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Abstract

In previous work, artificial agents were shown
to achieve almost perfect accuracy in referen-
tial games where they have to communicate
to identify images. Nevertheless, the result-
ing communication protocols rarely display
salient features of natural languages, such as
compositionality. In this paper, we propose
some realistic sources of pressure on commu-
nication that avert this outcome. More specif-
ically, we formalise the principle of least ef-
fort through an auxiliary objective. More-
over, we explore several game variants, in-
spired by the principle of object constancy, in
which we alter the frequency, position, and
luminosity of the objects in the images. We
perform an extensive analysis on their effect
through compositionality metrics, diagnostic
classifiers, and zero-shot evaluation. Our find-
ings reveal that the proposed sources of pres-
sure result in emerging languages with less re-
dundancy, more focus on high-level concep-
tual information, and better abilities of gener-
alisation. Overall, our contributions reduce the
gap between emergent and natural languages.

1 Introduction

One of the key requirements for a machine to be
intelligent is its ability to communicate in natu-
ral language (Mikolov et al., 2018). While super-
vised approaches with labelled texts have recently
achieved unprecedented performances in several
applications (Chen et al., 2017, inter alia), they
still neglect fundamental components of natural
communication, such as the speakers’ intention
and the function of their utterances (Clark, 1996).

This functional aspect of language instead is
captured by multi-agent games (Kirby, 2002), in
which agents have to communicate about some
shared input space (e.g. images). Agents usually
manage to communicate with success, measured
in terms of task accuracy (Mordatch and Abbeel,

2018; Cohoi et al., 2018, inter alia), if the setting
is fully cooperative (Cao et al., 2018). However,
Kottur et al. (2017) have shown that the emerged
languages rarely display features inherent to natu-
ral languages, such as compositionality of mean-
ing and generalisation to novel objects. For in-
stance, agents might develop protocols to refer to
specific pixel values, rather than concept-level in-
formation (Bouchacourt and Baroni, 2018).

Referential games are a perfect controlled envi-
ronment to study how sources of pressure on the
agents affect the ‘naturalness’ of emergent lan-
guages. Previous work has proposed to limit the
memory of neural agents across turns of dialogue
(Kottur et al., 2017) or to soft-constrain the ac-
tive vocabulary size (Mordatch and Abbeel, 2018).
However, these constraints seem at odds with the
capacity of human memory. In this work, we pro-
pose a set of yet unexplored but more realistic
sources of pressure, either internal to the agents
or external, pertaining to the input space.

An internal source of pressure, inspired by the
principle of least effort (Zipf, 1935; Haiman, 1983,
see § 2.1), compels the agents to keep the length
of sentences to the bare minimum. We imple-
ment this pressure through an auxiliary loss that
incentivises the generation of the end-of-sentence
token as early as possible. Several external pres-
sures instead are implemented as game variants,
where we control for the frequency, the position,
and the illumination of objects in images. These
game variants are again motivated by principles
governing human perception, such as object con-
stancy (Lorenz, 1977; Gillam, 2000, see § 2.2).

Our results demonstrate that the internal pres-
sure efficiently compresses the sentence lengths
and the vocabulary size without loss of accuracy.
Moreover, based on established metrics of com-
positionality (Cohoi et al., 2018; Lazaridou et al.,
2018; Bouchacourt and Baroni, 2018) and zero-
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shot evaluation, we show that agents with pres-
sure towards object constancy achieve the highest
scores. Finally, diagnostic classification reveals
how the external pressures make agents sensitive
to higher-level object properties.

In general, we offer a series of contributions.
In addition to a novel model objective and game
variants, we establish a methodology to adapt the
communication hyper-parameters automatically.
Moreover, we draw connections to principles of
human cognition, thus aligning the multi-agent
game to hypotheses on natural language evolution
(Nowak and Krakauer, 1999). We elaborate on
such principles in § 2. In § 3, we outline the ba-
sic setup for the referential game and the dataset.
The auxiliary loss and game variants that opera-
tionalise the cognitive principles are described in
§ 4. We discuss the metrics for evaluation in § 5
and provide the results in § 6. The main conclu-
sions to our work are summarised in § 7.

2 Motivation

The proposed sources of pressure on emergent lan-
guages are motivated on the basis of general prin-
ciples of human communication and perception.
In this section, we outline the principles of least
effort, object constancy, and object frequency.

