Under review as a conference paper at ICLR 2017

SPATIO-TEMPORAL ABSTRACTIONS IN
REINFORCEMENT LEARNING THROUGH
NEURAL ENCODING

Nir Baram, Tom Zahavy *

Electrical Engineering Department,

The Technion - Israel Institute of Technology, Haifa 32000, Israel
{nirb, tomzahavy}@campus.technion.ac.il

Shie Mannor

Electrical Engineering Department,

The Technion - Israel Institute of Technology, Haifa 32000, Israel
shie@ee.technion.ac.il

ABSTRACT

Recent progress in the field of Reinforcement Learning (RL) has enabled to tackle
bigger and more challenging tasks. However, the increasing complexity of the
problems, as well as the use of more sophisticated models such as Deep Neural
Networks (DNN), has impeded the ability to understand the behavior of trained
policies. In this work, we present the Semi-Aggregated Markov Decision Process
(SAMDP) model. The purpose of the SAMDP modeling is to analyze trained poli-
cies by identifying temporal and spatial abstractions. In contrast to other modeling
approaches, SAMDP is built in a transformed state-space that encodes the dynam-
ics of the problem. We show that working with the right state representation mit-
igates the problem of finding spatial and temporal abstractions. We describe the
process of building the SAMDP model by observing trajectories of a trained pol-
icy and give examples for using it in a toy problem and complicated DQN agents.
Finally, we show how using the SAMDP we can monitor the trained policy and
make it more robust.

INTRODUCTION

In the early days of RL, understanding the behavior of trained policies could be done rather easily
(Sutton, 1990). Researchers focused on simpler problems (Peng and Williams, 1993), and policies
were built using lighter models than today (Tesauro, 1994). As a result, a meaningful analysis of
policies was possible even by working with the original state representation and relating to primitive
actions. However, in recent years research has made a huge step forward. Fancier models such as
Deep Neural Networks (DNNs) have become a commodity (Mnih et al., 2015), and the RL commu-
nity tackles bigger and more challenging problems (Silver et al., 2016). Artificial agents are even
expected to be used in autonomous systems such as self-driving cars. The need to reason the behav-
ior of trained agents, and understand the mechanisms that govern its choice of actions is pressing
more than ever.

Analyzing a trained policy modeled by a DNN (either graphically using the state-action diagram,
or by any other mean) is practically impossible. A typical problem consists of an immense number
of states, and policies often rely on skills (Mankowitz, Mann, and Mannor, 2014), creating more
than a single level of planning. The resulting Markov reward processes induced by such policies
are too complicated to comprehend through observation. Simplifying the behavior requires finding
a suitable representation of the state space; a long-standing problem in machine learning, where
extensive research has been conducted over the years (Boutilier, Dean, and Hanks, 1999). There, the
goal is to come up with a transformation of the state space ¢ : s — §, that can facilitate learning.

*These authors contributed equally

Under review as a conference paper at ICLR 2017

In the field of RL, where problems are sequential in nature, this problem is exacerbated since the
representation of a state needs to account for the dynamics of the problem as well.

Finding a suitable state representation can be phrased as a learning problem itself (Ng, 2011; Lee
et al., 2006). DNNs are very useful in this context since they automatically build a hierarchy of
representations with an increasing level of abstraction along the layers. In this work, we show that
the state representation that is learned automatically by DNNSs is suitable for building abstractions
in RL. To this end, we introduce the SAMDP model; a modeling approach that creates abstractions
both in space and time. Contrary to other modeling approaches, SAMDP is built in a transformed
state space, where the problem of creating spatial abstractions (i.e., state aggregation), and temporal
abstractions (i.e., identifying skills) is facilitated using spatiotemporal clustering. We provide an
example for building an SAMDP model for a basic gridworld problem where ¢(s) is hand-crafted.
However, the real strength of the model is demonstrated on challenging Atari2600 games solved
using DQNs (Mnih et al., 2015). There, we set ¢(s) to be the state representation automatically
learned by the DNN (i.e. the last hidden layer). We continue by presenting methods for evaluating
the fitness of the SAMDP model to the trained policy at hand. Finally, we describe a method for
using the SAMDP as a monitor that alerts when the policy’s performance weakens, and provide
initial results showing how the SAMDP model is useful for shared autonomy systems.

