
Three Dimensional Convolutional Neural Network
Pruning with Regularization-Based Method

Yuxin Zhang, Huan Wang, Yang Luo, Roland Hu∗

Zhejiang University
{yuxinzhang, huanw, luoyang95, haoji_hu}@zju.edu.cn

Abstract

In recent years, three-dimensional convolutional neural network (3D CNN) is
intensively applied in video analysis and receives good performance. However, 3D
CNN leads to massive computation and storage consumption, which hinders its
deployment on mobile and embedded devices. In this paper, we propose a three-
dimensional regularization-based pruning method to assign different regularization
parameters to different weight groups based on their importance to the network.
Experiments show that the proposed method outperforms other popular methods in
this area.

1 Introduction

In recent years, convolutional neural network (CNN) has developed rapidly and has achieved re-
markable success in computer vision tasks such as identification, classification and segmentation.
However, due to the lack of motion modeling, this image-based end-to-end feature can not directly
apply to videos. In [1, 2], the authors use three-dimensional convolutional networks (3D CNN) to
identify human actions in videos. Tran et al. proposed a 3D CNN for action recognition which
contains 1.75 million parameters [3]. The development of 3D CNN also brings challenges because of
its higher dimensions. This leads to massive computing and storage consumption, which hinders its
deployment on mobile and embedded devices.

In order to reduce the computation cost, researchers propose methods to compress CNN models,
including knowledge distillation [4], parameter quantization [5, 6], matrix decomposition [7] and
parameter pruning [8]. However, all of the above methods are based on two-dimensional convolution.
In this paper, we expand the idea of [9] to 3D CNN acceleration. The main idea is to add group regu-
larization items to the objective function and prune weight groups gradually, where the regularization
parameters for different weight groups are differently assigned according to some importance criteria.

2 The Proposed Method

For a three-dimensional convolutional neural network withL layers, the weights of the lth (1 ≤ l ≤ L)
convolutional layer W(l) ∈ RN l×Cl×W l×Hl×Dl

is a sequences of 5-D tensors. Here N l, Cl, W l,
H l andDl are the dimensions along the axes of filter, channel, spatial height, spatial width and spatial
depth. The proposed objective function for structured sparsity regularization is defined by Eqn.(1).

E(W) = L(W) +
λ

2
R(W) +

λg
2

L∑
l=1

Rg(W(l)) (1)

∗Contact author

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

 expand
…
…
…
…

conv kernel
(N,C,W,H,D)

weight matrix
(N,C*W*H*D)

24 columns

 expand
…
…
…
…

conv kernel
(N,C,W,H,D)

weight matrix
(N,C*W*H*D)

24 columns

8 columns

 expand
…
…
…
…

conv kernel
(N,C,W,H,D)

weight matrix
(N,C*W*H*D)

24 columns

 (a) filter sparsity/row sparsity (b) shape sparsity/column sparsity (c) channel sparsity

Figure 1: The im2col implementation of 3D CNN is to expand tensors into matrices, so that
convolutional operations are transformed to matrix multiplication. The weights at the blue squares
are to be pruned. (a) Pruning a filter. (b) Pruning all the weights at the same position. (c) Pruning a
channel.

Here L(W) is the loss on data; R(W) is the non-structured regularization (L2 norm in this paper).
Rg is the structured sparsity regularization on each layer. In [10, 11], the authors used the same λg
for all groups and adopted Group LASSO for Rg. Recently Wang et al. [9] use the squared L1

norm for Rg and vary the regularization parameters λg for different groups. We build on top of that
approach but extend it from two dimensions to three dimensions.

The structure learned is determined by the way of splitting groups of W
(l)
g .There are normally

filer-wise, channel-wise, shape-wise, and depth-wise structured sparsity with different ways of
grouping [10]. Pruning of different weight groups for 3D CNN is shown in Fig.1.

In [9], Wang et al. theoretically proved that by increasing the regularization parameter λg , the
magnitude of weights tends to be minimized. The more λg increases, the more magnitude of weights
are compressed to zero. Therefore, we can assign different λg for the weight groups based on their
importance to the network. Here, we use the L1 norm as a criterion of importance.

Our goal is to pruneRNg weight groups in the network, whereR is the pruning ratio to each layer and
Ng is total number of weight groups in the layer. In other words, we need to pruneRNg weight groups
which ranks lower in the network. We sort the weight groups in ascending order of the L1 norms. In
order to remove the oscillation of ranks during one training iteration, we averaged the rank through
training iterations to obtain the average rank ravg in N training iterations: ravg = 1

N

∑N
n=1 rn.

The final average rank r is obtained by sorting ravg of different weight groups in ascending order,
making its range from 0 to Ng − 1. The update of λg is determined by the following formula:
λ
(new)
g = λ

(old)
g + ∆λg.

Here ∆λg is the function of average rank r, we follow the formula proposed by Wang [9] as follows:

∆λg(r) =


− A

RNg
r +A if r ≤ RNg

− A

Ng(1 −R) − 1
(r −RNg) if r > RNg

(2)

Here A is a hyperparameter which controls the speed of convergence. According to Eqn.(2), we can
see that ∆λg is zero when r = RNg because we need to increase the regularization parameters of
the weight groups whose ranks are below RNg to further decrease their L1 norms; and for those with
greater L1 norms and rank above RNg , we need to decrease their regularization parameters to further
increase their L1 norms. Thus, we can ensure that exactly RNg weight groups are pruned at the final
stage of the algorithm. When we obtain λ(new)

g , the weights can be updated through back-propagation
deduced from Eqn.(1). Further details can be found in [9].