2.1 Least Effort

While human speakers try to maximise the dis-
tinctiveness of the information conveyed, they also
minimise the effort involved. A version of this
principle was originally formulated by Zipf (1935,
p. 29) – who pointed out the correlation between
word frequency rank and word length – and was
later generalised to every reduction of linguistic
expressions by Haiman (1983) under the name
‘Principle of Economy.’ This principle is also rem-
iniscent of the maxim of quantity in pragmatics
(Grice et al., 1975; Levinson, 2000), which re-
quires to give no more information than needed.

As this principle is a key factor in explaining
the variation of natural languages (Haiman, 1983),
it posits a realistic constraint on language emer-
gence. Moreover, our operationalisation of the
principle allows the model to determine automat-
ically the maximum length of sequences and the
number of symbols in its vocabulary. In doing so,
the complexity of the emergent language is gauged
according to the data and task at hand. This has the
methodological advantage of not requiring to pre-

set these hyper-parameters arbitrarily or perform-
ing grid search on task accuracy (which rarely cor-
responds to natural language properties).

2.2 Subjective Constancy

Reality as it is immediately sensed is shapeless
and ever-changing. However, animals evolved to
various degrees the ability to perceive a reality of
objects, namely constant and discrete entities ly-
ing behind the tangle of sensation (Lorenz, 1977).
The same ability is connected with abstraction:
over repeated impressions, animals learn to ne-
glect what is contingent (due to the environment or
their internal disposition), and group instances of
objects with recurring patterns into the same con-
ceptual class (Gillam, 2000).

Object constancy involves several different and
independent mechanisms, regarding, among oth-
ers: i) the colour of the object, under different
light conditions (Holst, 1957); ii) the position

of the object, under different perspectives (Holst,
1969–1970). For instance, bees have to identify
flowers by their colour independently from the
time of the day (red of dusk or gold of dawn). In
our implementation, we manipulate the images in
such a way that agents are exposed to the same
object with different position or luminosity. As
a consequence, we expect the agents to acquire
some sort of constancy mechanisms.

2.3 Object Frequency

The distribution of objects and features in the real
world are highly non-uniform. Agents encounter
objects in the environment with different frequen-
cies. Furthermore, the degree of association be-
tween features and objects can vary: for instance,
berries evoke the colour blue less vividly than the
sky. Frequency facilitates the correct classifica-
tion of object instances (Nosofsky, 1988). More-
over, Medin and Schaffer (1978) have shown that
more frequent stimuli lead to an increasing percep-
tual differentiation in the region of their features.
As a consequence, agents are imprinted with re-
spect to specific features rather than the stimulus
as a whole, and stimuli become decomposable into
their ‘building blocks’ (Schyns et al., 1998). Re-
cently, Hendrickson and Perfors (2019) have also
shown how a Zipfian distribution of words and
referents can accelerate word meaning acquisition
compared to a uniform one.
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3 Setup

We study language emergence in the context of
task-oriented multi-agent games. In the current
section, we present our baseline setup (§ 3.1) and
the dataset that we use (§ 3.2).

3.1 Game definition

In the game we study, two agents play a referential
game. One agent, the Sender, has to describe an
image; the other agent, the Receiver, has to pick
the correct image out of a line-up of confounders.
We follow the setup of Havrylov and Titov (2017):

1. There are N images represented by z-
dimensional feature vectors fn = {i1, ..., iz}.
A target image t is sampled and shown to the
Sender.

2. The Sender generates a message m with a
maximum length L that consists of a se-
quence of words {wi, . . . , wL} from a vo-
cabulary of size |V |.

3. The Receiver uses m to identify t in a set of
images that contains k distracting images and
t in random order.

We implement both the Sender and Receiver
agents as LSTM networks. Unless otherwise spec-
ified, we follow again the training procedures and
error definitions of Havrylov and Titov (2017).1 A
scheme of this setup is shown in Figure 1.

3.2 Data

We use images from a modified version of the
SHAPES dataset (Andreas et al., 2016). This
dataset consists of 30 x 30 pixel images. Each
image contains exactly one 2D object, which is
characterised by a shape (circle, square, triangle),
a colour (red, green, blue), and a size (small, big).
The objects are positioned in a logical grid of three
rows and three columns. In the baseline setting,
we sample both images and distractors uniformly
from the images in this space. In the next sec-
tion, we introduce three alternative versions of
the game, in which images are selected following
more naturalistic procedures.2

1For brevity, we omit these details from the full paper, but
report them in Appendix A.

