decision made
at test time (Bien & Tibshirani, 2011). Other approaches like saliency maps instead synthetize new
inputs to visualize what a neural network has learned. This is typically done by gradient descent
with respect to the input space (Zeiler & Fergus, 2014; Simonyan et al., 2013). Because they rely on
model gradients, saliency maps can be fragile and only locally applicable (Fong & Vedaldi, 2017).

Beyond interpretability, prototypes are also motivated by additional use cases, some of which we
discussed in Section 4. Next, we review related work in two of these applications: namely, curricu-
lum learning and reducing sample complexity.

Curriculum learning. Based on the observation that the order in which training data is presented
to the model can improve performance (e.g., convergence) of optimization during learning and cir-
cumvent limitations of the dataset (e.g., data imbalance or noisy labels), curriculum learning seeks
to find the best order in which to analyze training data (Bengio et al., 2009). This first effort further
hypothesizes that easy-to-classify samples should be presented early in training while complex sam-
ples gradually inserted as learning progresses. While Bengio et al. (2009) assumed the existence of
hard-coded curriculum labels in the dataset, Chin & Liang (2017) sample an order for the training
set by assigning each point a sampling probability proportional to its leverage score—the distance
between the point and a linear model fitted to the whole data. Instead, we use metrics that also apply
to data that cannot be modelled linearly.

The curriculum may also be generated online during training, so as to take into account progress
made by the learner (Kumar et al., 2010). For instance, Katharopoulos & Fleuret (2017) train an
auxiliary LSTM model to predict the loss of training samples, which they use to sample a subset of
training points analyzed by the learner at each training iteration. Similarly, Jiang et al. (2017) have
an auxiliary model predict the curriculum. This auxiliary model is trained using the learner’s current
feature representation of a smaller holdout set of data for which ground-truth curriculum is known.

However, as reported in our experiments, training on easy samples is beneficial when the dataset is
noisy, whereas training on hard examples is on the contrary more effective when data is clean. These
observations oppose self-paced learning (Kumar et al., 2010) with hard example mining (Shrivastava
et al., 2016). Several strategies have been proposed to perform better in both settings. Assuming the
existence of a holdout set as well, Ren et al. (2018) assign a weight to each training example that
characterizes the alignment of both the logits and gradients of the learner on training and heldout
data. Chang et al. (2017) propose to train on points with high prediction variance or whose average
prediction is close from the decision threshold. Both the variance and average are estimated by
analyzing a sliding window of the history of prediction probabilities throughout training epochs.
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Sample complexity. Prototypes of a given task share some intuition with the notion of core-
sets (Agarwal et al., 2005; Huggins et al., 2016; Bachem et al., 2017; Tolochinsky & Feldman,
2018) because both prototypes and coresets describe the dataset in a more compact way—by return-
ing a (potentially weighted) subset of the original dataset. For instance, clustering algorithms may
rely on both prototypes (Biehl et al., 2016) or coresets (Biehl et al., 2016) to cope with the high
dimensionality of a task. However, prototypes and coresets differ in essential ways. In particular,
coresets are defined according to a metric of interest (e.g., the loss that one would like to minimize
during training) whereas prototypes are independent of any machine-learning aspects as indicated
in our list of desirable properties for prototypicality metrics from Section 2.

Taking a different approach, Wang et al. (2018) apply influence functions (Koh & Liang, 2017)
to discard training inputs that do not affect learning. Conversely, for MNIST, we found in our
experiments that removing individual training examples did not have a measurable impact on the
predictions of individual test examples. Specifically, we trained many models to 100% training ac-
curacy where we left one training example out for each model. There was no statistically significant
difference between the models predictions on each individual test example

13
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B FIGURES OF OUTLIERS AND PROTOTYPES

The following are training examples from MNIST, FashionMNIST, and CIFAR10 that are identified
as most outlier (left of the red bar) or prototypical (right of the green bar). Images are presented in
groups by class. Each row in these groups corresponds to one of the five metrics in Section 2.1.

