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ABSTRACT

We consider the fundamental problem of semi-supervised node classification in
attributed graphs with a focus on few-shot learning. Here, we propose Struc-
tural Regularized Graph Convolutional Networks (SRGCN), novel neural network
architectures extending the well-known GCN structures by stacking transposed
graph convolutional layers for reconstruction of input features. We add a recon-
struction error term in the loss function as a regularizer. Unlike standard regu-
larization such as L1 or L2, which controls the model complexity by including a
penalty term depends solely on parameters, our regularization function is param-
eterized by a trainable neural network whose structure depends on the topology
of the underlying graph. The new approach effectively addresses the shortcom-
ings of previous graph convolution-based techniques for learning classifiers in
the few-shot regime and significantly improves generalization performance over
original GCNs when the number of labeled samples is insufficient. Experimental
studies on three challenging benchmarks demonstrate that the proposed approach
has matched state-of-the-art results and can improve classification accuracies by a
notable margin when there are very few examples from each class.

1 INTRODUCTION

Graph is the most natural structure to model interactions between different entities. For example,
graphs are often used to model social networks (Facebook, Twitter), biological networks (protein-
protein interaction), and citation networks (arXiv). There has been an increasing research interest in
learning tasks on arbitrary structured graphs recently, e.g., (Bruna et al., 2014; Monti et al., 2017;
Defferrard et al., 2016; Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018).

In this paper, we consider the fundamental problem of semi-supervised node classification in at-
tributed graphs, where the labels of a small training set are available. Such label information is
critical to the performance of classification algorithms. However, it usually requires the inspection
of human experts, and thus is often expensive to obtain sufficient label information. It is therefore
important to design effective learning methods for the setting where only minimum amount of su-
pervision is available: the classifier needs to generalize well after seeing few or even zero training
samples from each class.

To tackle the complexity of huge real-world networks, representation learning-based approaches
have become popular for learning tasks on structured data. One line of research is network embed-
ding (Tang et al., 2015; Grover & Leskovec, 2016; Bojchevski & Günnemann, 2018). This approach
first learns a lower-dimensional representation for each node in the graph in an unsupervised man-
ner, followed by a supervised classifier for node classification, e.g., logistic regression or multi-layer
perceptron (MLP).

Another popular line of research is trying to generalize convolutional neural networks (CNNs) to
graph data, e.g., (Bruna et al., 2014; Duvenaud et al., 2015). One family of such methods that is
most related to the present work is Graph Convolutional Networks (GCNs) Kipf & Welling (2017).
GCNs are neural network models operating directly on graphs, which can be viewed as an effective
first-order approximation of spectral graph convolutions Hammond et al. (2011).

The above two approaches achieve impressive classification accuracies and have drawn a great
amount of attention. However, deep neural networks generally perform poorly on few-shot learn-
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ing tasks Ravi & Larochelle (2017). This work proposes a simple yet powerful framework, called
Structural Regularized Graph Convolutional Network (SRGCN), for few-shot and zero-shot learning
tasks on graphs.

In the conventional GCN model of Kipf & Welling (2017), the convolution filter is restricted to
operate in a 1-hop neighborhood. In each layer, the hidden features are first linearly transformed
by a trainable weight matrix; the new hidden feature vector of a node is computed by aggregating
the hidden features from its neighboring nodes followed by a non-linear activation. Such iterative
aggregation schemes have proven to effectively learn node representations and achieve state-of-the-
art classification accuracy by utilizing topological and feature information simultaneously. When
training examples are abundant, label information can be efficiently propagated to the entire graph
in a couple of iterations; indeed, the best performance of GCN is typically achieved with a 2-layer
architecture Kipf & Welling (2017). On the other hand, when labels are extremely scarce, intuitively
more rounds of aggregations are needed hence deeper networks; a theoretical analysis on the limi-
tation of shallow GCN for few-show learning is presented in Section 3. However, deeper versions
of GCN often lead to worse performance Kipf & Welling (2017); Xu et al. (2018), and according
to the analysis of Xu et al. (2018), this is mainly because some critical feature information may be
“washed out” via the iterative averaging process.