2While we work on synthetic data, the same expedients
can be easily applied to natural datasets like COCO (Lin
et al., 2014).

4 Formalisation of pressures

As the core contribution of this paper, we propose
a series of changes to the baseline setup in order to
incorporate model internal and external pressures
related to concept learning. In the current section,
we describe these alternative setups.

4.1 Least effort pressure

Arguably, communicative success is not the only
factor that comes into play in natural interactions.
In fact, agents should also abide by the principle of
least effort. We formalise this idea with a vocabu-
lary loss, that encourages the agents to use shorter
messages and fewer words. For each time step t,
the logits s of the Sender over the vocabulary are
discounted by C, the normalised count of distinct
words in the vocabulary that have been produced
so far. After squashing these values into a prob-
ability distribution with Softmax, we estimate its
negative log-likelihood. The formula can be writ-
ten as:

Lv =
X

1tL

� log
exp(s(t)w � C(t))

P
j exp(s(t)j � C(t))

=
X

1tL

C(t) � s(t)w + log

0

@
X

j

exp(s(t)j � C(t))

1

A

where w is the word generated at time step t. Due
to the term C, this vocabulary loss is lower when
the model uses fewer words. As the end of se-
quence symbol <S> is part of the vocabulary,
the loss is also implicitly encouraging shorter sen-
tences.3 This auxiliary loss is added to the main
loss of the system, with a weighting factor �, and
minimised during optimisation.

4.2 Location invariance

Among the cognitive mechanisms governing ob-
ject constancy and abstraction, a key role is played
by location invariance. This mechanism allows an-
imals to conceive objects as identical even when
they move, and the object reflection on their retina
has shifted (see § 2.2). We formalise the pressure
to develop location invariant concepts by introduc-
ing a mismatch between the exact object instance
shown to the Sender and Receiver. More precisely,

3We experimented with adding an additional parameter ↵
to explicitly scale the counts of <S>and modulate its emis-
sion. However, we found the best value of ↵ to be 1.
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Figure 1: Architecture overview of the Sender and Receiver. The visual module shows the CNN architecture used
for extracting features from the input.

when the Sender is shown a target image t, char-
acterised by the quintuple (color, size, shape, hor-
izontal position, vertical position) – the target im-
age t0 of the Receiver contains an object with the
same shape, colour, and size, but a different posi-
tion. We hypothesise that this setup will encour-
age the emergence of general purpose symbols for
colour, shape, and size, since agents are pressured
to refer to these concepts consistently across dif-
ferent perspectives.

4.3 Colour constancy

Another object-constancy mechanism allows ani-
mals to identify objects with altered hues, when
the conditions of illumination change (see § 2.2).
To introduce this pressure in our game setup, we
follow a similar protocol as in § 4.2: we encour-
age colour constancy by slightly perturbing the
Sender’s target image t into the target image of
the Receiver t0. More specifically, the target image
of Sender and Receiver are identical in all dimen-
sions, except their overall brightness. Therefore,
two different brightness values b1 and b2 are as-
signed to each image, so that:

0.2 < b1 < 0.8, 0.2 < b2 < 0.8,
and |b1 � b2| � 0.2

4.4 World distribution

Finally, we consider the effect of frequency on
concept memorisation, by exposing agents to non-
uniform distributions of objects (see § 2.3). To
obtain such a non-uniform world, we skew the
distributions of different shapes p(shape), as
well as the conditional probability distribution
p(colour|shape). In particular, we sample the

probabilities such that for all pairs of distinct
shapes s1, s2 2 shapes, it holds that:

| (p(s1)� p(s2)) | 0.2

And for all pairs of distinct colours c1, c2 2
colours and all s 2 shapes:

| (p(c1|s)� p(c2|s)) | 0.8

We sample images from these new distributions.
In the resulting worlds, shapes are more likely to
have some colours rather than others, and some
shapes are more likely than others.

5 Experiments

We now describe the procedures that we use for
training and evaluation, and provide details on the
(hyper)parameter settings.