B.1 MNIST EXTREME OUTLIERS AND PROTOTYPES

All MNIST results were obtained with a CNN made up of two convolutional layers (each with kernel
size of 5x5 and followed by a 2x2 max-pooling layer) and a fully-connected layer of 256 units. It
was trained with Adam at a learning rate of 10−3 with a 10−3 decay. When an ensemble of models
was needed (e.g., for the agr metric), these were obtained by using different random initializations.
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B.2 FASHION-MNIST EXTREME OUTLIERS AND PROTOTYPES

The Fashion-MNIST model architecture is identical to the one used for MNIST. It was also trained
with the same optimizer and hyper-parameters.
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B.3 CIFAR EXTREME OUTLIERS AND PROTOTYPES

All CIFAR results were obtained with a ResNetv2 trained on batches of 32 points with
the Adam optimizer for 100 epochs at an initial learning rate of 10−3 decayed down
to 10−4 after 80 epochs. We adapted the following data augmentation and train-
ing script: https://raw.githubusercontent.com/keras-team/keras/master/
examples/cifar10_resnet.py When an ensemble of models was needed (e.g., for the agr
metric), these were obtained by using different random initializations.
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B.4 IMAGENET EXTREME OUTLIERS AND PROTOTYPES

The following pre-trained ImageNet models were used: DenseNet121, DenseNet169, DenseNet201
InceptionV3, InceptionResNetV2, Large NASNet, Mobile NASNet, ResNet50, VGG16, VGG19,
and Xception. They are all found in the Keras library: https://keras.io/applications.
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C PROTOTYPE ACCURACY WHEN TRAINING ON PROTOTYPES

The three matrices that follow respectively report the accuracy of MNIST, Fashion-MNIST and
CIFAR-10 models learned on training examples with varying degrees of prototypicality and evalu-
ated on test examples also with varying degrees of prototypicality. Specifically, the model used to
compute cell (i, j) of a matrix is learned on training data that is ranked in the ith percentile of adv
prototypicality. The model is then evaluated on the test examples whose adv prototypicality falls
under the jth prototypicality percentile. For all datasets, these matrices show that performing well
on prototypes is possible even when the model is trained on outliers. For MNIST, this shows again
that training on outliers provides better performance across the range of test data (from outliers to
prototypes). For Fashion-MNIST and CIFAR-10, this best performance is achieved by training on
examples that are neither prototypical nor outliers.
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0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.89 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.88 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.87 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.84 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.84 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.85 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.83 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.83 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.81 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.79 0.96 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00
0.79 0.96 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
0.79 0.96 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00
0.79 0.96 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00
0.77 0.95 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00
0.77 0.95 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00
0.76 0.95 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00
0.73 0.93 0.97 0.97 0.98 0.99 0.99 1.00 1.00 1.00
0.74 0.93 0.97 0.97 0.98 0.99 1.00 1.00 1.00 1.00
0.72 0.92 0.97 0.96 0.98 0.98 0.99 1.00 1.00 1.00
0.71 0.91 0.96 0.96 0.98 0.99 0.99 1.00 1.00 1.00
0.68 0.87 0.92 0.94 0.97 0.98 0.99 0.99 1.00 1.00

Figure 7: MNIST
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0.46 0.53 0.63 0.69 0.77 0.81 0.89 0.92 0.97 0.99
0.48 0.58 0.72 0.78 0.86 0.91 0.95 0.98 0.99 1.00
0.48 0.62 0.74 0.83 0.89 0.94 0.97 0.99 1.00 1.00
0.48 0.63 0.76 0.87 0.92 0.96 0.98 0.99 1.00 1.00
0.48 0.66 0.78 0.89 0.93 0.97 0.98 0.99 1.00 1.00
0.47 0.65 0.79 0.90 0.93 0.97 0.98 0.99 1.00 1.00
0.47 0.65 0.79 0.91 0.94 0.97 0.98 0.99 1.00 1.00
0.48 0.66 0.79 0.91 0.94 0.97 0.99 0.99 1.00 1.00
0.46 0.64 0.79 0.89 0.94 0.97 0.98 0.99 1.00 1.00
0.46 0.65 0.80 0.91 0.94 0.97 0.98 0.99 1.00 1.00
0.46 0.65 0.80 0.91 0.94 0.97 0.98 0.99 1.00 1.00
0.46 0.66 0.79 0.91 0.94 0.97 0.98 0.98 0.99 1.00
0.46 0.64 0.80 0.91 0.94 0.96 0.98 0.98 0.99 1.00
0.46 0.63 0.80 0.90 0.94 0.97 0.98 0.98 0.99 1.00
0.46 0.63 0.79 0.91 0.94 0.97 0.98 0.98 1.00 1.00
0.47 0.63 0.78 0.91 0.94 0.97 0.98 0.98 1.00 1.00
0.45 0.61 0.77 0.90 0.94 0.96 0.97 0.98 1.00 1.00
0.45 0.62 0.76 0.90 0.94 0.96 0.97 0.98 0.99 1.00
0.45 0.60 0.75 0.88 0.93 0.96 0.97 0.98 0.99 1.00
0.45 0.59 0.74 0.87 0.93 0.96 0.97 0.98 0.99 1.00
0.44 0.58 0.73 0.87 0.92 0.95 0.97 0.97 0.99 1.00
0.45 0.59 0.74 0.87 0.92 0.95 0.97 0.97 0.99 0.99
0.45 0.59 0.73 0.86 0.92 0.95 0.97 0.97 0.99 0.99
0.44 0.56 0.69 0.82 0.88 0.92 0.95 0.96 0.99 1.00
0.44 0.53 0.66 0.79 0.86 0.90 0.93 0.95 0.98 0.99

