
Acoustic-driven Interior Vehicle Adaptation based
on Deep Reinforcement Learning to Improve

Driver’s Comfort
Anonymous submission

Abstract—The safety and comfort of drivers have been im-
proved over the decades through new technologies and driver
modeling studies that broadened understanding of predicting
driver’s behaviors. Despite remarkable advances in autonomous
systems and interactive systems, there is a significantly lack
of approaches considering the passengers and the vehicle as
components of a dynamical vibro-acoustical system. The sound
in vehicles is not only informative of the state of the vehicle and
the environment, but it can also affect driver’s performance,
attention, and pleasantness of driving. This project aims to
investigate the interplay between the perceived sounds of a vehicle
and the psychoacoustic annoyance metrics. Our goal is to create
an intelligent agent that acts to improve the driver’s pleasantness
through acoustic-driven learning. To tackle the problem of
acting to reduce the annoyance, we present a method based on
reinforcement learning that learns from the environment, i.e., the
vehicle interior. Our method changes the state inside the vehicle
(closing or opening the window and choosing the cruise speed) to
avoid annoying sounds in its interior. The results of this work, all
performed using the GTA V simulator, showed that the trained
agent learned to take actions to avoid creating annoying sounds.

Index Terms—psychoacoustic metrics, acoustic-driven, deep
reinforcement learning, safety

I. INTRODUCTION

A challenge in developing safety systems for driving is
predicting and responding to the environment state and the
behaviors of human agents. These systems must interact in
mixed environments and be aware of different sources of
information about the environment state such as acoustical
and visual signals. In addition to ensuring safe and effective
autonomous systems, it is also essential to take into account
the pleasantness and comfort of the driving experience. While
there is a great deal of work going into bringing autonomous
vehicles into fruition, it is noteworthy that an intelligent assis-
tance system should focus on improving the in-car experience
for the driver, which is one of the most critical factors on the
complex transportation system.

In this paper, we go beyond safety systems and by learning
how to accommodate the driver best. An important factor
to consider is the vehicle interior sound, which provides
information about the state of the environment and can impact
the physiological behavior of drivers. The sound in vehicles is
not only informative of the state of the vehicle and the environ-
ment, but it can also affect driver’s performance, attention, and
comfort of driving. After all, when driving, we are secluded
from the surrounding world by the vehicle, which decreases

our sensory experience of the world and increases the risk of
accidents.

While on one hand sound can provide a calming effect on
the driver and improve their driving experience, on the other
hand, the vehicle interior noise may increase the probability of
traffic accidents because of the physiological and psychologi-
cal effects of sounds on the human. Fagerlönn [1], for instance,
investigated the influence of urgent alarms in truck drivers. The
authors reported that when the drivers received a high-urgency
warning, they braked significantly harder when compared to
a low-urgency warning. Ho and Spance [2], for their turn,
showed that simple auditory signal such as a 2 kHz tone is
capable of distracting drivers. Sammler et al. [3] presented
a study on electroencephalogram (EEG) power and heart
rate change with pleasant and unpleasant states induced by
consonant and dissonant music. While the consonance quality
is associated with sweetness and pleasantness; dissonance is
associated with harshness and unpleasantness. In the context
of this paper, pleasantness concerns a conscious state related
to the satisfaction of a person while driving a vehicle. For a
complete picture of the neural bases of emotion and mood, and
the psychology of pleasantness, refer the reader to the works
of Dalgleish [4] and Ruckmick [5].

The past two decades have witnessed a growing body of
research on the sound quality of vehicle interior noise. The
customers thus became highly sensitive to sounds relating to
vehicles, such as engine sound, warning chimes, door sounds,
vehicle audio system, etc. The vehicle sound characteristics
are one of the most relevant factors affecting customer vehi-
cle model preference [6]. Previous works in vehicle sound
characterization include various aspects, from quietness to
sound pleasantness, but have primarily been applied to set
requirements for the design and production of new vehicles.
However, there is a complex tradeoff between the elimination
of disturbing noises and the expectations of the listener con-
cerning the sound quality, of a specific brand and model of
the car. Quietness is not always the goal, being most of the
time undesirable to avoid creating a monotonous environment
in car’s interior [6].

In a joint effort, a consortium of five companies and
two universities partnered in the OBELICS project [7] to
create a sound dataset covering 14 driving condition and 15
vehicles aimed to understand the sound language and sound
perception of drivers. The focus of the OBELICS project was
the interior noise of vehicles. Several tools were developed in



the OBELICS project, such as a tool for extracting and recom-
posing harmonic and non-harmonic components of sounds and
a psychoacoustic parametric synthesizer.