5.1 Architecture and hyperparameters

The Sender and Receiver LSTMs have an embed-
ding size of 256 and a hidden layer size of 512.
The number of distracting images k for the Re-
ceiver is 3 for all experiments. The initial vocabu-
lary size V of the Sender is 25 and the maximum
message length L is 10. We empirically set the
weighting factor � for the vocabulary loss to 0.1.4

To pre-process the images before they are given
to the agents, we use a visual module inspired
by the CNN architecture of Cohoi et al. (2018),
consisting of five convolutional layers followed by
batch normalisation with ReLU as activation func-
tion. Each layer has 20 filters with a kernel size 3
and stride 2 with no padding. This block is fol-
lowed by a fully connected layer that produces

4We found this to be the most stable value in terms of
accuracy and emerging language properties.
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2048-dimensional feature vectors activated by a
ReLU function. The visual model is pretrained
separately for each game variant, by playing that
variant of the game once, resulting in four visual
modules that are specialised for a particular game
variant. The task accuracies during pretraining
were all between 0.9 and 1.5

5.2 Training

In all games, we use 75k, 8k, 40k samples for
the train, validation and test sets, respectively.
We train the agents using Gumbel-Softmax with
a temperature of 1.2, a batch size of 128, and the
Adam optimiser with an initial learning rate of
0.0001. We use early stopping with a patience of
30 to avoid overfitting. We run every experiment
3 times and report the average results.

5.3 Evaluation

In addition to monitoring game accuracy, de-
fined as the ratio of games in which the Receiver
correctly identifies the target image, we evaluate
the characteristics of the emerging communication
with a range of different metrics that have been es-
tablished in previous work.

Average message length In order to understand
to which extent agents manage to compress their
communication, we keep track of the average
number of tokens in the messages produced by the
Sender.

Active symbols The counterpart of the average
message length is the active symbols metric, which
expresses how many symbol types from its vocab-
ulary are used by the Sender.

Message distinctness To succesfully complete
the game, it may not be necessary to refer to all
features of the input image. Following Cohoi et al.
(2018), we used message distinctness as an esti-
mate of how much of the image features is cap-
tured in a message. Message distinctness is de-
fined as the count of unique messages per batch
divided by the batch size. As a reference point for
this metric, we compute also the number of dis-
tinct images. Generating more messages than the
reference point suggests that agents are using mul-
tiple messages to refer to the same picture. Con-
versely, generating fewer messages than the ref-
erence point indicates that agents use a shallower
language, not covering all aspects of the image.

5For the specific results, see Appendix B.

Perplexity per symbol. As in Havrylov and
Titov (2017), we used the perplexity per symbol
metric to measure how often a symbol was used in
a message to describe the same object:

Ppl = exp(�
X

[s(t) · log(s(t))])

where s(t) are the vocabulary scores (given by an
affine transformation of the Sender’s hidden state
at timestep t) for all symbols in the vocabulary. A
lower perplexity shows that the same symbols are
consistently used to describe the same objects.

Topographic similarity We study the topo-
graphic similarity (TS) between the message and
input space, defined as the pairwise Pearson cor-
relation between points in those spaces (Brighton
and Kirby, 2006). As in Lazaridou et al. (2018),
we use this metric to measure the extent to which
similar objects receive similar messages.

Language entropy The language entropy S de-
notes the variability of the number of symbols in
the language. It is given by the formula

S = �
X

w2V
[cw · log(cw)]

where cw is the count of the occurrences in the pro-
duced messages of each symbol w for all symbols
in the vocabulary V .

Representation Similarity Analysis (RSA) is
defined analogously to TS, but is computed on the
continuous hidden representations of the Sender
and Receiver (Kriegeskorte et al., 2008). As in
Bouchacourt and Baroni (2018), we use this met-
ric to measure the distance between two points
in different embedding spaces. Sender-Receiver
RSA indicates the RSA between the Sender’s and
Receiver’s embedding spaces. Sender-Input RSA
and Receiver-Input RSA indicate the correlation
between the agents and the input space.