Figure 8: Fashion-MNIST
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0.36 0.41 0.48 0.58 0.65 0.69 0.74 0.78 0.82 0.89
0.36 0.42 0.51 0.59 0.69 0.74 0.78 0.82 0.87 0.93
0.36 0.44 0.54 0.64 0.72 0.78 0.81 0.84 0.89 0.95
0.37 0.44 0.53 0.65 0.73 0.79 0.84 0.86 0.90 0.95
0.38 0.45 0.56 0.67 0.76 0.81 0.85 0.88 0.92 0.96
0.39 0.46 0.57 0.68 0.78 0.82 0.88 0.90 0.94 0.97
0.37 0.46 0.57 0.69 0.78 0.83 0.88 0.92 0.95 0.97
0.37 0.45 0.58 0.69 0.79 0.84 0.90 0.92 0.95 0.98
0.37 0.46 0.56 0.69 0.78 0.84 0.89 0.92 0.96 0.98
0.38 0.45 0.59 0.71 0.78 0.84 0.91 0.93 0.96 0.98
0.37 0.46 0.60 0.72 0.80 0.86 0.91 0.94 0.97 0.99
0.38 0.47 0.59 0.72 0.81 0.85 0.91 0.94 0.97 0.99
0.37 0.46 0.59 0.72 0.82 0.86 0.92 0.95 0.97 0.99
0.37 0.47 0.60 0.72 0.80 0.87 0.92 0.95 0.97 0.99
0.37 0.47 0.61 0.73 0.81 0.87 0.92 0.96 0.97 0.99
0.36 0.46 0.60 0.72 0.80 0.86 0.92 0.96 0.97 0.99
0.37 0.46 0.59 0.72 0.80 0.85 0.93 0.95 0.97 0.99
0.36 0.46 0.59 0.73 0.81 0.86 0.93 0.95 0.97 0.99
0.36 0.46 0.59 0.73 0.81 0.87 0.92 0.96 0.98 0.99
0.35 0.45 0.60 0.73 0.81 0.87 0.92 0.96 0.98 0.99
0.34 0.45 0.57 0.72 0.79 0.86 0.93 0.96 0.98 0.99
0.33 0.44 0.58 0.70 0.79 0.86 0.92 0.96 0.97 0.99
0.33 0.44 0.56 0.71 0.77 0.84 0.89 0.94 0.97 0.99
0.32 0.42 0.54 0.69 0.75 0.81 0.89 0.93 0.96 0.99

Figure 9: CIFAR-10
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D HUMAN STUDY EXAMPLE

We presented Mechanical Turk taskers with the following webpage, asking them to select the worst
image of the nine in the grid.

