
Learning Compact Networks via Adaptive Network
Regularization

Sivaramakrishnan Sankarapandian
Proscia Inc.

siva@proscia.com

Anil Kag
Department of ECE
Boston University
anilkag@bu.edu

Rachel Manzelli
Department of ECE
Boston University
manzelli@bu.edu

Brian Kulis
Department of ECE
Boston University
bkulis@bu.edu

Abstract

Deep neural networks typically feature a fixed architecture, where the number of
units per layer are treated as hyperparameters and tuned during training. Recently,
strategies for training adaptive neural networks without a fixed architecture have
seen renewed interest. In this paper, we employ a simple regularizer on the number
of hidden units in the networks, which we refer to as adaptive network regularization
(ANR). This method places a penalty on the number of hidden units per layer,
designed to encourage compactness and flexibility of the network architecture.
This penalty acts as the sole tuning parameter over the network size, increasing
simplicity during training. We describe a training strategy that grows the number
of units during training, and show on several benchmark datasets that our model
yields architectures that are smaller than those obtained when tuning the number
of hidden units on a standard fixed architecture. Along with smaller architectures,
we show on multiple datasets that our algorithm performs comparable to or better
than fixed architectures learned via grid-searching over the hyperparameters. We
motivate this model using small-variance asymptotics—a Bayesian neural network
with a Poisson number of units per layer becomes our model in the small-variance
limit.

1 Introduction

A significant amount of effort is spent determining appropriate parameters of a deep neural network.
When the parameters are discrete, determining the correct network architecture for a learning problem
is typically performed via grid search. This expensive hyperparameter search involves training
networks for each possible architecture and examining the resulting validation loss. Recently,
methods that attempt to adapt the architectures of the model to a training set have regained traction,
such as constructing a neural network using non-parametric priors [5, 3, 1], deriving a suitable neural
network architecture using a non-probabilistic framework [6], and using an auxiliary neural network
trained using reinforcement [2].

In this paper, we apply small-variance asymptotics (SVA) on a Bayesian neural network (BNN) with
a non-fixed Poisson number of units per layer, yielding a simple non-probabilistic model where a
loss function over a neural network is augmented with a penalty on the number of units in each
layer. The tradeoff between the loss and the penalty are governed by one tuning parameter. This
parameter eliminates the need for grid-searching the model architecture, which simplifies training

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



while additionally encouraging compactness and flexibility in the network architecture size. Unlike
standard search methods for architecture size, where the number of units is a discrete hyperparameter,
our tuning parameter is continuous. As a result, other methods such as Bayesian optimization could be
incorporated to tune this hyperparameter. We refer to our method as adaptive network regularization
(ANR).

We then empirically demonstrate that our resulting approach yields an algorithm for training a
neural network whose architecture is not fixed, while providing an easy method for controlling the
compactness. We show that our algorithm achieves performance comparable to or better than models
where the architecture has been fixed. Surprisingly, even when we train models whose architectures
are the same as those that our algorithm learns (i.e., we retrain using standard backpropagation on the
architectures that our algorithm learns), we find that our loss is typically lower, indicating that from
an optimization perspective, there may be benefits to training a network by adding neurons via this
penalty parameter. We believe that our approach will yield further insights in the future to design
richer neural network models inspired by probabilistic counterparts.

2 Adaptive Network Regularization

We motivate our approach to adaptively determining the architecture of a Bayesian neural network
via small-variance asymptotics. We discuss the case when the number of units are treated as Poisson
random variables.

2.1 SVA for Bayesian Neural Networks

From a generative perspective, the standard Bayesian neural network can be viewed as a generative
process where the weights are drawn from the prior, and then the outputs are generated from the
likelihood distribution given the weights. We can now consider the case where the weights within
each layer ` are further conditioned on a random variable k(`) corresponding to the number of hidden
units in layer `. We will place a Poisson distribution on k(`); assuming there are L layers total, this
makes the model (in the regression setting) therefore

p(k(`)) = Pois(λ), ` = 1, ..., L

p(w(`)|k(`)) = N (0, Ik(`)), ` = 1, ..., L

p(yi|w,xiσ
2) = N (NN(xi;w), σ2),

where w(`) corresponds to the weights in layer `. The definition of the variables (k(`),w(`)) imply
that the joint probability p(k(`),w(`)) = p(w(`)|k(`))p(k(`)).
If we make no further assumptions about the rate parameter λ, then in the small-variance limit, the
prior over the number of units will vanish, as the prior over the weights vanishes in the standard BNN
case, resulting in an ill-defined model. However, if we assume that λ = exp(−γ/σ2), then observe
that

− log p(k(`)|λ) = γ

σ2
· k + exp(−γ/σ2

p) + log k(`)!

As σ → 0 as in the previous section, the first term of this expression dominates; indeed, one can
easily see that the MAP inference problem becomes simply

n∑
i=1

(NN(xi;w)− yi)2 + γ ·
L∑

`=1

k(`), (1)

that is, the standard regression error with an additional term that regularizes the number of hidden
units per layer. Note that the analysis here need not be restricted to the regression setting, and can
incorporate arbitrary loss functions.