Present Work. To resolve this dilemma, we propose a novel regularized graph convolutional net-
work architecture, called SRGCN. Regularization is usually applied to prevent over-fitting Kipf &
Welling (2017); Velickovic et al. (2018), however, the effect of standard regularization methods,
which controls the model complexity by including a penalty term depends solely on the parameters,
is limited in few-shot learning on graphs. Our regularization on the other hand crucially depends on
the structure of the underlying graph, whose form itself is also trainable. We write the loss function
as L = Lsup + αLsr, where Lsup is the supervised loss and the structural regularization term Lsr
is:

Lsr = ‖gθ2 ◦ fθ1(X)−X‖2.
Here ◦ denotes function composition, X is the input features, fθ1(X) is the encoding function
defined by a usual GCN, and gθ2() is a reconstruction function parameterized by a transposed graph
convolutional network. For fixed X and θ2, Lsr is a function of the GCN parameter θ1 that we want
to learn, hence it is indeed a regularizer for GCN. Note this encoder-decoder structure is reminiscent
of Autoencoder (Hinton & Salakhutdinov, 2006).

In other words, our neural network structure is the conventional GCN concatenated with a Trans-
posed Graph Convolutional Network, which is used to reconstruct the original node features. The
loss function of the proposed framework consists of two parts: (1) the supervised loss w.r.t. the la-
beled part of the graph and (2) the unsupervised reconstruction errors of features, i.e., the regularizer.
The SRGCN architecture has several desirable properties for few-shot learning tasks including:

1. The regularization term Lsr is parameterized by a graph convolutional network, whose
structure depends on the graph topology (encoded in gθ2 ) with a trainable θ2, and thus has
much more expressive powerful than standard regularizations.

2. The reconstruction term in the loss function effectively prevents critical feature information
from being washed out during the layer-wise averaging process and could potentially be a
building block for training deeper GCNs.

3. In the original GCN, the training of weight matrices is mainly guided by the supervised loss,
which is less efficient for the purpose of dimensionality reduction and denoising especially
when the training set is small and the feature dimensionality is high, while the Autoencoder
in SRGCN allows the neural network to learn the real signals more efficiently.

4. It is twice deeper than GCN, and thus good for label information propagation, which is
particular helpful in the few-shot setting.

We assess our new framework on three widely used benchmarks: Cora, Citeseer and Pubmed. The
experimental results show that the proposed approach can significantly improve generalization when
there are very few examples from each class, compared with strong baselines such as GCN, GAT
(Velickovic et al., 2018), MoNet Monti et al. (2017) etc. For completeness, we also evaluate our
model on standard dataset splits, in which the label rate is relatively high. The results show that,
with the reconstruction regularization, the accuracy of GCN could be improved in this setting as
well. Although GAT achieves slightly better accuracy on standard splits than SRGCN, it is arguably
much more complicated and does not work well in the few-shot setting.

2



Under review as a conference paper at ICLR 2019

2 SRGCN ARCHITECTURE

2.1 PROBLEM DEFINITION

A graph with features is denoted as G = (V,E,X) ,where V = {v1, v2, v3, ..., vn} is the vertex
set, E = {ei,j}ni,j=1 is the edge set and X = {x1, x2, ..., xn} is the set of feature vectors of all
nodes. We assume there are totally c classes and each node belongs to exactly one class. The (class)
labels of a subset of nodes is revealed in the beginning (i.e., training set), whose indices is denoted
by YL ⊆ {1, · · · , n}. For each ` ∈ YL, the label of v` is indicated by a one-hot vector Y` ∈ {0, 1}c.
The task is to predict the labels of other nodes. We are most interested in the setting when |YL| is
very few and the labels in the training set may not cover all classes.

2.2 FRAMEWORK

In this paper, we propose a semi-supervised model named SRGCN. The architecture conceptually
consists of two neural networks concatenated together. The first one is a GCN based encoder, while
the second one is a decoder, which is essentially a transposed graph convolutional network.

2.2.1 ENCODER

We first describe the encoder part of SRGCN, which is a standard GCN of Kipf & Welling (2017).
In general, it is composed of me graph convolution layers. The input of each layer is a set of node
features represented as a matrix H l = {h1, h2, ..., hn} ∈ Rn×dl , in which n is the number of
nodes and dl is the output dimension of the previous layer. The output of the layer is a new set of
node features, denoted as H l+1 = {h′1, h′2, ..., h′n} ∈ Rn×dl+1 , where typically dl+1 < dl. More
precisely, the layer-wise propagation rule applied on the l-th layer can be formalized as follows:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2H lW l).