E ADVERSARIAL ROBUSTNESS OF MODEL TRAINED ON PROTOTYPES
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(b) Fashion-MNIST
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(c) CIFAR-10

Figure 10: The blue curves indicate the training accuracy of models trained on slices of 5, 000
examples selected according to their prototypicality—as reported on the x-axis. A baseline, obtained
by training the model on the entire dataset is indicated by the dotted-orange line. Models trained on
prototypes on Fashion-MNIST and CIFAR-10 are 2× more robust to adversarial examples, when
training on slices of 5, 000 prototypical examples as opposed to slices of 5, 000 outlier examples.
On MNIST there is no significant difference; almost all examples are good.
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F REVEALING AND CLUSTERING INTERESTING EXAMPLES AND SUBMODES

Figure 11: Uncommon submodes found within the MNIST “1” class, and their HDBSCAN clusters.
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Figure 12: Memorized exceptions in the Fashion-MNIST “sneakers,” and their HDBSCAN clusters.
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Figure 13: Memorized exceptions in the Fashion-MNIST “shirts,”, and their HDBSCAN clusters.
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Figure 14: Canonical prototypes in the CIFAR-10 “airplane” class.
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G COMPARING DENSITY OF PROTOTYPICALITY RANKINGS FOR DIFFERENT
METRICS OVER THE OUTPUT CLASSES OF ALL LEARNING TASKS
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Distribution of Fashion-MNIST classes for metric priv

 0% 10% 20% 30% 40%
Prototypicality Percentile

T-shirt/top

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

Cl
as

s L
ab

el

9.3%

1.2%

10.3%

5.4%

9.6%

1.3%

16.9%

2.2%

1.7%

2.2%

10.2%

0.8%

9.9%

6.3%

9.8%

1.9%

12.5%

4.2%

2%

2.5%

9.6%

0.8%

9.7%

7.3%

10.3%

2.2%

10.1%

4.6%

2.1%

3.2%

9.1%

0.8%

9.6%

8.5%

10%

2%

7.9%

5.1%

3%

4%

8.8%

1.1%

9.1%

9.6%

8.9%

2.7%

5.5%

5.5%

3.6%

5.1%

7%

2%

7.1%

10.4%

6.8%

3.5%

4.7%

6.2%

5.9%

6.4%

4.2%

3.1%

3.4%

9.1%

3.5%

6.1%

2.1%

8.1%

10.1%

10.2%

1.5%

6.5%

0.7%

3%

1%

9.7%

0.2%

11.7%

11.2%

14.3%

0.3%

14.5%

0.1%

0.3%

0.1%

13%

0%

10.5%

10.5%

10.7%

0.1%

29.1%

0%

0%

0%

17.6%

0%

2%

9.8%

1.3%

Distribution of Fashion-MNIST classes for metric ret
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 0% 10% 20% 30% 40%
Prototypicality Percentile