2.2 ANR algorithm motivated by SVA

Our algorithm considers starting with a small network of a few nodes per layer. During training,
we consider the change in the loss function that occurs if we add some number of nodes dM to the
network and train the whole network along with these additional nodes. If the change in the loss

2



Algorithm 1 Adaptive Network Regularization
Input: X , Y ,Hl ,[MH1

, ...MHl
], γ,prev_E =∞

for e = 1 to epochs do
Sample w from P (w|X ,Y)
current_E = log(p(Y|X ,w))
if prev_E− current_E> γ then

H∗ = U [0, Hl]
MH∗ = MH∗ + dM

end if
prev_E = current_E

end for

Table 1: Results of our proposed algorithm on regression datasets with Avg RMSE and Std

DATA SET N D FIXED ARCHITECTURE HIDDEN PROPOSED HIDDEN UNITS FIXED ARCHITECTURE WITH HIDDEN
UNITS ALGORITHM CONVERGED UNITS FROM PROPOSED ALGORITHM

CONCRETE 1030 8 5.977±0.2207 50 7.660±0.2613 25 12.346±1.8695
KIN8NM 8192 8 0.091±0.0015 50 0.0870±0.0017 43 0.091±0.0016
NAVAL PROPULSION 11934 16 0.001±0.0001 50 0.004±0.0000 36 0.004±0.0040
POWERPLANT 9568 4 4.182±0.0402 50 4.114±0.0051 13 4.140±0.0061
PROTEIN 45730 9 4.539±0.0288 100 4.511±0.0009 44 4.618±0.0559
WINE 1599 11 0.645±0.0098 50 0.609±0.0170 14 0.671±0.4421
MSD 515345 90 8.932±NA 100 8.872±NA 92 8.958±NA

function is greater than γ, the tradeoff parameter from (1), then we add dM units; otherwise, we
maintain the network at its current size. When adding new nodes to the network, one should train
long enough that a reliable estimate of the change in the loss function is obtained; we train for a full
epoch before deciding whether to add new nodes, though it is possible that shorter training times
(e.g., a minibatch) may be sufficient for determining the change in the loss. When training multiple
layers, we choose uniformly at random a single layer at a time when adding new nodes.

3 Experiments

We evaluate our proposed algorithm on both single layer and multilayer feed-forward neural networks
and CNNs. To show the effectiveness of our proposed algorithm, we take datasets from [4] and
apply our algorithm to it, along with suitable baselines. We train single layer neural networks five
times with dM = 1 for all datasets in three different ways: 1) using the same architecture as in [4],
2) using our dynamic algorithm to grow the number of hidden units starting with five hidden units,
3) applying standard backpropagation to the architectures learned by our algorithm. We also train
multilayer networks on MNIST and CIFAR-10 with a fixed number of layers, but the hidden units
are grown using our proposed algorithm. In all of our experiments on CIFAR-10 and MNIST, we
perform a grid search on network size with 8 combinations of [512,1024,2048] units ([24,48,96]
filters for CNNs) in each layer for a fixed set of hyperparameters, including learning rate, batch size
and number of epochs. Then, we use the same set of hyperparameters and perform a grid search on
dM and γ running our proposed algorithm. In both cases, we use validation accuracy as the metric to
choose the best set of parameters to obtain results for test set. We see that our proposed algorithm is
most likely to find a compact architecture with comparable accuracy or sometimes better than the
regular grid search on model architecture. We also observe that if we train the network with the same
number of units (or filters for CNNs), we end up in a lower test accuracy than our proposed algorithm.
To be fair, we use the same random seed for weights matrices in all of our experiments.

Table 2: Results of our proposed algorithm on CIFAR-10 (left), MNIST using FCNs (right) and
MNIST using CNNs (bottom)

METHOD ACCURACY Mh0 ,Mh1 ,Mh2 NO.OF
PARAMETERS

GRID SEARCH 57.71 2048-1024-2048 10M
PROPOSED ALGORITHM 58.43 1223-1498-1151 7M
FIXED ARCHITECTURE 57.42 1223-1498-1151 7M

METHOD ACCURACY Mh0 ,Mh1 ,Mh2 NO.OF
PARAMETERS

GRID SEARCH 98.71 2048-2048-2048 10M
PROPOSED ALGORITHM 98.76 633-659-677 1M
FIXED ARCHITECTURE 98.57 633-659-677 1M

METHOD ACCURACY Mh0 ,Mh1 ,Mh2 NO.OF
PARAMETERS

GRID SEARCH 99.58 48-96-24 66658
PROPOSED ALGORITHM 99.58 34-48-25 29911
FIXED ARCHITECTURE 98.48 34-48-25 29911

3



References
[1] Ryan Adams, Hanna Wallach, and Zoubin Ghahramani. Learning the structure of deep sparse

graphical models. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 1–8, 2010.

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network
architectures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

[3] Marc-Alexandre Côté and Hugo Larochelle. An infinite restricted boltzmann machine. Neural
computation, 28(7):1265–1288, 2016.

[4] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International Conference on Machine Learning, pages
1861–1869, 2015.

[5] Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. In International
Conference on Learning Representations (ICLR), 2017.

[6] George Philipp and Jaime G Carbonell. Nonparametric neural networks. arXiv preprint
arXiv:1712.05440, 2017.

4


	Introduction
	Adaptive Network Regularization
	SVA for Bayesian Neural Networks
	ANR algorithm motivated by SVA

	Experiments