Here, Ã = A+ In is the adjacency matrix of the graph after adding self-loops to each node, where
In is the identity matrix; D̃ is a diagonal matrix with D̃ii =

∑
j Ãij ; W

l ∈ Rd×k is the trainable
weight matrix of layer l; and σ() is an activation function (usually ReLU or softmax). In the 0-th
layer we have H0 = X , i.e. using original features as input.

The output of the last layer, denoted as Z ∈ Rd×c, is the matrix containing the probabilities that
every node v belongs to different classes. Here, we used θ to denote the set of all trainable parameters
and the supervised loss is the cross-entropy error, which is defined as follows:

Lsup(θ;A,X) = −
∑
`∈YL

c∑
j=1

Y`j lnZ`j .

2.2.2 DECODER

For notational convenience, we define Â = D̃−
1
2 ÃD̃−

1
2 , which is symmetric. After the dimension-

ality of the feature space is reduced with a graph convolutional network, a series of transposed graph
convolutional layers, each of which is of the form H ′ = σ(ÂTHWT ) = σ(ÂHWT ), are applied
to reconstruct the original features of all nodes from their low dimensional representations. Here
W ∈ Rd′×d is a trainable weight matrix with d′ > d, so that the dimensionality of feature vectors
increases after each layer. Moreover, as mentioned earlier, iterative use of the smoothing operator
ÂX results in losing some critical feature information, we hence add a pooling operation (usually
max or mean) in each layer to prevent over-smoothing as in (Hamilton et al., 2017; Xu et al., 2018).

In all, the decoder part of the SRGCN consists of the md layers of transposed graph convolutions.
Each layer takes in as input a set of hidden features, H l = {h1, h2, ..., hn} ∈ Rn×dl and produces
a new set of node features H l+1 = {h′1, h′2, ..., h′n} ∈ Rn×dl+1 , where typically dl+1 > dl. More
specifically, the layer-wise propagation rule can be written as follows:

H l+1 = σ(pooling(D̃−
1
2 ÃD̃−

1
2H l, H l)W l)
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The transposed graph convolutional network use H0 = Z as the input, whose last layer outputs X̂ ,
a matrix of the same size as X . The reconstruction loss function is the squared Euclidean distance
(or squared Frobenius norm of matrices):

Lsr(θ;A,X) =‖ X̂ −X ‖2

2.3 IMPLEMENTATION DETAILS

For all experiments in this paper, SRGCN uses the following four-layer network architecture:
H1 = ReLU(ÂXW 1),W 1 ∈ Rd0×d1

Z = softmax(f(ÂH1W 2)),W 2 ∈ Rd1×c

H2 = ReLU(max(Z, ÂZ)W 3),W 3 ∈ Rc×d1

X̂ = ReLU(max(H2, ÂH2)W 4),W 4 ∈ Rd1×d0

Here, c is the number of classes and the pooling method is simply an entry-wise max function. This
max-pooling operation does not introduce any additional parameters. Both GCN and GAT use a L2

regularizer in all the experiments in (Kipf & Welling, 2017) and (Velickovic et al., 2018), which is
also included in our loss function. Thus, the actual loss function of SRGCN in all experiments is:
L = Lsup +αLsr + βL2. Note that, without the Lsr term, our model is essentially the same as L-2
regularized GCN.

3 LIMITATIONS OF SHALLOW GCNS

In this section we discuss the limitations of shallow GCN (refer to the encoder part of SRGCN for
the definition of GCN). Suppose the number of layers in GCN is K and let HK be the output of
the last layer. We first assume the loss is a function of the final representations of the labeled nodes,
denoted as HK

YL
and their corresponding labels YYL

, i.e., L = f(HK
YL
, YYL

), which is typically the
cross entropy function.

Let Ni(x) be the order i neighborhood of node x, i.e., the set of nodes connected to x by a path
of length at most i. For any set S ⊆ V , we define Ni(S) =

⋃
x∈S Ni(x). By a simple induction

argument, we have the following lemma.
Lemma 1. HK

YL
does not depend on the input features of nodes v ∈ V \ NK(YL), and is only a

function of the weight matricesW 1, · · · ,WK−1 and the feature vectors of nodes in the setNK(YL)
denoted as XNK(YL).