Low Temporal Hierarchy High Temporal Hierarchy

Skill

Low Spatial MBP A Identification
Hierarchy {S’A’ PS , RS , y}
State @) State
Aggregation Aggregation
High Spatial AMADP A
() Cluster Action Hierarchy {C’ A' PC ’ RC ’ }/}

® State > Skill

Figure 1: Left: Illustration of state aggregation and skills. Primitive actions (orange arrows) cause
transitions between MDP states (black dots) while skills (red arrows) induce transitions between
SAMDP states (blue circles). Right: Modeling approaches for analyzing trained policies.

BACKGROUND

We briefly review the standard reinforcement learning framework of discrete-time finite Markov
decision processes (MDPs). An MDP is defined by a five-tuple < S, A, P, R,y >. At time ¢ an
agent observes a state s; € S, selects an action a; € A, and receives a reward r;. Following the
agent’s action choice, it transitions to the next state s;11 € S according to a Markovian proba-
bility matrix P, € P. The cumulative return at time ¢ is given by R, = g, 7" ~*rs, where
v € [0,1] is the discount factor. In this framework, the goal of an RL agent is to maximize the
expected return by learning a policy 7 : S — A4; a mapping from states s € .S to a probability
distribution over actions. The action-value function Q™ (s,a) = E[R;|s; = s, a: = a, 7] represents
the expected return after observing state s, taking action a and then following policy 7. The opti-
mal action-value function obeys a fundamental recursion known as the optimal Bellman Equation:
Q" (st;ar) =E |re + 7y max Q" (st41,a')| -

Skills, Options (Sutton, Precup, and Singh, 1999) are temporally extended control structures, de-
noted by o. A skill is defined by a triplet: 0 =< I, 7,5 >, where I defines the set of states where
the skill can be initiated, 7 is the intra-skill policy, and S is the set of termination probabilities de-
termining when a skill will stop executing. 3 is typically either a function of state s or time ¢. Any
MDP with a fixed set of skills is a Semi-MDP (SMDP). Planning with skills can be performed by
learning for each state the value of choosing each skill. More formally, an SMDP is defined by a
five-tuple < S, %, P, R, >. S is the set of states, 3 is the set of skills, P is the SMDP transition

Under review as a conference paper at ICLR 2017

matrix, -y is the discount factor and the SMDP reward is defined by:

RS =E[r?] = E[rep1 4+ yrego +--- +7571

Tiyk|St = 8,0). (1)
The Skill Policy 1 : S — Ay is a mapping from states to a distribution over skills. The action-value
function Q,,(s,0) = E[}_;°, 7" Re|(s,0), u] represents the value of choosing skill o € ¥ at state
s € S, and thereafter selecting skills according to policy u. The optimal skill value function is given
by: Q%(s,0) = E[R? + Vkma%cQ*Z(s’, o")] (Stolle and Precup, 2002).

o'e

THE SEMI AGGREGATED MDP

Reinforcement Learning problems are typically modeled using the MDP formulation. Given an
MDP, a variety of algorithms have been proposed to find an optimal policy. However, when one
wishes to analyze a trained policy, MDP may not be the best modeling choice due to the size of
the state space and the length of the planning horizon. In this section, we present the SMDP and
Aggregated MDP (AMDP) models which can simplify the analysis by using temporal and spatial
abstractions respectively. We also introduce the new Semi-Aggregated MDP (SAMDP) model, that
combines SMDP and AMDP models in a novel way which leverages the abstractions made in each
modeling approach.

