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Abstract
Recent developments in Large Language Mod-001
els (LLMs) have motivated widespread re-002
search interest in exploring their potential in003
downstream applications. Given the black004
box nature of LLMs, prompt engineering be-005
comes the natural method to interact with them.006
Prompt tuning, including hard and soft prompts,007
combine manually or automatically composed008
text templates with adjustable vectors, aiming009
to improve parameter efficiency with only a010
small fraction of tunable parameters. How-011
ever, the training cost has not been significantly012
reduced due to the presence of network-wide013
backpropagation, and it often leads to moderate014
performance deterioration with a soft prompt015
initialization issue. Late Prompt Tuning (LPT)016
further reduces training cost and performance017
drop, by inserting a parameterized vector into018
the center of the model and introducing in-019
trinsic dimension into the initial soft prompt.020
With significant saving in training cost, per-021
formance of LPT is still weak compared to022
other parameter-efficiency methods like adapter023
and LoRA (Low-Rank-Adaptation). We argue024
that it is caused by the limited capacity of soft025
prompts to carry complete downstream task in-026
formation. To deal with this issue, we propose027
a new parameter-efficient tuning method called028
Back-and-Forth Tuning (BFT), which achieves029
better results by combining hard prompts and030
task information. With a new information031
component and partially unfrozen module, our032
model can store task-specific information with033
limited parameters. Soft prompt and adapter034
are both viable options for the information com-035
ponent, and results show better performance of036
the latter. Comprehensive experiments demon-037
strate that our method improves 2.27% over038
LPT on average accuracy of 10 tasks, together039
with faster convergence speed and no increase040
in training cost.041

1 Introduction042

With the widespread application of the Transformer043

(Vaswani et al., 2017) framework, pre-trained large044

language models have become the undoubtful cor- 045

nerstone of the Natural Language Processing (NLP) 046

research field. Since the proposal of BERT (De- 047

vlin et al., 2018), pre-trained models (Devlin et al., 048

2018; Lewis et al., 2019; Liu et al., 2019; Raffel 049

et al., 2020; Brown et al., 2020; He et al., 2020; 050

Joshi et al., 2020; He et al., 2021b) have been con- 051

stantly refreshing benchmarks in NLP with updates 052

on the transformer network. Moreover, (Kaplan 053

et al., 2020) discovered that larger models are sig- 054

nificantly more sample-efficient with their stronger 055

representative power. 056

Full parameter fine-tuning of a model is a popu- 057

lar method to adapt to downstream tasks. However, 058

as the number of parameters in a model increases, 059

it becomes more and more costly to fine-tune all 060

of them. Parameter-efficient fine-tuning is a new 061

research area that tries to adjust a pre-trained model 062

to downstream tasks by fine-tuning only part of the 063

model’s parameters. 064

The concept of parameter-efficient fine-tuning 065

was first introduced in the adapter framework 066

(Houlsby et al., 2019). It only adjusts a small 067

percentage of the model’s parameters, ranging 068

from 0.5% to 8%, while achieving competitive re- 069

sults. Other parameter-efficient fine-tuning meth- 070

ods, such as soft prompt (Lester et al., 2021), Bitfit 071

(Ben Zaken et al., 2022), prefix tuning (Li and 072

Liang, 2021), and LoRA (Hu et al., 2021), also aim 073

to tune a minimal number of parameters to reduce 074

costs. 075

However, there is a common misconception that 076

reducing the number of adjustable parameters di- 077

rectly translates to cost reduction. As shown in Fig- 078

ure 1, there is no direct relationship between free 079

parameters and memory requirement. Although the 080

methods above have reduced the number of tunable 081

parameters to about 1% of the original model, they 082

only result in a reduction of approximately 20% 083

in GPU memory usage and a modest speedup of 084

about 1.5 times in training efficiency. This limited 085
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Figure 1: Number of free parameters and required mem-
ory for multiple parameter efficiency methods when
applied to RoBERTa-Large model.