Therefore
L = f(HK

YL
, YYL

) = g(W 1, · · · ,WK−1, XNK(YL), YYL
) (1)

for some function g. In the classification problem, g,XNK(YL) and YYL
are given and the training

algorithm is to find the optimal weight matrices to minimize the loss function. Let W ∗ be the
optimal parameters computed by the algorithm. If we assume the optimization algorithm only uses
the information of the loss function to update the optimization variables in each iteration, e.g., its
gradients or the Hessian matrix w.r.t. W 1, · · · ,WK−1, then W ∗ must be independent of the feature
vectors of nodes v ∈ V \NK(YL).
Lemma 2. W ∗ is function of XNK(YL), YYL

. Any changes in the input features XV \NK(YL) will
not affect the value of W ∗ as long as the random seeds used in the optimization algorithm is fixed.

The above Lemma shows that in the training of parameters, XNK(YL), YYL
is the only relevant input

data. When the labeled set YL is very small and the depth of the GCN K is small (K = 2 is
commonly used), the set NK(YL) only consists of a negligible fraction of the entire graph, and thus
most of the input features of the graph are ignored by the training algorithm.

Moreover, applying a standard regularization does not bring any benefits. To see this, if we add a
penalty term r(W ) that only depends on the parametersW , e.g., L1 or L2 regularization, the overall
loss is still a function of W 1, · · · ,WK−1, XNK(YL), YYL

(from equation 1). Hence the conclusion
of Lemma 2 still holds.
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On the other hand, our regularization is Lsr =‖ X̂ −X ‖2, where X includes the input features of
all nodes. This force the training algorithm to utilize the information of the entire graph, not just the
order K neighborhood of the labeled set.

4 RELATED WORK

Our approach extends graph convolutional networks of Kipf & Welling (2017), and thus can be
categorized as a spectral approach (Bruna et al., 2014; Henaff et al., 2015; Defferrard et al., 2016).
Such spectral methods generalize convolutions to the graph domain, working with a spectral operator
depending on the graph structure, which learns hidden layer representations that encode both graph
structure and node features simultaneously. Our network structure follows the work of Kipf &
Welling (2017), which simplifies previous spectral techniques by restricting the propagation to a
1-hop neighborhood in each layer. Chen et al. (2018) propose fast GCNs, which improves the
training speed of the original GCN. GAT of Velickovic et al. (2018) allows for assigning different
importances to nodes of a same neighborhood via attention mechanisms. Xu et al. (2018) introduce
JK networks, which adaptively adjust (i.e., learn) the influence radii for each node and task. Zügner
et al. (2018) study adversarial attacks on neural networks for graphs. In contrast to this paper,
such work does not explicitly consider the few-shot learning problem and their performance often
degenerates rapidly as the number of labeled samples decreases.

Another direction that generalizes convolutions to the graph structured data, namely non-spectral
approaches, define convolutions directly on the graph (Duvenaud et al., 2015; Atwood & Towsley,
2016; Monti et al., 2017). Such methods are easier to be adapted to do inductive learning Hamilton
et al. (2017); Velickovic et al. (2018); Bojchevski & Günnemann (2018). However, few-shot learning
remains a challenge for this class of methods.

On the other hand, node classification is also one of the main applications of network embedding
methods, which learns a lower-dimensional representation for each node in an unsupervised man-
ner, followed by a supervised classifier layer for node classification (Perozzi et al., 2014; Tang et al.,
2015; Grover & Leskovec, 2016; Wang et al., 2016; Bojchevski & Günnemann, 2018). DeepWalk
of Perozzi et al. (2014) uses local information obtained from truncated random walks to learn latent
representations. It assumes that a pair of nodes are similar if they are close in the random walks.
LINE preserves the first-order and second order proximity between nodes respectively, and concate-
nates the representations for the first-order and second order proximity (Tang et al., 2015). A recent
work of Bojchevski & Günnemann (2018) proposes Graph2Gauss. This method embeds each node
as a Gaussian distribution according to a novel ranking similarity based on the shortest path between
nodes. A distribution embedding naturally captures the uncertainty about the representation. The
work of (Zhou et al., 2018) tackles the challenge of rare category characterization, which is a similar
but different problem considered in this paper. Embedding approaches achieve comparable per-
formance in node classification tasks, while the learned representations also prove to be extremely
helpful for other downstream applications.