SMDP (Sutton, Precup, and Singh, 1999), can simplify the analysis of a trained policy by using
temporal abstractions. The model extends the MDP action space A to allow the agent to plan with
temporally extended actions X (i.e., skills). Analyzing policies using the SMDP model shortens the
planning horizon and simplifies the analysis. However, there are two problems with this approach.
First, one still faces the high complexity of the state space, and second, the SMDP model requires
to identify skills.

Skill identification is an ill-posed problem that can be addressed in many ways, and for which ex-
tensive research has been done over the years. The popular approaches are to identify bottlenecks
in the state space (McGovern and Barto, 2001),or to search for common behavior trajectories, or
common state region policies (McGovern, 2002). A different approach can be to build a graphical
model of the agent’s interaction with the environment and to use betweenness centrality measures
to identify subtasks (Simgsek and Barreto, 2009). No matter what the method is, identifying skills
solely by observing an agent play is a challenging task.

Alternative approach to SMDP modeling is to analyze a policy using spatial abstractions in the state
space. If there is a reason to believe that groups of states share common attributes such as similar
policy or value function, it is possible to use State Aggregation (Moore, 1991). State Aggregation is
a well-studied problem that typically involves identifying clusters as the new states of an Aggregated
MDP, where the set of clusters C replaces the MDP states .S. Applying RL on aggregated states is
potentially advantageous because the dimensions of the transition probability matrix P, the reward
signal R and the policy 7 are decreased (Singh, Jaakkola, and Jordan, 1995). However, the AMDP
modeling approach has two drawbacks. First, the action space A is not modified, and therefore the
planning horizon remains intractable, and second, AMDPs are not necessarily Markovian (Bai, Sri-
vastava, and Russell, 2016).

In this paper, we propose a model that combines the advantages of the SMDP and AMDP approaches
and denote it by SAMDP. Under SAMDP modeling, aggregation defines both the states and the set
of skills, allowing analysis with spatiotemporal abstractions (the state-space dimensions and the
planning horizon are reduced). However, SAMDPs are still not necessarily Markovian. We summa-
rize the different modeling approaches in Figure 1. The rest of this section is devoted to explaining
the five stages of building an SAMDP model: (0) Feature selection, (1) State Aggregation, (2) Skill
identification, (3) Inference, and (4) Model Selection.

(0) Feature selection. We define the mapping from MDP states to features, by a mapping function
¢ : s — s C R™. The features may be raw (e.g., spatial coordinates, frame pixels) or higher level
abstractions (e.g., the last hidden layer of an NN). The feature representation has a significant effect
on the quality of the resulting SAMDP model and vice versa; a good model can point out a good
feature representation.

(1) Aggregation via Spatio-temporal clustering. The goal of Aggregation is to find a mapping
(clustering) from the MDP feature space S’ C R™ to the AMDP state space C. Clustering algo-
rithms typically assume that data is drawn from an i.i.d distribution. However, in our problem data

Under review as a conference paper at ICLR 2017

is generated from an MDP which violates this assumption. We alleviate this problem using two dif-
ferent approaches. First, we decouple the clustering step from the SAMDP model, by creating an
ensemble of clustering candidates and building an SAMDP model for each (following stages 2 and
3). In stage 4, we will explain how to run a non-analytic outer optimization loop to choose between
these candidates based on spatiotemporal evaluation criteria. Second, we introduce a novel exten-
sion of the celebrated K-means algorithm (MacQueen and others, 1967), which enforces temporal
coherency along trajectories. In the vanilla K-means algorithm, a point z; is assigned to cluster c;
with mean p; if p; is the closest cluster center to x; (for further details please see the supplementary
material). We modified this step as follows:

0= (e 15— mll2 < X — 2% € LK),

where F stands for the Frobenius norm, K is the number of clusters, ¢ is the time index of x;, and
X, is a set of 2w + 1 centered at x; from the same trajectory: {xj eEXy <= jeft—w,t+ w]}
The dimensions of p correspond to a single point, but is expanded to the dimensions of X;. In this
way, we enforce temporal coherency since a point z; is assigned to a cluster c; if its neighbors in
time along the trajectory are also close to ;.