Although the human perception of sound as pleasant or
annoying is very subjective, some general findings in human
subject studies have resulted in the determination of several
psychoacoustic properties. Due to individual differences and
context of sound exposure, different people may have a
different perception of annoyance, which may depend on and
consequently affect their emotional state. In this paper we aim
at investigating the interplay between the perceived sounds
inside a vehicle and the driver’s attention/enjoyment that can
be improved through individualized acoustic-driven preference
learning. The sound in the interior of a vehicle is influenced
by several uncorrelated and dynamics factors such as road
type, road quality, radio, and the number of passengers [8],
to name a few. To tackle this problem, we can learn from
the environment how to change the state inside the car to
avoid an annoyance in the interior of the vehicle and keep
driver’s attention, closing the vehicle’s windows or suggesting
a different cruise speed.

Traditional learning techniques use an existing dataset and
associated features to find trends in the data. Typically, this
means the features need to be defined beforehand and once
the input-output mapping is learned, and unless adapted to
an online framework, remains stagnant. More recent advances
in deep learning eliminate the need for identifying features
beforehand but requires incredibly large amounts of data and
computation time to learn the functional relationship between
the data and output. Similar to the more traditional methods,
these new artificial intelligence (AI) methods do not have an
efficient updating scheme.

In this paper, we focus on developing/designing the learning
framework for active vehicle adaptation based on psychoa-
coustic metric, derived from previous studies. The main ad-
vantage of our approach is in its capability of learning from
a realistic simulation and not requiring annotated data. We
evaluate the performance of the developed agent in a simulated
environment without a user input. Future work will built upon
these results to include user-specific adaptations.

II. RELATED WORK

The safety of drivers has been improved over the decades
through driver modeling studies [9]–[11] that broadened un-
derstanding of predicting driver’s behaviors. Despite remark-
able advances in visual perception, mostly applied in au-
tonomous systems, and driver modeling, used in interactive
systems, there is an important gap when considering the
passengers, the driver and the vehicle as components of a
vibro-acoustical system. This work builds upon findings from
the areas of sound recognition and psychoacoustic sound
evaluations. It has been recognized that driver’s emotional state
significantly affects the safety of driving.

Virtually all works on noise treatment in the vehicle have
focused on noise detection or reduction for adjustments during
design time of a vehicle. Several psychoacoustic indices have

been introduced in sound quality evaluation engineering [12],
[13] and evaluated in various driving scenarios. In the work of
Nor et al. [14], for instance, both subjective and objective tests
are studied to evaluate vehicle comfort index. They found that
the metrics of loudness, sharpness, roughness and fluctuation
strength are correlated with a human subject studies. Their
experiments also showed how much the acoustical comfort is
affected by each metric. Another interesting result of Nor et
al.’s work is the study of the relation between road roughness
(e.g., highway, smooth urban, dual carriage, pavement, and
suburban) and the comfort index.

Duan et al. [15] studied vehicle interior noise under multiple
working conditions: idle, constant speed, accelerating and
braking. Duan et al. propose to predict the sound quality in
the vehicle interior by using a neural network. They used
four psychoacoustic parameters, the loudness, sharpness, ar-
ticulation index, and A-weighted sound pressure levels (SPLs)
as input features and subjective annoyance as a label for
training the network. They created a dataset composed of 36
interior noise samples from the vehicle under the idle, constant
speed, accelerating and braking conditions. The measurement
method follows the GB/T 18697 standard. The results show
an accuracy above 95.57%.

Although several psychoacoustic indices have been pro-
posed in the past years, when driving, this information alone is
not useful for identification of the sound source of annoyance.
A straightforward approach is to separate the sound events
and compute the annoyance of each one. Unfortunately, the
detection and segmentation of general sound events is not still
a well-solved problem.

The traditional pipeline composed of handcrafted features
extraction such as Mel-frequency cepstrum (MFCC) and Spec-
trograms and general classifiers like SVM and GMM was
extensively used to tackle sound recognition problems from
speech recognition to scene classification and event detection.
However, in the last few years, thanks to the advances in
transfer learning techniques and cross-modal learning deep
learning method attain the state-of-the-art results for most
sound recognition problems. A challenging task in sound
recognition is the classification of individual sounds in com-
posite sounds. This task is called polyphonic sound event
detection and consists of detecting multiple overlapping sound
events. Several approaches have been proposed including
transfer learning [16], cross-modal learning [17] and deep
learning methods [18].