5 EXPERIMENT

In this section, extensive empirical results on three commonly used datasets are provided. In most
previous work, a standard split of each datasets1 is used to evaluate accuracies. Since this work
focuses on the few-shot setting, we evaluate the performance of each method using training sets of
varying size that are much smaller than in the standard split. The training samples in our experiments
are randomly selected from the graph. We observe that, when the training set is extremely small, the
performance of each method is highly sensitive to which subset of nodes are labeled. Therefore, in
each experiment (with fixed sample size), we evaluate each method on 50 random splits and report
the average accuracy, standard deviation, and a detailed accuracy distribution.

Moreover, the results of SRGCN under standard splits are also presented. Under this setting,
SRGCN shows a clear improvement over the original GCN, which demonstrates the effectiveness
of our regularization technique. The results of GAT are slightly better than those of SRGCN. GAT

1The training set contains 20 labeled nodes from each class.
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Table 1: Summary of the datasets used in our experiments.
Cora Citeseer Pubmed

# of Nodes 2708 3327 19717
# of Edges 5429 4732 44338

# of Features/node 1433 3703 500
# of Classes 7 6 3

uses sophisticated attention mechanisms and achieve state-of-the-art accuracies over standard splits,
but is more prone to overfitting in few-shot learning.

5.1 EXPERIMENT SETTING

We evaluated the performance of SRGCN in two classification tasks. (1) In the first task, the set of
labeled nodes (i.e., training set) is uniformly randomly sampled from the graph, so the number of
samples from each class is random. Moreover, when the size of the training set is small relative to
the number of classes, it is likely that some type of labels may not appear in the training set, i.e.,
zero-shot learning. (2) In the second task, the training set contains the same number of nodes from
each class; and the samples from each class are randomly selected from the class. In the above two
tasks, the validation set is chosen in the same size and manner as the training set, and the rest of
nodes will be used as the testing set.

Baseline Methods: We compare SRGCN with six representative baseline methods: DeepWalk (Per-
ozzi et al., 2014), LINE (Tang et al., 2015), Graph2Gauss (Bojchevski & Günnemann, 2018), GCN
(Kipf & Welling, 2017), MoNet(Monti et al., 2017) and GAT (Velickovic et al., 2018). DeepWalk,
LINE and Graph2Gauss are unsupervised network embedding methods. For node classification, af-
ter the embeddings of nodes are learned, a classifier is trained by applying logistic regression in the
embedding space. GCN, MoNet and GAT are semi-supervised node classification methods.

Datasets. We consider three most commonly used citation network datasets: Cora, Citeseer and
Pubmed. Each node in the graph corresponds to a document and the edges are citation links between
documents; the feature vector of a node is a sparse bag-of-words vector. See Table 1 for more details.

Tasks. For task 1, we evaluate the classification performance with respect to five different training
set sizes: 10, 20, 30, 40, 50. In this task, zero-shot instances are likely to occur. Note that the logistic
regression step in embedding-based methods is unable to deal with zero-shot instances. Hence,
we only use GCN, MoNet and GAT as baselines in this task. For task 2, we test the performance
with varying numbers of labeled examples from each class (more specifically 1, 3, 5, 7, 10). In this
task, SRGCN are compared with both embedding-based and semi-supervised methods. For each
particular training set size, we evaluate each method on 50 random splits and report the average
accuracy, standard deviation, and a detailed accuracy distribution.

Parameter Settings. We train SRGCN for a maximum of 300 epochs and use the Adam optimizer
with learning rate 0.01. To better assess the effectiveness of our SRGCN, we use the same set
of hyperparameters as in (Kipf & Welling, 2017) for GCN. More precisely, the dropout rate is
0.5, the number of the hidden units in H1 and H2 is 16 and the weight of L2 regularization is
β = 0.0005. Hence the only difference between GCN and SRGCN in the actual implementations
is the reconstruction loss. In all the experiments, the weight of the reconstruction loss is set to
α = 0.0001, which is the only one extra hyperparameter needs to be tuned compared with GCN.

The parameter settings of MoNet and GAT are directly taken from (Monti et al., 2017) and (Velick-
ovic et al., 2018). The embedding size of each unsupervised learning method is set to 128 and other
parameters are set in common with settings in (Bojchevski & Günnemann, 2018).

5.2 EXPERIMENT RESULTS

The empirical results of task 1 and task 2 are summarized in Table 2 and Table 3 respectively.
We complement our few-shot results with experiments on standard splits, the results of which are
presented in Table 4.
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Table 2: Experimental results on task 1. The numbers in the first row indicate varying sizes of
training set, the nodes in which are randomly sampled from the entire graph.