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Cl
as

s L
ab

el
3.3%

2.8%

5.5%

12%

5.1%

9.6%

2.3%

4.4%

2.3%

2.8%

3.9%

3.4%

5.7%

8.8%

5.9%

8.1%

3.2%

4.9%

2.8%

3.4%

4.6%

3.2%

5.5%

7.5%

6.1%

6.1%

3.9%

5.6%

3.1%

4.3%

5.1%

3.5%

5.4%

6.1%

6.4%

5.6%

4.8%

5.2%

3.6%

4.4%

5.7%

3.7%

5.2%

4.3%

5.6%

5%

5.9%

5.2%

4.4%

4.9%

5.6%

3.9%

5.3%

3.8%

5.8%

4.2%

5.8%

5.4%

5%

5.2%

5.7%

4.6%

5%

3%

5.5%

3.8%

6.1%

5.2%

5.9%

5.2%

5.7%

5.6%

4.9%

2.3%

4.4%

3.3%

6.2%

5%

6.7%

5.9%

5.8%

6.7%

4.6%

1.7%

3.4%

2.9%

6.6%

4.7%

8.1%

5.6%

4.6%

12.6%

2.9%

0.6%

1.9%

1.4%

5.3%

4.4%

8.1%

8.3%

Distribution of CIFAR-10 classes for metric adv

 0% 10% 20% 30% 40%
Prototypicality Percentile

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Cl
as

s L
ab

el

4.2%

1.6%

7.6%

9.6%

6.3%

7.5%

3%

5.1%

2.9%

2.2%

4.4%

1.9%

8.1%

8.5%

7.3%

6.9%

3%

4.4%

3.2%

2.3%

5%

2.2%

7.3%

8.1%

6.9%

6.8%

3%

4.5%

3.5%

2.6%

5%

2.8%

7.3%

7.1%

6.5%

6.4%

3.5%

4.5%

4%

2.9%

5.6%

3.6%

5.8%

6.1%

6.3%

5.6%

3.9%

4.7%

4.5%

3.9%

5.6%

4.8%

5.1%

4.5%

6.1%

5.2%

4.4%

4.5%

5.2%

4.7%

6%

6.2%

4%

3.3%

4.5%

4.5%

4.8%

4.5%

6.1%

6%

6%

8.2%

2.6%

2%

3.8%

3.7%

5.1%

4.6%

7%

7%

5.4%

8.8%

1.7%

0.7%

1.8%

2.3%

6.6%

5.6%

7.4%

9.6%

2.8%

9.8%

0.4%

0.2%

0.5%

1.1%

12.7%

7.6%

6.1%

8.7%

Distribution of CIFAR-10 classes for metric conf

 0% 10% 20% 30% 40%
Prototypicality Percentile

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Cl
as

s L
ab

el

4.9%

1.2%

7.7%

9.6%

7.2%

7%

3.2%

5.3%

2.5%

1.5%

4.3%

1.6%

8.1%

9.4%

7%

7.9%

2.9%

4.2%

2.6%

1.9%

5.2%

2.2%

7.6%

8.2%

6.9%

6.8%

3.1%

4.1%

3.4%

2.6%

5.1%

2.8%

6.9%

7.5%

6.8%

6.3%

3.1%

4%

4.5%

2.8%

5.8%

3.7%

6.2%

5.9%

6.5%

5.2%

3.1%

4.1%

5.1%

4.4%

5.7%

5.5%

5%

4.5%

5.5%

4.9%

4%

4.2%

5.5%

5.2%

6%

5.6%

4%

2.9%

4.8%

4.2%

5%

4.9%

6.2%

6.4%

6.1%

7.5%

2.9%

1.2%

3.2%

3.7%

6.1%

5.2%

6.8%

7.4%

4.7%

8.8%

1.1%

0.3%

1.4%

2.5%

8.3%

6.4%

7.1%

9.4%

2.2%

11%

0.6%

0.3%

0.8%

1.6%

11.2%

7.5%

6.3%

8.5%

Distribution of CIFAR-10 classes for metric agr

 0% 10% 20% 30% 40%
Prototypicality Percentile

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Cl
as

s L
ab

el

3.8%

1.5%

8.1%

4.8%

5.5%

7.8%

7.3%

4.5%

0.8%

5.9%

4.9%

1.3%

7.6%

6.5%

5.8%

6.5%

7.1%

4.9%

1.1%

4.4%

7.7%

3.2%

5.3%

8.9%

4.6%

3.3%

4%

6.5%

3.6%

2.9%

5.9%

1.9%

3.1%

5.2%

8.3%

7.8%

3.8%

5.3%

5.3%

3.5%

3.9%

5.6%

6.3%

7.1%

4.2%

9%

2.1%

4.9%

4.3%

2.5%

4.8%

7.8%

5.7%

6.8%

6.2%

5.2%

2.4%

3.5%

3.9%

3.9%

6.9%

2.7%

6.1%

3.3%

7.3%

4.5%

1.1%

3.2%

6%

8.8%

3.4%

5.8%

5.7%

3.4%

4.3%

2.5%

8.7%

4.6%

4.9%

6.6%

4%

9.4%

1.4%

2.6%

2.1%

1%

5.2%

5.8%

10.8%

7.7%

4.8%

10.8%

0.6%

1.5%

1.8%

2.4%

8.3%

6.7%

9.3%

3.8%

Distribution of CIFAR-10 classes for metric priv

 0% 10% 20% 30% 40%
Prototypicality Percentile

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Cl
as

s L
ab

el

3.5%

1.8%

6.6%

11.1%

6.8%

9%

2%

3.5%

3.1%

2.6%

5.7%

2.2%

6.6%

9.2%

5.5%

6.7%

2.9%

4.2%

3.5%

3.5%

5.9%

3.3%

5.9%

7.2%

5.4%

6.4%

3.3%

4.7%

3.9%

4.1%

6.3%

3.6%

5.3%

5.4%

5.7%

5.4%

4.1%

4.9%

4.7%

4.7%

6.1%

4.2%

5.2%

4.6%

5.4%

4.3%

5.3%

5.1%

5%

4.8%

5.7%

4.2%

4.5%

3.9%

5.2%

4.3%

5.9%

5.2%

5.5%

5.7%

5.5%

5.1%

4.3%

2.7%

4.4%

4.4%

6.3%