However, one particular problem of learning from sound
samples is the lack of massive annotated data. This absence is
particularly accentuated for sounds from the vehicle interior as
most of the available sound datasets are composed of ambient,
event or mixed sounds. Besides being influenced by several
uncorrelated and dynamics factors, the sound in the interior
of a vehicle also affects people (i.e., drivers) differently. Thus,
in addition to the absence of data, a challenging task is how to
learn to adapt from the environment and also from the drivers
preferences to keep a pleasant environment inside the car for
a particular driver.



Due to this scarcity of labeled data in sound classification
tasks, several deep learning approaches build upon some
transfer learning technique. Han et al. [16] tackle the absence
of labeled data by combining active learning and a self-
training approach to minimize the human annotation. Their
methodology was able to provide a reduction of 52.2% in
human labeled instances on the FindSounds dataset 1. This
dataset has nine categories and more than 16, 930 sound
instances with durations ranging from 1 to 10 seconds.

SoundNet [17], for instance, provides a large-scale and rich
representation of natural sound by using frames from labeled
videos for learning a representation for raw audio waveforms.
Despite using vision in training phase, the SoundNet only
requires sound on test phase. Another multi-modal approach
was presented by Ngiam et al. [19]. They demonstrated that
better features could be learned from multiple modalities such
as video and audio at learning time. The authors demonstrate
the performance of the method on audio-visual speech classi-
fication task.

Hershey et al. [17] applied the most popular Deep Neural
Networks (DNNs) used in image classification, i.e., AlexNet,
VGG, Inception and ResNet in soundtrack classification task.
They found that using embeddings features from these net-
works performs better than raw features in the AudioSet [13]
(a dataset composed of over 1 million 10 second excerpts
labeled acoustic events). The conclusion was that state-of-the-
art image networks provide better results on audio classifi-
cation than simple fully connected network or earlier image
classification architectures such as AlexNet.

In a recent work, Çakir et al. [18] presented a convolution
recurrent neural network (CRNN) for polyphonic sound event
detection, where multiple overlapping sound events must be
detected. After convoluting spectrograms with multiple con-
volutional layers and max-pooling, they fed a recurrent neural
network (RNN), which has the output layers binarized for the
event classification. Their experiments showed the proposed
neural network outperformed traditional Gaussian Mixture
Models-Hidden Markov Models (GMM-HMM) classifiers and
methods using convolutional neural network or RNN.

Despite the impressive results on the supervised approaches,
its full integration on real-world scenarios faces several chal-
lenges. Foremost, is the requirement of a large annotated
dataset, which can be unfeasible to be created in some cases,
where the set of labels is ill-defined or too large.

III. METHODOLOGY

In this section, we detail our exploration-exploitation ap-
proach based on a deep reinforcement learning, where an agent
learns actions to perform in order to decrease the annoyance.
Since the sound in the interior of a vehicle is influenced by
several uncorrelated and dynamics factors, our agent can learn
from the environment how to change the state inside the car
to reduce the sound annoyance in the interior of the vehicle.
Figure 1 depicts the main steps of the learning method.

1http://www.findsounds.com

A. Learning

In this work, we formulate the problem of choosing an
action that avoids annoying sounds as a Markov Decision
Process (MDP). Let A = {a1, . . . , an} be a discrete action
set and S the state set. Thus, the agent takes action ai
considering the environment state si represented at the i-step
of the episode.

An action ai leads to a state transition from the state si
to si+1 and a immediate reward ri. In order to maximize the
accumulated reward R defined as

R =
∑
i

γk−1ri, (1)

where γ ∈ [0, 1] is the discount factor for future rewards, the
learning process tries to minimize the loss function:

L =
1

2

(
r + max

a′
Q(s′, a′)−Q(s, a)

)2
, (2)

where Q(s, a) is the function that gives the best score after
performing the action a in the state s.

Our approach uses a ε-greedy strategy to explore the action
space and learn the result of each action on the annoyance
metric. With a probability ε, we select randomly an action
and with probability 1−ε we follow the action that maximizes
we select the action that maximizes the quality of current and
future actions. Thus, probability 1−ε the action is determined
by the policy

π(si) = argmax
a

Q(si, a). (3)

The Q-function is modeled by a multilayer perceptron net-
work, which receives as input a state vector and returns a
vector containing the Q-value for each possible action. This
network is initialized with random parameters.