3 Experiments

Our experiments are carried out by Caffe[12]. We set the weight decay factor λ to be the same as
the baseline and set hyper-parameter A to half of λ. We only compress the weights in convolutional

2

Table 1: The increased error when accelerating
C3D on UCF101(baseline: 79.94%).

Method Increased err. (%)
2× 4×

TP (our impl.) 11.50 21.19
FP (our impl.) 4.92 10.96
Ours 3.56 7.02

Table 2: The increased error when accelerating
3D-ResNet18 on UCF101(baseline: 72.50%).

Method Increased err. (%)
2× 4×

TP (our impl.) 5.72 14.24
FP (our impl.) 1.60 6.92
Ours 0.91 3.50

layers and leave the fully connected layers unchanged because we focus on network acceleration.
The pruning ratios of the convolutional layers are set to the same for convenience. The methods used
for comparison are Taylor Pruning (TP) [13] and Filter Pruning (FP) [14]. For all experiments, the
ratio of speedup is calculated by GFLOPS reduction.

3.1 C3D on UCF101

We apply the proposed method to C3D [3], which is composed of 8 convolution layers, 5 max-pooling
layers, and 2 fully connected layers. We download the open Caffe model as our pre-trained model,
whose accuracy on UCF101 dataset is 79.94%. UCF101 contains 101 types of actions and a total of
13320 videos with a resolution of 320× 240. All videos are decoded into image files with 25 fps rate.
Frames are resized into 128× 171 and randomly cropped to 112× 112. Then frames are split into
non-overlapped 16-frame clips which are then used as input to the networks.The results are shown in
Table 1. With different speedup ratios, our approach is always better than TP and FP.

3.2 3D-ResNet18 on UCF101

We further demonstrate our method on 3D-ResNet18 [3], which has 17 convolution layers and 1
fully-connected layer. The network is initially trained on the Sport-1M database. We download the
model and then fine-tune it by UCF101 for 30000 iterations, obtaining an accuracy of 72.50%. The
video preprocessing method is the same as above. The training settings are similar to that of C3D.

Experimental results are shown in Table 2. Our approach only suffers 0.91% increased error while
achieving 2× acceleration, obtaining better results than TP and FP. Fig.2 shows the loss during the
pruning process for different methods. As the number of iterations increases, the losses of TP and
FP change dramatically, while the loss of our method remains at a lower level consistently. This is
probably because the proposed method imposes gradual regularization, making the network changes
little-by-little in the parameter space, while both the TP and FP direct prune less important weights
once for all.

0 5000 10000 15000 20000 25000
iter

0.0

0.1

0.2

0.3

0.4

lo
ss

TP loss
FP loss
Our method loss

Figure 2: The training losses on 3D-ResNet18 for TP, FP and the proposed method.

4 Conclusion

In this paper, we implement the regularization based method for 3D CNN acceleration. By assigning
different regularization parameters to different weight groups according to the importance estimation,
we gradually prune weight groups in the network. The proposed method achieves better performance
than other two popular methods in this area.

3

References
[1] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action

recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 221–231, 2012.

[2] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. F. Li, “Large-scale
video classification with convolutional neural networks,” in Proceedings of the International
Conference on Computer Vision and Pattern Recognition, CVPR’14, 2014, pp. 1725–1732.

[3] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “C3D: generic features for video
analysis,” ArXiv preprint: 1412.0767, 2014.

[4] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” ArXiv
preprint: 1503.02531, 2015.

[5] M. Courbariaux, Y. Bengio, and J. P. David, “Binaryconnect: training deep neural networks
with binary weights during propagations,” in Proceedings of the International Conference on
Neural Information Processing Systems, NIPS’15, 2015, pp. 3123–3131.

[6] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification
using binary convolutional neural networks,” in Proceedings of the European Conference on
Computer Vision, ECCV’16, 2016, pp. 525–542.

[7] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional networks for
classification and detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 10, pp. 1943–1955, 2015.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding,” ArXiv preprint: 1510.00149, 2015.

[9] H. Wang, Q. Zhang, Y. Wang, and R. Hu, “Structured Deep Neural Network Pruning by Varying
Regularization Parameters,” ArXiv preprint: 1804.09461, 2018.

[10] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural
networks,” ArXiv preprint: 1608.03665, 2016.

[11] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain damage,” in Proceedings
of the International Conference on Computer Vision and Pattern Recognition, CVPR’16, 2016,
pp. 2554–2564.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrel, “Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint, vol.
arXiv:1408.5093, 2014.

[13] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neural networks
for resource efficient transfer learning,” ArXiv preprint: 1611.06440, 2016.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient convnets,”
ArXiv preprint: 1608.08710, 2016.

4

	Introduction
	The Proposed Method
	Experiments
	C3D on UCF101
	3D-ResNet18 on UCF101

	Conclusion