6 Results

In this section, we provide the experimental results
and discuss them critically. In § 6.1, we estab-
lish the effect of the vocabulary penalty on the se-
quence lengths and vocabulary sizes in the emerg-
ing languages. In § 6.2, we compare the impact
of different external pressures on the model’s abil-
ity to generalise in zero-shot evaluation. In § 6.3,
we consider the compositionality of the protocols
evolved in each game variant in the light of the
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Acc µ(`) �2(`) |⌃| |M|
baseline 0.99 11.0 0.0 20.67 4.81
penalty 0.98 6.10 0.87 13.0 3.54

Table 1: Accuracy, average message length, variance
of the message length, number of active symbols ⌃,
and average number of unique symbols per message M
on the test set when playing the baseline and penalised
games. All values are averaged over three runs.

metrics described in § 5.3. Finally, we investi-
gate which image features can be decoded from
the emitted messages in § 6.4.

6.1 Least-effort pressure

Maintaining a maximum vocabulary size and
message length of 25 and 10, respectively, we
train Sender-Receiver pairs with and without the
penalty loss. Results are shown in Table 1 for the
baseline setup, and Table 2 for the game variants.

Baseline setup Based on Table 1, 37% fewer
symbols were used in games trained with the
penalty loss. The average length of the messages
decreased in 45%. Additionally, the variance
in the message length increased from 0 to 0.87,
showing the variability of the sequence lengths
needed to play the game, as opposed to always us-
ing the maximum allowed length. Moreover, there
is 26% more symbol reuse within the sequences in
the penalty case, as shown by the lower number
of unique symbols per message. In terms of accu-
racy, however, there is no clear difference between
games with and without the vocabulary loss. Us-
ing fewer words and shorter messages does not,
at least in this case, hamper communication suc-
cess. This indicates that the original models used
unnecessarily many symbols.

Game variants For the different game variants,
the penalty has a similar effect on the language
statistics (shown in Table 2): fewer words are
used, the average message length is shorter, and
there is more word reuse per generated message.
The language compression is most evident in the
location invariance setups, where fewer messages
are required to fully describe the input space:
two objects are considered identical if they share
colour, shape and size, regardless of their position
in the grid. The models trained without penalty do
not reflect this difference, and use the maximum
message length they are allowed.

These results show that the use of the vocabu-
lary loss gives rise to languages with symbol reuse.
It allows the model to dynamically adjust the vo-
cabulary size and sequence lengths while still be-
ing able to successfully solve the game. Given this
positive result, we use the vocabulary penalty with
a � = 0.1 in all subsequent experiments.

6.2 Zero shot evaluation

To assess how well the agents learned to gener-
alise in the different setups, we run a zero-shot
evaluation experiment where agents have to com-
municate about unseen objects. Following the ap-
proach of Cohoi et al. (2018), we retrain a model
for each game variant, this time removing three
objects from the training set images: red triangle,
blue square, and green circle. We then test these
the retrained models on 40504 rounds of the game,
where in each round the target is one of the held-
out objects. The distractors are uniformly sampled
from a set of objects containing both the training
and held-out objects. The prediction accuracies
are reported in Table 3.

All results are above chance level (0.25), which
would be the average accuracy if the Receiver
chose a random image every time out of the four
candidates. The highest communication success
was obtained in the colour constancy (without
penalty) and world distribution (with penalty) ex-
periments. Interestingly, the models are not simi-
larly ranked in the penalty and no penalty condi-
tions, pointing to an interaction between the two
different pressures that we do not yet understand.

6.3 Metrics

We report the values for the metrics outlined in
§ 5.3 for all game variants in Table 4.

Message distinctness The number of distinct
images (our reference point, as mentioned in Sec-
tion 5.3) for the baseline game, the colour con-
stancy game, and the world distribution game, is
162 (3 shapes ⇥ 3 colours ⇥ 2 sizes ⇥ 3 rows
⇥ 3 columns). Since this number is larger than
the batch size, the expected message distinctness
is 1. The baseline model averaged a message dis-
tinctness of 0.7880, the colour constancy model
0.4921, and the world distribution model 0.8396.
Thus, the world distribution game brings agents
the closest to capturing the entirety of the image
representation, a finding which will be further con-
firmed in § 6.4.
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Game Penalty Acc µ(`) |⌃| |M|
Location invariance Off 0.91 11.00 12.33 2.85
Colour constancy Off 0.99 11.00 21.67 3.25
World distribution Off 0.99 11.00 25.00 4.38

Location invariance On 0.90 6.66 5.33 2.36
Colour constancy On 0.99 7.49 10.0 2.64
World distribution On 0.98 7.04 13.33 3.54

Table 2: Statistics for the game variant models calculated on the test set: accuracy, average message length, number
of active symbols ⌃, and average number of unique symbols per message M . Averages over 3 runs.