We have also experimented with other clustering methods such as spectral clustering, hierarchical
agglomerative clustering and entropy minimization (please refer to the supplementary material for
more details).

(2) SKkill identification. We define an SAMDP skill ¢; ; € ¥ uniquely by a single initiation state
¢; € C and a single termination state ¢; € C' : 0;; =< ¢;, T, j,¢; > . More formally, at time ¢ the
agent enters an AMDP state ¢; at an MDP state s; € c;. It chooses a skill according to its SAMDP
policy and follows the skill policy m; ; for k time steps until it reaches a state s,y € c;, s.ti # j.
We do not define the skill length £ apriori nor the skill policy but infer the skill length from the data.
As for the skill policies, our model does not define them explicitly, but we will observe later that our
model successfully identifies skills that are localized in time and space.

(3) Inference. Given the SAMDP states and skills, we infer the skill length, the SAMDP reward
and the SAMDP probability transition matrix from observations. The skill length, is inferred for
a skill o; ; by averaging the number of MDP states visited since entering SAMDP state ¢; until
leaving for SAMDP state c;. The skill reward is inferred similarly using Equation 1.

The inference of the SAMDP transition matrices is a bit more puzzling, since the probability of
seeing the next SAMDP state depends both on the MDP dynamics and the agent policy in the MDP
state space. We now turn to discuss how to infer these matrices by observing transitions in the MDP
state space. Our goal is to infer two quantities: (a) The SAMDP transition probability matrices
Ps P"EZ = Pr(cj|c;,0), measures the probability of moving from state ¢; to ¢; given that
skill o is chosen. These matrices are defined unlquely by our definition of skills as deterministic
probability matrices. (b) The probability of moving from state ¢; to ¢; given that skill o is chosen
according to the agent SAMDP policy: P["; = Pr(cj|ci, o = 7(c;)). This quantity involves both the
SAMDP transition probability matrices and the agent policy. However, since SAMDP transition
probability matrices are deterministic, this is equivalent to the agent policy in the SAMDP state
space. Therefore by inferring transitions between SAMDP states, we directly infer the agent’s
SAMDP policy.

Given an MDP with a deterministic environment and an agent with a nearly deterministic MDP
policy (e.g., a deterministic policy that uses an e-greedy exploration (¢ < 1)), it is intuitive to
assume that we would observe a nearly deterministic SAMDP policy. However, there are two
mechanisms that cause stochasticity in the SAMDP policy: (1) Stochasticity that is accumulated
along skill trajectories. (2) Approximation errors in the aggregation process. A given SAMDP state
may contain more than one “real” state and therefore more than one skill. Performing inference in
this setup, we might observe a stochastic policy that chooses randomly between skills.

Therefore, it is very likely to infer a stochastic SAMDP transition matrix, even though the SAMDP
transition probability matrices and the MDP environment are deterministic, and the MDP policy
is nearly deterministic. (4) Model selection. So far we have explained how to build an SAMDP
from observations. In this stage, we’ll explain how to choose between different SAMDP model
candidates. There are two advantages of choosing between multiple SAMDPs. First, there are
different hyperparameters to tune: two examples are the number of SAMDP states (K) and
the window size (w) for the clustering algorithm. Second, there is randomness in the aggregation
step. Hence, clustering multiple times and picking the best result will potentially yield better models.