Cora
10 20 30 40 50

GCN 44.69±8.62 57.84±7.89 65.42±5.86 67.74±4.56 72.64±3.47
MoNet 43.92±8.61 56.20±7.48 62.08±5.35 65.43±4.08 70.04±3.55
GAT 35.78±12.17 50.45±12.35 59.58±8.33 62.35±5.24 67.72±4.25

SRGCN 50.04±11.73 64.18±7.11 70.13±4.25 71.63±4.03 76.00±2.64
Citeseer

10 20 30 40 50
GCN 37.14±8.37 46.19±6.67 55.28±6.37 58.40±4.12 60.77±4.25

MoNet 37.58±7.02 45.36±7.61 54.43±6.79 57.22±5.59 59.94±4.78
GAT 30.69±8.67 36.04±11.63 50.88±8.02 51.14±6.86 54.10±4.74

SRGCN 48.84±10.76 57.99±7.09 64.04±6.47 66.60±3.00 67.72±2.17
Pubmed

10 20 30 40 50
GCN 56.88±9.17 66.13±6.03 71.67±5.27 74.22±3.05 76.64±2.76

MoNet 55.57±7.67 64.03±5.53 68.38±4.22 69.64±2.86 70.81±2.17
GAT 46.27±9.11 55.14±7.55 63.41±5.43 66.20±4.05 68.41±3.59

SRGCN 56.98±9.36 66.39±5.68 72.42±4.50 74.33±3.02 76.54±2.84

For task 1, the empirical results clearly demonstrate the advantage of SRGCN across all three
datasets. In particular, SRGCN achieves significant improvements over GCN (by a margin of up
to 6% and 10% on Cora and Citeseer, respectively), while GCN consistently outperforms the other
two baselines. Since GCN and SRGCN use the same encoding network structure and the same set
of hyperparameters, the effectiveness of the proposed SR regularization is obvious from the results.
Perhaps surprisingly, we observe that the performance of GAT is much worse than other baselines in
the few-show setting, even though it achieves state-of-the-art accuracy for standard splits. We think
a possible reason for this might be that the attention mechanism in GAT results in higher model
complexity, which requires more training samples and thus is more likely to cause overfitting in
few-show learning. Our regularization method might be a solution to this issue of GAT, which is left
as future work.

We observe the classification accuracy is sensitive to the selection of labeled examples in the few-
shot setting. In our experiments, the results w.r.t. 50 random splits are recorded. From the standard
deviations, we see that SRGCN is generally more robust against the choice of training samples than
the baselines. We present box-plots of the accuracy distributions on Cora for task 1 in Figure 1.
More results on accuracy distributions can be found in Appendix B.

(a) Cora (b) Citeseer

Figure 1: Box-plot of the accuracies of all models on Cora and Citeseer.

In task 2, compared with all embedding-based methods and semi-supervised methods,
SRGCN achieves the highest accuracy under almost all experimental settings. We observe that
the recent G2G method has impressive performance especially in one-shot experiments. For GAT,
contrast to task 1, when training examples are evenly distributed among all classes, it attains very
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competitive performance. Among three semi-supervised baselines, MoNet typically has the best
performance. On the other hand, as the number of labeled examples grows, the accuracy of GCN,
MoNet and GAT become closer to SRGCN. This is reasonable, since the effect of structural regu-
larization will be dominated by the supervised loss when the training set is large.

Table 3: Experimental results on task 2. The numbers in the first row indicate the number of training
samples in each class.

Cora
1 3 5 7 10

DeepWalk 40.42±6.55 53.87±4.79 59.40±3.77 62.25±3.17 65.44±3.29
LINE 49.48±8.70 62.68±4.39 63.41±6.74 69.00±3.11 71.13±1.84
G2G 54.56±10.34 68.12±5.52 70.93±2.69 72.24±2.08 73.89±1.68
GCN 43.29±8.42 63.32±6.26 69.33±4.39 72.30±3.56 74.64±3.20

MoNet 43.49±7.63 61.22±6.27 70.94±2.38 72.85±2.86 76.19±1.96
GAT 41.83±7.07 61.70±7.21 71.17±3.49 73.46±3.95 76.02±2.06