5.4%

5.7%

6.1%

5%

6.4%

3.8%

2.4%

4.3%

3.5%

6.6%

5.8%

6.2%

6%

4.1%

7.9%

3.8%

2%

3.9%

3.1%

6.9%

5.5%

6.7%

6.1%

2.1%

11.4%

4.1%

1.5%

3.5%

2.8%

6.9%

5.7%

5.8%

6.3%

Distribution of CIFAR-10 classes for metric ret
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H ALL MEMORIZED EXCEPTIONS FOR ALL FASHION-MNIST CLASSES

Below are all the memorized exceptions, as defined in the body of the paper, for all Fashion-MNIST
output classes:

• Tshirt/top
• Trouser
• Pullover
• Dress
• Coat
• Sandal
• Shirt
• Sneaker
• Bag
• Ankle boot

9/27/2018 fashion.html

file:///usr/local/google/home/ncarlini/Desktop/fashion.html 1/1
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Index 6 stingray 

  

 
Index 7 cock 

  

 
Index 8 hen 

  

 
Index 32 tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui 

  

 
Index 36 terrapin 

  

 
Index 40 American chameleon, anole, Anolis carolinensis 

  

 
Index 46 green lizard, Lacerta viridis 

  

 
Index 66 horned viper, cerastes, sand viper, horned asp, Cerastes cornutus 
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Index 68 sidewinder, horned rattlesnake, Crotalus cerastes 

  

 
Index 72 black and gold garden spider, Argiope aurantia 

  

 
Index 101 tusker 

  

 
Index 103 platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus 

  

 
Index 122 American lobster, Northern lobster, Maine lobster, Homarus americanus 

  

 
Index 124 crayfish, crawfish, crawdad, crawdaddy 

  

 
Index 126 isopod 

  

 
Index 161 basset, basset hound 

  

 
Index 166 Walker hound, Walker foxhound 
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Index 167 English foxhound 

  

 
Index 170 Irish wolfhound 

  

 
Index 179 Staffordshire bullterrier, Staffordshire bull terrier 

  

 
Index 180 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier 

  

 
Index 196 miniature schnauzer 

  

 
Index 197 giant schnauzer 

  

 
Index 198 standard schnauzer 

  

 
Index 206 curly-coated retriever 

  

 
Index 214 Gordon setter 
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Index 223 schipperke 

  

 
Index 238 Greater Swiss Mountain dog 

  

 
Index 248 Eskimo dog, husky 

  

 
Index 250 Siberian husky 

  

 
Index 264 Cardigan, Cardigan Welsh corgi 

  

 
Index 265 toy poodle 

  

 
Index 266 miniature poodle 

  

 
Index 270 white wolf, Arctic wolf, Canis lupus tundrarum 

  

 
Index 278 kit fox, Vulpes macrotis 

  

 
Index 290 jaguar, panther, Panthera onca, Felis onca 
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Index 304 leaf beetle, chrysomelid 

  

 
Index 311 grasshopper, hopper 

  

 
Index 312 cricket 

  

 
Index 319 dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito
hawk, skeeter hawk 

  

 
Index 320 damselfly 

  

 
Index 334 porcupine, hedgehog 

  

 
Index 341 hog, pig, grunter, squealer, Sus scrofa 

  

 
Index 342 wild boar, boar, Sus scrofa 

  

 
Index 345 ox 

  

Under review as a conference paper at ICLR 2019

40



 
Index 348 ram, tup 

  

 
Index 349 bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis 

  

 
Index 359 black-footed ferret, ferret, Mustela nigripes 

  

 
Index 380 titi, titi monkey 
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Index 383 Madagascar cat, ring-tailed lemur, Lemur catta 

  

 
Index 386 African elephant, Loxodonta africana 

  

 
Index 390 eel 

  

 
Index 399 abaya 

  

 
Index 400 academic gown, academic robe, judge's robe 

  