Under review as a conference paper at ICLR 2017

o—fe—teatoc

-b!) ©
o

(a) MDP (b) SMDP (c) AMDP

[

(d) SAMDP

Figure 2: State-action diagrams for a gridworld problem. a. MDP diagram: relate to individual states
and primitive actions. b. SMDP diagram: Edge colors represent different skills. c. AMDP diagram:
clusters are formed using spatial aggregation in the original state. d. SAMDP diagram: clusters
are found after transforming the state space. intra-cluster transitions (dashed arrows) can be used
to explain the skills, while inter-cluster transitions (big red arrows) loyally describe the governing
policy.

We developed, therefore, evaluation criteria that allow us to select the best model, motivated by
Hallak, Di-Castro, and Mannor (2013). We follow the Occams Razor principle and aim to find the
simplest model which best explains the data. (i) Value Mean Square Error(VMSE), measures the
consistency of the model with the observations. The estimator is given by

VMSE = lv=vsamprl/|v|, .

where v stands for the SAMDP value function of the given policy, and vsanpp iS given by:
Vsampp = (I +~+*P)~1r, where P is measured under the SAMDP policy. (ii) Inertia, the K-
means algorithm objective function, is given by : I = > min, ec(||z; — p][?). Inertia mea-
sures the variance inside clusters and encourages spatial coherency. Motivated by Ncut and spectral
clustering (Von Luxburg, 2007), we define (iii) The Intensity Factor as the fraction of out/in clus-
ter transitions. However, we define edges between states that are connected along the trajectory (a
transition between them was observed) and give them equal weights (instead of defining the edges
by euclidean distances as in spectral clustering). Minimizing the intensity factor encourages longer
duration skills. (iv)had been Entropy, is defined on the SAMDP probability transition matrix as
follows: e = — 3 . {|Ci| - >_, P,jlog P, ;}. Low entropy encourages clusters to have less skills,
i.e., clusters that are localized both in time and space.

SAMDP FOR GRIDWORLD

We first illustrate the advantages of SAMDP in a basic gridworld problem (Figure 2). In this task,
an agent is placed at the origin (marked in X), where the goal is to reach the green ball and return.
The state s € R® is given by: s = {z,v,b}, where (x,y) are the coordinates and b € {0,1}
indicates whether the agent has reached the ball or not. The policy is trained to find skills following
the algorithm of Mankowitz, Mann, and Mannor (2014). We are given trajectories of the trained
agent, and wish to analyze its behavior by building the state-action graph for all four modeling
approaches. For clarity, we plot the graphs on the maze using the coordinates of the state. The MDP
graph (Figure 2(a)), consists of a vast number of states. It is also difficult to understand what skills
the agent is using. In the SMDP graph (Figure 2(b)), the number of states remain high, however

Under review as a conference paper at ICLR 2017

Figure 3: SAMDP visualization for Breakout. Each MDP state is represented on the map by its two
t-SNE coordinates and colored by its value estimate (low values in blue and high in red). SAMDP
states are visualized by their mean state (with frame pixels) at the mean t-SNE coordinate. An Edge
between two SAMDP states represents a skill (bold side indicate terminal state), and the numbers
above the edges correspond to the inferred SAMDP policy.

coloring the edges by the skills, helps to understand the agent’s behavior. Unfortunately, producing
this graph is seldom possible because we rarely receive information about the skills. On the other
hand, abstracting the state space can be done more easily using state aggregation. However, in the
AMDP graph (Figure 2(c)), the clusters are not aligned with the played skills because the routes
leading to and from the ball overlap. For building the SAMDP model (Figure 2(d)), we transform
the state space in a way that disentangles the routes:

[(zy), ifbis 0
¢(m’y)_{(n—gg,y), ifbis1’

where L is the maze width. The transformation ¢ flip and translate the states where b = 1. Now
that the routes ro and from the ball are disentangled, the clusters are perfectly aligned with the skills.
Understanding the behavior of the agent is now possible by examining inter-cluster and intra-cluster
transitions.