SRGCN 52.14±10.96 68.22±5.45 72.84±3.48 74.79±2.96 76.60±2.23
Citeseer

1 3 5 7 10
DeepWalk 28.38±6.07 34.72±4.53 38.18±3.02 39.76 ±3.32 42.01±2.92

LINE 28.08±5.36 34.70±4.74 38.03±3.18 40.63±2.81 43.19±2.55
G2G 45.10±9.58 56.46±5.45 60.38±2.91 62.91±2.44 63.15±2.00
GCN 34.94±7.57 51.27±6.07 57.63±4.04 60.89±3.50 62.84±2.37

MoNet 38.80±6.77 52.95±5.96 59.79±3.91 62.93±3.00 64.69±2.72
GAT 32.88±9.49 48.68±5.93 54.92±4.95 57.91±4.68 60.83±4.74

SRGCN 45.05±11.29 59.32±7.24 64.35±3.82 66.39±2.46 67.03±2.23

Table 4: Experimental results on standard splits.
Cora Citeseer Pubmed

GCN 81.4±0.5 70.9±0.5 79.0±0.3
MoNet 81.7±0.5 — 78.8±0.3
GAT 83.0±0.7 72.5±0.7 79.0±0.3

SRGCN 82.3±0.6 71.8±0.4 79.0±0.3

Finally, we report the classification accuracies of semi-supervised models on the standard dataset
splits, which are commonly used in previous works such as Yang et al. (2016); Kipf & Welling
(2017); Velickovic et al. (2018). Results for all baseline methods are taken from the original papers.
Even in this setting, where the label rate is relatively high 2, SRGCN still outperforms GCN. This
shows that our SR regularization not only improves accuracy significantly for few-shot learning,
the results on standard splits shows that it is also an effective regularization method for general
purpose. Equipped with attention mechanisms, GAT remains the best for standard splits. Since our
regularization technique is quite general, it is natural to ask whether it could be applied on GAT or
other graph neural networks to improve their generalization, which is left as future work.

6 CONCLUSION
We have introduced a novel regularized GCN architecture for few-shot classification problems on
graph-structured data. Our SRGCN model combines the original GCN structure with an encoder-
decoder architecture, which can be considered as a regularization method. What make this more
powerful than standard methods is that the regularization term is a function parameterized by a
trainable neural network, whose structure depends on the underlying graph topology. Experiments
on a number of network datasets shows that SRGCN has matched state-of-the-art results and can
significantly improve classification accuracy when there are very few examples from each class.
Moreover, as the original GCN, our method is simple and easy to implement. This suggest that the
proposed SRGCN model is capable of overcoming the classification accuracy degeneration caused
by insufficient labeled information, while being computationally efficient on par with GCNs.

2In the standard splits, the number of labels per class is 20
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Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. International Conference on Learning Representations
(ICLR), 2018.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. International Conference on Learning Representations (ICLR),
2014.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. International Conference on Learning Representations (ICLR), 2018.
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A NETWORK VISUALIZATION

Semi-supervised methods also learn a low-dimensional embedding for each node in the graph, which
can be used to create meaningful visualizations of a network in 2D/3D. Moreover, the effectiveness
of such methods can also be investigated qualitatively when the learned representations are further
projected onto the 2D space. We provide such a visualization of the feature representation produced
by GCN and SRGCN respectively on the Cora dataset (Figure 2) with t-SNE (Maaten & Hinton,
2008). The visualization results show that the clustering effect exhibited by SRGCN is more dis-
cernible than that by GCN, which align with our numerical results.

(a) GCN (b) SRGCN

Figure 2: Visualization: t-SNE plots of the computed feature representations of GCN’s last layer
and SRGCN’s middle layer (used for classification) on the Citeseer dataset. The representations are
trained using a labeled set of size 40.

B MORE EXPERIMENTAL RESULTS

We present the histograms of the accuracy distributions on Cora and Citeseer about task 1. As is
shown in the histograms, X-axis represents accuracy, Y-axis represents the frequency of the experi-
ment whose accuracy is in this interval.
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(a) training size 10 (b) training size 20 (c) training size 30

(d) training size 40 (e) training size 50

Figure 3: Histograms of task 1 for each model on Cora.

(a) training size 10 (b) training size 20 (c) training size 30

(d) training size 40 (e) training size 50

Figure 4: Histograms of task 1 for each model on Citeseer.
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