 
Index 409 analog clock 

  

 
Index 413 assault rifle, assault gun 

  

 
Index 417 balloon 

  

 
Index 419 Band Aid 
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Index 423 barber chair 

  

 
Index 424 barbershop 

  

 
Index 429 baseball 

  

 
Index 434 bath towel 

  

 
Index 435 bathtub, bathing tub, bath, tub 

  

 
Index 440 beer bottle 

  

 
Index 461 breastplate, aegis, egis 
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Index 465 bulletproof vest 
  

 
Index 479 car wheel 

  

 
Index 484 catamaran 

  

 
Index 505 coffeepot 

  

 
Index 516 cradle 

  

 
Index 524 cuirass 

  

 
Index 538 dome 

  

 
Index 541 drum, membranophone, tympan 

  

 
Index 550 espresso maker 
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Index 579 grand piano, grand 

  

 
Index 583 guillotine 

  

 
Index 591 handkerchief, hankie, hanky, hankey 

  

 
Index 595 harvester, reaper 

  

 
Index 604 hourglass 

  

 
Index 619 lampshade, lamp shade 

  

 
Index 620 laptop, laptop computer 

  

 
Index 636 mailbag, postbag 

  

 
Index 638 maillot 
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Index 639 maillot, tank suit 

  

 
Index 643 mask 

  

 
Index 647 measuring cup 

  

 
Index 657 missile 

  

 
Index 665 moped 

  

 
Index 667 mortarboard 

  

 
Index 668 mosque 
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Index 670 motor scooter, scooter 

  

 
Index 678 neck brace 

  

 
Index 681 notebook, notebook computer 

  

 
Index 700 paper towel 

  

 
Index 739 potter's wheel 

  

 
Index 744 projectile, missile 
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Index 748 purse 

  

 
Index 764 rifle 

  

 
Index 804 soap dispenser 

  

 
Index 808 sombrero 

  

 
Index 810 space bar 

  

 
Index 817 sports car, sport car 

  

 
Index 827 stove 
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Index 830 stretcher 
  

 
Index 836 sunglass 

  

 
Index 837 sunglasses, dark glasses, shades 

  

 
Index 841 sweatshirt 

  

 
Index 842 swimming trunks, bathing trunks 

  

 
Index 846 table lamp 

  

 
Index 847 tank, army tank, armored combat vehicle, armoured combat vehicle 

  

 
Index 876 tub, vat 
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Index 878 typewriter keyboard 

  

 
Index 892 wall clock 

  

 
Index 903 wig 

  

 
Index 907 wine bottle 

  

 
Index 914 yawl 

  

 
Index 925 consomme 

  

 
Index 928 ice cream, icecream 

  

 

Under review as a conference paper at ICLR 2019

50



Index 939 zucchini, courgette 
  

 
Index 954 banana 

  

 
Index 960 chocolate sauce, chocolate syrup 

  

 
Index 961 dough 

  

 
Index 962 meat loaf, meatloaf 

  

 
Index 966 red wine 

  

 
Index 981 ballplayer, baseball player 

  

 
Index 987 corn 

  

 

Under review as a conference paper at ICLR 2019

51


	Introduction
	Defining and Identifying Prototypes
	Metrics for Prototypicality

	Evaluating the Five Different Prototypicality Metrics
	Quantitative Evaluation of Correlation Coefficients
	Qualitative Evaluation by Informal Inspection and by a Human Study
	Comparing Prototypicality Metrics and their Characteristics

	Utilizing Prototypes to Improve Aspects of Machine Learning
	Training on prototypes gives simpler decision boundaries

	Conclusion
	Related Work
	Leave-One-Out Training on MNIST
	Figures of outliers and prototypes
	MNIST extreme outliers and prototypes
	Fashion-MNIST extreme outliers and prototypes
	CIFAR extreme outliers and prototypes
	ImageNet extreme outliers and prototypes

	Prototype accuracy when training on prototypes
	Human Study Example
	Adversarial robustness of model trained on prototypes
	Revealing and clustering interesting examples and submodes
	Comparing density of prototypicality rankings for different metrics over the output classes of all learning tasks
	All memorized exceptions for all Fashion-MNIST classes
	ImageNet Memorized Exceptions