SAMDPs FOR DQNSs

Feature extraction: We evaluate a pre-trained DQN agent for multiple trajectories with an e-greedy
policy on three Atari2600 games, Pacman (a game where DQN performs very well), Seaquest (for
the opposite reason) and Breakout (for its popularity). We let the trained agent play 120k game
states, and record the neural activations of the last hidden layer as well as the Q values. We also keep
the time index of each state to be able to find temporal neighbors. Features from other layers can
also be used. However, we rely on the results from Zahavy, Zrihem, and Mannor (2016) that showed
that the features learned in the last hidden layer capture a spatiotemporal hierarchy and therefore
make a good candidate for state aggregation. We then apply t-SNE on the neural activations data,
a non-linear dimensionality reduction method that is particularly good at creating a single map that
reveals structure at many different scales. We use the two coordinates of the t-SNE map and the
value estimation as the MDP state features. Each coordinate is normalized to have zero mean and

Under review as a conference paper at ICLR 2017

DQN value vs. SAMDP value

— DQN
g 2 — SAMDP
I
©
> 0

0 5 10 15 20 25
Cluster index

Correlation between greedy policy and trajectory reward

Cluster index

Greedy policy weight in good/bad trajectories

0.3 — High reward trajs
— Low reward trajs

O&OO 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage of extermum trajectories used

Figure 4: Model Evaluation. Top: VMSE. Center: greedy policy correlation with trajectory reward.
Bottom: top (blue), least (red) rewarded trajectories.

unit variance. We have experimented with other configurations such as using the activations without
t-SNE as well as different normalization. However, we found that this configuration results in better
SAMDP models. We also use two approximations in the inference stage which we found to work
well: 1) overlooking transitions with a small skill length (shorter than 2) and 2) truncating transitions
with probability less than 0.1. We only present results for the Breakout game and refer the reader to
the supplementary material for results on Pacman and Seaquest.

Model Selection: We perform a grid search on two parameters: i) number of clusters K € [15, 25].
i) window size w € [1,7]. We found that models larger (smaller) than that are too cumbersome
(simplistic) to analyze. We select the best model in the following way: we first sort all models by the
four evaluation criteria (SAMDP Section, stage 4) from best to worst. Then, we iteratively intersect
the p-prefix of all sets (i.e., the first p elements of each set) starting with 1-prefix. We stop when
the intersection is nonempty and choose the configuration at the intersection. The resulted SAMDP
model for Breakout can be seen in Figure 3.

We also measure the p-value of the chosen model. For the null hypothesis, we take the SAMDP
model constructed with random clusters. We tested 10000 random SAMDP models, none of which
scored better than the chosen model (for all the evaluation criteria).

Qualitative Evaluation: Examining the resulting SAMDP (Figure 3) it is interesting to note the
sparsity of transitions, which implies low entropy. Inspecting the mean image of each cluster reveals
insights about the nature of the skills hiding within and uncovers the policy hierarchy as described
in Zahavy, Zrihem, and Mannor (2016). The agent begins to play in low value (blue) clusters (e.g.,
1,5,8,9,13,16,18,19). These clusters are well connected between them and are disconnected from
other clusters. Once the agent transitions to the ’tunnel-digging” option in clusters 4,12,14, it stays
in there until it finishes to curve the tunnel, then it transitions to cluster 11. From cluster 11 the agent
progresses through the ”left banana” and hops between clusters 2,21,5,10,0,7 and 3 in that order.
Model Evaluation: We first measure the VMSE criterion, as defined in Equation 2 (Fig-
ure 4, top). We infer v by averaging the DQN value estimates in each cluster: vP9N(c;) =
ﬁ Disice, vP®@N (s;), and evaluate Vg 4ppp as defined above. Since the Atari environment is

deterministic, the vgap/pp estimate is accurate with respect to the DQN policy. Therefore, the
VMSE criterion measures how well the SAMDP model approximates the true MDP. In practice, we
observe that the DQN and SAMDP values are very similar; indicating that the SAMDP model fits
the data well.