Game Penalty Acc

Baseline Off 0.60
Location invariance Off 0.33
Colour constancy Off 0.71

World distribution Off 0.46
Baseline On 0.40

Location invariance On 0.36
Colour constancy On 0.33
World distribution On 0.52

Table 3: Zero-shot accuracy on the four game variants.
Average over three runs.

In the location invariance experiment there are
only 18 symbolically different images, since two
objects are considered the same irrespective of
their horizontal and vertical position. With a batch
size of 128, this gives an expected message dis-
tinctness of 18/128=0.14 per batch. The model
averaged a message distinctness of 0.2287, which
indicates that the same objects are sometimes re-
ferred to with different messages (in other words,
contrary to evidence, the model may still consider
location to be a relevant property!).

Perplexity per symbol The colour constancy
game achieved the lowest perplexity per symbol,
both with and without the vocabulary penalty.
This means that, on average, 1.3 and 2.2 symbols
(respectively) were used to denote the same ob-
ject, which is preferred over having many redun-
dant symbols referring to the same object.

RSA values Even more revealing is the similar-
ity between the representation of the objects in the
agents’ embedding spaces, which is what RSA de-
picts. There is a high RSA Sender-Receiver score
in all game variants, with scores peaking when
the vocabulary penalty was applied. High RSA
Sender-Receiver scores are to be expected since
a match on the embedding spaces of the agents is

necessary for communication success. However, it
is the RSA with respect to the input that indicates
whether the semantics of the agents’ messages re-
flects the input structure. Here, similarly to the
perplexity per symbol metric, the colour constancy
condition triggered the highest scores both for the
Sender and the Receiver when the penalty is on.
On the other hand, in absence of penalty, the loca-
tion invariance game obtained the highest (abso-
lute) RSA scores.

Topographic similarity A further indication
that the location invariance condition has a posi-
tive effect on the semantics of the messages comes
from topographic similarity: irrespective of the
presence of the penalty, the highest score (i.e., the
highest correlation between messages and the ob-
ject space) was obtained in this game variant.6

Language entropy The location invariance
game, with and without penalty, also achieved the
lowest language entropy as it uses the least sym-
bols of the vocabulary.

6.4 Diagnostic classification of properties

To inspect which properties of the input space are
retained by the agent messages, we perform an
analysis based on diagnostic classification (Hup-
kes et al., 2018). We train an RNN to encode
the messages generated by the Sender and predict
from its final hidden state the value for each sym-
bolic property of the input image (shape, colour,
size, horizontal position, vertical position). Ta-
ble 5 shows the accuracy of each classifier on the
test messages. The baseline model has the lowest
scores for shape and colour, and is able to solve the
task by mostly communicating row and column in-
formation. On the other hand, the location invari-
ance experiment cannot rely on position informa-

6In the Appendix, we plot the development of agent-input
RSA and topographic similarity across the training progress
in the four games.
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Game Penalty Ppl symbol RSA S-R RSA S-I RSA R-I Top. Sim. Lang. entropy

Baseline Off 4.19 0.91 0.71 0.63 0.31 2.73
Location inv Off 3.11 0.96 0.69 0.69 0.38 2.17

Colour const Off 2.18 0.91 0.72 0.71 0.35 2.82
World distrb Off 3.17 0.89 0.66 0.62 0.28 3.00

Baseline On 1.74 0.95 0.46 0.45 0.20 1.61
Location inv On 1.82 0.97 0.58 0.62 0.30 1.59

Colour const On 1.32 0.98 0.51 0.52 0.24 1.73
World distrb On 1.38 0.96 0.36 0.38 0.11 1.63

Table 4: Metrics on the test set: perplexity per symbol, RSA Sender-Receiver, RSA Sender-Input, RSA Receiver-
Input, topographic similarity, and language entropy. Showing the average of three different runs per configuration.