B. Immediate reward

The sound impression for a human listener can be estimated
by the following psychoacoustic properties [20]:
• Fluctuation and Roughness: When we have in an envi-

ronment multiple signals with different frequencies they
might interfere constructively and destructively with each
other creating modulation. In other words, the amplitude
of a sound signal rise and fall over time. Fluctuation and
roughness measure the modulation of a signal over the
time. Fluctuation was designed to work with up to 20
modulations per second and can be given by:

F ≈ ∆L

4Hz/fmod + fmod/4Hz
, (4)

where ∆L is the modulation depth and fmod the modu-
lation frequency. The roughness R describes sounds with
modulations range from 20 to 300 times per second, and
can be computed as being the product

R ≈ ∆L× fmod. (5)
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Fig. 1. Our approach is based on a deep reinforcement that learns from the environment how to change the state of the vehicle to avoid an unpleasant
environment. After the agent took action ai considering the environment state si, our system computes the reward ri using the psychoacoustic annoyance
(PA) metric. The reward, the action, and the environment states are used to train a neural network that approximates the Q-function. The neural network is
posteriorly used to decide which action the agent should take to decrease annoying sound.

A modulated signal is considerably more unpleasant
when having a higher roughness and fluctuation;

• Loudness: The loudness is a psychological phenomenon
based on the perceived loudness. Unlike the sound level
that is a physical measurement, the loudness metric is
based on subject studies using a group of people with
normal hearing. In this study, in each person from the
group listened to a tone at frequency f and a particular
dB level. Then, another second tone with same dB level
of the first one was played at a different frequency until
it sounded equally as loud as the first tone. Formally, let
ETQ be the excitation at threshold in quiet, and E0 be the
excitation of the reference intensity, the specific loudness
of a sound with excitation E is given by

N ′ = 0.08

(
ETQ

E0

)[(
0.5 + 0.5

E

ETQ

)
− 1

]
. (6)

The total loudness is the result of integrating the specific
loudness over critical-band rates 2, i.e.,

N =

∫ 24

0

N ′dz, (7)

where z is the critical-band in Bark.
• Sharpness: It is a function of the spectral composition.

It is estimated by a weighted sum of specific loudness
levels in different bands. The total sharpness is given by

2A critical band is the smallest band of frequencies that activates the same
part of the basilar membrane in the human hearing system.

S =

∫ 24

0

S′dz, (8)

where S′ = 0.11
N

∫ 24

0
N ′g(z)zdz is the specific sharpness

and g(·) is a critical-band-rate dependent weighting func-
tion. The sound with higher sharpness is more unpleasant
and more annoying.

The sound annoyance is closely related to the aforemen-
tioned psychoacoustic indices. Zwicker proposes to compute
the psychoacoustic annoyance (PA) [20] as a function of
sharpness, loudness, fluctuation, and roughness as follows:

PA = N5

(
1 +

√
ω2
S + ω2

FS

)
, (9)

where N5 is the 95th percentile of loudness and

ωS =

{
−(S − 1.75) log(N5 + 10), if S > 0,

0, otherwise,
(10)

ωFS =
2.78

N0.4
5

(0.4F + 0.6R). (11)

We define the immediate reward as being a function of
the psychoacoustic annoyance metric, i.e., ri = f(PA) is
given by the PA metric, where f(·) is the shape func-
tion f(x) = 1− (x/MAXPA)0.4 and MAXPA is the max-
imum acceptable value for PA. In our experiments we used
MAXPA = 27.
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Fig. 2. Cruise speed versus psychoacoustic indices. Notice that while roughness decreases when increasing the cruise speed, fluctuation, sharpness, and
loudness increase as cruise speed becomes greater. This relation creates a similar behavior on the psychoacoustic annoyance metric.
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Fig. 3. The influence of the cruise speed on the PA metric. Increasing the
cruise speed leads to higher PA value. The orange boxes are the values when
including the sound of bells and beeps simulating noise outside from the
vehicle. The diamonds represent observations outside 1.5× interquartile range
above the upper quartile and bellow the lower quartile.
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Fig. 4. Psychoacoustic annoyance metric measured in different configurations
of the window status and cruise speed. The red curve depicts when the window
is open and the blue curve when window is closed. All measures include
additional noise (bells and beeps sound). Blue star represents a state where
the agent can decrease the annoyance by simply closing the window. Green
star is a more challenging state where the agent has to combine the actions of
selecting a lower speed and closing the window to decrease the annoyance.

IV. EXPERIMENTS

In this section, we present the experiments and the analysis
of the effectiveness of our proposed framework. We used a

simulator of a driving environment to create the soundscape,
to explore and exploit the actions that minimize the annoyance.

A. Implementation details

We used a 5-layers neural network to represent the Q-
function. The first layer is a fully connected layer of 128
neurons followed by a rectifier linear unit (ReLU) activation
function. The second, third and fourth layers have 64, 32 and
24 neurons, respectively. A ReLU follows all of them. The last
layer is composed of |A| neurons, producing the outputs as a
weighted sum of the 4th layer followed by a sigmoid function.