Second, we evaluate the greedy policy with respect to the SAMDP value function by: mgyceqy (i) =
argmax{R,, , + Wk”i-,j vsampr(c;)}. We then measure the correlation between the greedy policy

J

decisions and the trajectory reward. For a given trajectory j we measure P, : the empirical distribu-
tion of choosing the greedy policy at state c; and the cumulative reward R’. Finally, we present the

correlation between these two measures in each state: corr; = corr(Pij , R7) in (Figure 4, center). A

Under review as a conference paper at ICLR 2017

positive correlation indicates that following the greedy policy leads to high reward. Indeed for most
of the states, we observe positive correlation, supporting the consistency of the model.

The third evaluation is close in spirit to the second one. We partition the data to a train and test sets.
We evaluate the greedy policy based on the train set and create two transition matrices 7,7~ using
the k top and bottom rewarded trajectories respectively from the test set. We measure the correlation
of the greedy policy T with each of the transition matrices for different values of & (Figure 4 bot-
tom). As clearly seen, the correlation of the greedy policy and the top trajectories is higher than the
correlation with the bottom trajectories.

Eject Button: The motivation for this experiment stems from the idea of shared autonomy Pitzer et
al. (2011). There are domains where errors are dreadful, and performance must be as high as possi-
ble. The idea of shared autonomy, is to allow an operator to intervene in the decision loop at critical
times. For example, in 20% of commercial flights, the auto-pilot returns the control to the human
pilots. In the following experiment, we show how the SAMDP model can help to identify where
the agent’s behavior deteriorates. Setup. (a) Evaluate a DQN agent, create a trajectory data set, and
evaluate the features for each state (stage 0). (b) Divide the data into two groups: train (100 trajec-
tories) and test (60). then build an SAMDP model (stages 1-4) on the train data. (c) Split the train
data to k top and bottom rewarded trajectories 7', T~ and re-infer the model parameters separately
for each (stage 3). (d) Project the test data on the SAMDP model (mapping each state to the near-
est SAMDP state). (e) Eject when the transitions of the agent are more likely under the 7'~ matrix
rather then under 7" (inspired by the idea of option interruption Sutton, Precup, and Singh (1999)).
(f) We average the trajectory reward on (i) the entire test set, and (ii) the un-ejected trajectories sub
set. We measure 36% = 7.7%, 20% == 8.0%, and 4.7% = %1.2 performance gain for Breakout
Seaquest and Pacman, respectively. The eject experiment indicates that the SAMDP model can be
used to make a given DQN policy robust by identifying when the agent is not going to perform well
and return control to a human operator or some other Al agent. Other eject mechanisms are also pos-
sible. For example, ejecting by looking at MDP values. However, the Q value is not monotonically
decreasing along the trajectory as expected (See Figure 3). The solution we propose is to eject by
monitoring transitions and not state values, which makes the MDP impractical in this case because
it’s state-action diagram is too large to construct, and too expensive to process.

DISCUSSION

SAMDP modeling offers a way to present a trained policy in a concise way by creating abstractions
that relate to the spatiotemporal structure of the problem. We showed that by using the right rep-
resentation, time-aware state aggregation could be used to identify skills. It implies that the crucial
step in building an SAMDP is the state aggregation phase. The aggregation depends on the state
features and the clustering algorithm at hand.

In this work, we presented a basic K-means variant that relies on temporal information. However,
other clustering approaches are possible. We also experimented with agglomerative methods but
found them to be significantly slower without providing any benefit. We believe that clustering
methods that better relate to the topology, such as spectral clustering, would produce the best results.
Regarding the state features; in the DQN example, we used the 2D t-SNE map. This map, however, is
built under the i.i.d assumption that overlooks the temporal dimension of the problem. An interesting
line of future work will be to modify the t-SNE algorithm to take into account temporal distances as
well as spatial ones. A tSNE algorithm of this kind may produce 2D maps with even lower entropy
which will decrease the aggregation artifacts that affect the quality of the SAMDP model.