Game Penalty Shape Colour Size Row Column

Baseline Off 0.56 0.84 0.86 0.98 0.98
Location invariance Off 0.84 1.00 1.00 0.33 0.33
Colour constancy Off 0.54 0.82 0.81 1.00 1.00
World distibution Off 0.80 0.91 0.94 0.99 0.98

Baseline On 0.53 0.45 0.60 0.93 0.96
Location invariance On 0.65 0.99 0.91 0.33 0.34
Colour constancy On 0.36 0.67 0.60 0.99 1.00
World distibution On 0.68 0.73 0.88 0.97 0.97

Chance 0.33 0.33 0.50 0.33 0.33

Table 5: Test accuracy of the five diagnostic classifiers for the four different games (average of three models).

tion, thus performing at a chance level as expected.
Rather, this model mostly encodes information
about colour and size while playing the game,
thereby supporting the hypothesis that the right
environmental pressure encourages the encoding
of higher-level information. The colour constancy
setting seems to have some moderate impact on
the colour semantics encoded by the messages.
The best results come once more from the world
distribution game: a non-uniform (Zipfian) distri-
bution of the objects induces a language that en-
codes, with high accuracy, all different properties
of the image.

7 Conclusions

While most artificial agents achieve communica-
tion success in referential games, the emerging
protocols are far from natural. Therefore, we
coax the agent languages into developing desir-
able properties through sources of pressure that
are both effective and realistic in terms of hu-
man cognition. In particular, we encourage the
agents to make the least effort (in terms of sen-
tence length and active vocabulary) through an

auxiliary loss. Moreover, inspired by principles of
perceptual constancy and frequency, we introduce
external pressure by manipulating the appearance
and frequency distribution of objects within im-
ages. Firstly, we found that least effort reduces
message redundancy without loss of communica-
tion accuracy. Secondly, according to a series of
well established metrics, external pressures facil-
itate the emergence of communicative protocols
with a higher degree of compositionality. Thirdly,
some sources of pressure such as colour constancy
increase the accuracy in zero-shot communication,
hence leading to a better ability to generalise. Fi-
nally, we reveal through diagnostic classifiers that
agents under external pressures retain high-level
information (such as shape or color of objects)
rather than local pixel features. In general, the
sources of pressure we propose bring forth a se-
ries of advantages: 1) they encourage more natural
communication protocols; 2) they mitigate the ar-
bitrariness of hyper-parameter setting; 3) they are
realistic and justified by general principles of hu-
man cognition. In the future, this could help shed-
ding light on the evolution of natural languages.
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A Full Game Description

A.1 Agents

We implement both the Sender and Receiver as
LSTM networks. The architecture as a whole is
depicted in Figure 1.

Sender The inputs of the Sender are the feature
representation f of the target image t (which we
refer to as ft) and a special start token <S>. Start-
ing from an initial hidden state hS0 , which is ob-
tained by linearly transforming ft, at each decod-
ing step i the Sender generates a token wi by sam-
pling from its output distribution, until the spe-
cial end of sequence token <S>is generated or
the maximum sequence length L is reached.

Receiver The Receiver receives the message m
generated by the sender as input. It encodes this
message and then uses a transformation of its last
hidden state hRl to select an image from the four
images that it is given (one target + three distrac-
tors).

A.2 Training Signal

The communication loss of the system is defined
by

Lc =
KX

k=1

[max(0, 1� q(t) + q(dk))]

where the score function q(x) = fT
x g(h

R
l ). d is

each distracting image, so K = 3.
Communication success happens when the tar-

get’s score is higher than all the distractors’ scores.
Additionally, we compute a vocabulary loss de-

fined by:

Lv =
EX

i=1

CrossEntropy[si � C,wi]

where E represents the effort, taken to be the
length of the message uttered by the agent, si rep-
resents the vocabulary scores at timestep i , C is
the normalised counts of all tokens in the vocabu-
lary that have been produced so far, and wi is the
word sampled at timestep i.

The total loss is computed by the weighted sum

L = Lc + �Lv

B Visual Module Training

The communication success obtained while play-
ing the different games and training the corre-
sponding CNN alongside is shown in Table 6.
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Baseline Location invariance Colour constancy World distribution

0.97 0.89 0.89 0.98

Table 6: Test accuracy on the four different games when training the visual module.

Figure 2: Development of metrics with respect to the input for the four games during training when using the
penalty.

Figure 3: Development of metrics with respect to the input for the four games during training when not using the
penalty.