The learning rate used was equal to 0.001. The exploration
rate from 1 and to 0.1 with a decay rate of 0.95 and discount
factor γ = 0.8. We set the memory size to 256 transitions,
batch size 32 and 300 epochs. A window of size equal to
3 seconds is used to compute the psychoacoustic annoyance
metric after performing the selected action.

B. Experimental Settings

We used the Grand Theft Auto (GTA) V (Rockstar Games,
NY) game to generate different interactive scenarios. During
the task, the agent was exposed to various sounds due to
environmental factors, and other external auditory stimuli,
such as pedestrians, and traffic. Additionally to the sound
environment of the simulator, we also included sounds of bells
and beeps from outside in half of the time. The action set A
is composed of 7 actions: changing the window state (open or
closed) and six different cruise speed: 2, 4, 8, 10, 15 and 20
miles per hour.

In Figure 2 we can observe how the cruise speed affects the
four psychoacoustic indices. Notice that as opposed to rough-
ness that decreases when the cruise speed increases, all other
indices, i.e., fluctuation, sharpness, and loudness increase as
cruise speed becomes greater. The psychoacoustic annoyance
metric has a similar behavior to fluctuation, sharpness, and
loudness. As shown in Figure 3, the psychoacoustic annoyance
is higher when the vehicle is running at higher speed.

Aside from using the sounds from the GTA simulator, we
also included additional noise, i.e., sounds of bells and beeps.
Figure 4 shows the values of psychoacoustic annoyance metric
when setting different cruise speeds and changing the state of
the vehicle’s window. Whenever the window state is closed,
the bells and beeps noise is not perceived by the agent. It
can be seen that in some cases, as depicted by the blue star
in Figure 4, it is sufficient the agent closes the window to



Fig. 5. On the left, we can see that in the beginning, the agent explores the action state by selecting different actions uniformly (CWS means Change Window
State). After 3, 000 rounds (vertical blue line), the agent avoids choosing cruise speeds larger than 8 mph. On the right, the plot depicts the rounds where
there was noise, and the window’s state was open (red circles). In several rounds, the agent prefers closing the window when is perceived noise that is coming
from outside of the vehicle.
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Fig. 6. The number of times the agent chose each action. These results show
that, in general, agent learned to take actions that prevent large PA values.

decrease the annoyance. However, in other cases, like that
one showed by the green star, the agent can only reduce the
annoyance from the sound by combining actions of selecting
a lower speed and closing the window.

C. Discussion

In Figure 5, the plot on the left shows the behavior of the
agent selecting actions during the learning process. We can
see that at the beginning of the training, the agent explores
the action state by selecting different actions uniformly. After
3, 000 rounds (vertical blue line), the agent starts to avoid
cruise speeds larger than 8 mph, since these speeds return
large PA values.

More interesting, we can see that the agent not only learned
to select low speeds but also learned to change the window
state when it is necessary. On the right of Figure 5 we show
red circles where there was noise, and the window’s state was
open. The first row on the plot represents the agent choosing

to close the vehicle window to decrease the annoyance. It
is worth noting that the agent correctly took the action that
closes the window when there is noise from outside. Also,
this behavior became predominant after 3, 000 rounds.

The bars in Figure 6 show the number of times the agent
chose each action. As expected, most of the time the agent
took actions to prevent large PA values, i.e., change window
state and low cruise speed.

V. CONCLUSIONS

In this work, we present an acoustic-driven method based
on deep reinforcement learning to adjust the interior vehicle
state to improve driver’s pleasantness. Our method measures
the annoyance coming from the sound using psychoacoustic
indices. This measurement is used to compute a reward that
feeds a Q-network. The network encodes the best action to be
taken to avoid annoyance as far as sound is concerned.

In our experiments, we showed the relation between the
psychoacoustic indices and the cruise speed as well as the
noise coming from outside of the vehicle. To simulate and
controls this noise we add sound of bells and beeps. The
results presented in this paper, all performed using the GTA
V simulator, showed that the agent learned to choose actions
to avoid creating annoying sounds.

As future works, we will further investigate other ap-
proaches, including agent as a recommendation system, where
every time the driver follows a suggestion, the system is
rewarded. Such reward can also be computed by measuring
the behavior of the driver such as engaging in speeding. The
second line of study will include an in-depth study of the influ-
ence of sounds on driver’s habits, in particular, physiological
signals. For the study, we will collect electroencephalogram
(EEG), eye tracking data of the subjects while they perform
the driving task.
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