In this work we analyzed discrete-action policies, however SAMDP can also be applied for
continuous-action policies that maintain a value function (since our algorithm depends on it for
construction and evaluation), as in the case of actor-critic methods. Another issue we wish to inves-
tigate is the question of consistency in re-building an SAMDP. We would like the SAMDP to be
unique for a given problem. However, there are several aspects of randomness that may cause diver-
gence. For instance, when using a DQN, randomness exists in the creation of the t-SNE map, and
in the clustering phase. From our experience, though, different models built for the same problem
are reasonably consistent. In future work, we wish to address the same problem by laying out an
optimization problem that will directly account for all of the performance criteria introduced here. It
would be interesting to see what clustering method will be drawn out of this process and to compare
the principled solution with our current approach.

Under review as a conference paper at ICLR 2017

REFERENCES

Bai, A.; Srivastava, S.; and Russell, S. 2016. Markovian state and action abstractions for mdps via
hierarchical mcts. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research 11(1):94.

Hallak, A.; Di-Castro, D.; and Mannor, S. 2013. Model selection in markovian processes. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM.

Lee, H.; Battle, A.; Raina, R.; and Ng, A. Y. 2006. Efficient sparse coding algorithms. In Advances
in neural information processing systems, 801-808.

MacQueen, J., et al. 1967. Some methods for classification and analysis of multivariate observations.

Mankowitz, D. J.; Mann, T. A.; and Mannor, S. 2014. Time regularized interrupting options. Inter-
nation Conference on Machine Learning.

McGovern, A., and Barto, A. G. 2001. Automatic discovery of subgoals in reinforcement learning
using diverse density.

McGovern, A. 2002. Autonomous discovery of abstractions through interaction with an environ-
ment. In International Symposium on Abstraction, Reformulation, and Approximation, 338-339.
Springer.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.;
Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518(7540).

Moore, A. 1991. Variable resolution dynamic programming: Efficiently learning action maps in
multivariate real-valued state-spaces. In Birnbaum, L., and Collins, G., eds., Machine Learning:
Proceedings of the Eighth International Conference. Morgan Kaufmann.

Ng, A. 2011. Sparse autoencoder. CS294A Lecture notes 72:1-19.

Peng, J., and Williams, R. J. 1993. Efficient learning and planning within the dyna framework.
Adaptive Behavior 1(4):437-454.

Pitzer, B.; Styer, M.; Bersch, C.; DuHadway, C.; and Becker, J. 2011. Towards perceptual shared
autonomy for robotic mobile manipulation. In IEEE International Conference on Robotics Au-
tomation (ICRA).

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.;
Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbren-
ner, N.; Sutskever, L.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks and tree search. Nature 529:484-503.

Simgek, 0., and Barreto, A. S. 2009. Skill characterization based on betweenness. In Advances in
neural information processing systems, 1497-1504.

Singh, S. P.; Jaakkola, T.; and Jordan, M. I. 1995. Reinforcement learning with soft state aggregation.
Advances in neural information processing systems 361-368.

Stolle, M., and Precup, D. 2002. Learning options in reinforcement learning. Springer.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence 112(1):181-211.

Sutton, R. S. 1990. Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. In In Proceedings of the Seventh International Conference on
Machine Learning, 216-224. Morgan Kaufmann.

Under review as a conference paper at ICLR 2017

Tesauro, G. 1994. TD-gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation 6:215-219.

Von Luxburg, U. 2007. A tutorial on spectral clustering. Statistics and computing 17(4):395-416.

Zahavy, T.; Zrihem, N. B.; and Mannor, S. 2016. Graying the black box: Understanding dqns.
Proceedings of the 33 rd International Conference on Machine Learning (ICML-16), JMLR: vol-
ume48.

10