improvement is attributed to the impact of back-086

propagation. Most parameters, including the fixed087

ones, still need to go through the backpropagation088

process. It greatly reduces the expected improve-089

ment in efficiency.090

In contrast, Late Prompt Tuning (LPT) (Liu et al.,091

2022b) proposed a solution by embedding a soft092

prompt into a hidden layer of the model which is093

closer to the output. Through carefully-designed094

experiments, the researchers found that embedding095

the soft prompt in the middle of the model’s hid-096

den layer yields the best result. This method ef-097

fectively reduces the backpropagation distance by098

half, leading to significant reductions in training099

time and GPU memory usage. Specifically, LPT100

achieves 2.0× training speed of and reduces mem-101

ory costs by 56.6% compared to a full model tuning102

on RoBERTa-Large (Liu et al., 2019).103

In this paper, our objective is to continue improv-104

ing over the convergence speed of LPT and further105

reduce training time. Inserting the soft prompt into106

the hidden layer in the middle of the model would107

face the same issue of transmission distance as108

LPT. Experiments prove that this issue has negative109

impacts the convergence speed as well as model110

accuracy. To address it, we also modified the pa-111

rameters of the last layer to better align with the112

soft prompts in the middle of the model.113

Building upon co-tuning of the middle and last114

layers, we propose a method called Back-and-Forth115

Tuning(BFT). Since the design is based on LPT116

with additional parameters behind its hidden layer,117

the memory footprint and training time stay about118

the same as the original approach. Extensive exper-119

iments demonstrate that compared with the tradi- 120

tional LPT under the RoBERTa-Large model, BFT 121

converges faster and leads to about 1.99% accu- 122

racy improvement, with similar memory usage and 123

training speed. In addition, we also explore the 124

feasibility of inserting a single hidden layer inside 125

the model in similar methods like adapter, resulting 126

in a better performing architecture. 127

In summary, main contributions of this paper are 128

as follows: 129

1. We explore the mechanism behind the cost- 130

effectiveness of LPT training and introduce 131

further architectural modifications. 132

2. Combining the soft prompt and partially un- 133

frozen modules, we propose BFT as an im- 134

provement over LPT, showing faster conver- 135

gence and better performance without increas- 136

ing cost. 137

3. With an adapter-based information component 138

added to the BFT framework, the BFT-adapter 139

model achieves even better performance. In 140

comparison to LPT under the RoBERTa-Large 141

model, it reduces training time by 16.5% and 142

training cost by 41.4%, and average accuracy 143

is 2.27% higher in 10 tasks. 144

2 Related Work 145

Parameter-Efficient Fine-Tuning (PEFT) methods 146

mainly focus on reducing the number of tunable 147

parameters. They are mainly divided into four cat- 148

egories. 149

Addition-based PEFT: All the original parame- 150

ters in the network are frozen, with only additional 151

parameters fine-tuned. According to where the 152

additional parameters are added, it includes two 153

categories: adding parameters at the architecture 154

level and to the existing vectors. For the first type, 155

Adapter (Houlsby et al., 2019) add a bottleneck 156

network twice to each transformer layer: after the 157

projection following multi-head attention and after 158

the two feed-forward layers, while tiny attention 159

adapter (Zhao et al., 2022) adds a small attention 160

mechanism (Vaswani et al., 2017) after the trans- 161

former layer. Although models of this type perform 162

well in full-sample learning, they tend to yield 163

lower performance in few-shot learning. As for 164

the second type, soft prompt (Lester et al., 2021) 165

adds additional parameters to input embeddings, 166

prefix tuning (Li and Liang, 2021) links them to 167
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the key and value matrices in the attention mech-168

anism, P-Tuning v2 (Liu et al., 2021) injects soft169

prompts into each layer of the model’s hidden layer170

for better performance, LPT (Liu et al., 2022b)171

only connects parameters to hidden vectors in the172

middle layer of the model, and (IA)3 (Liu et al.,173

2022a) adds parameters to the key and value ma-174

trices in the attention mechanism in the vertical175

dimension plus the feedforward mechanism in the176

parallel dimension. Except for soft prompt and LPT177

that only make modifications to one specific layer,178

other models have additional parameters added to179

each layer.180

Specification-based PEFT: In this method, most181

of the original parameters are frozen, and only the182

specified parameters are fine-tuned. For example,183

Bitfit (Zaken et al., 2021) fine-tunes only the biases184

of the model, and (Lee et al., 2019) achieves 90%185

performance of the original model by fine-tuning186

only the last few layers.187

Re-parameterization PEFT: This method keeps188

the original parameters but re-parameterizes the189

update vectors. For instance, (Aghajanyan et al.,190

2020) replaces the update of the original parame-191

ters with the product of two low-rank matrices, and192

LoRA (Hu et al., 2021) re-parameterizes only the193

query and value matrices in the attention mecha-194

nism at each layer of the model.195

Fusion method: This type of approaches combines196

multiple methods mentioned above. Compacter197

(Karimi Mahabadi et al., 2021) re-parameterizes198

the matrix of the Adapter architecture and shares199

a subset of parameters in each layer of the model.200

(He et al., 2021a) combines Adapters with prefix201

tuning and LoRA to explore a better model, and202

they find that parallel adapters provide the best203

performance. Delta tuning (Ding et al., 2022) com-204

bines the aforementioned methods and designs an205

automated process to select the appropriate combi-206

nation for the tasks at hand. Black box tuning (Sun207

et al., 2022) re-parameterizes and de-gradients the208

updates of soft prompts, providing an idea for per-209

sonalized fine-tuning of large models like GPT-3210

(Brown et al., 2020).211

3 Method212

3.1 PEFT revisited213

The original intention of PEFT was to reduce both214

the storage cost and the training cost associated215

with each downstream task. However, traditional216

focus of the field has shifted towards minimizing217

the number of adjustable parameters, primarily ad- 218

dressing the storage problem without considering 219

the training cost. Our research aims to find a bal- 220

ance between the space and time factors and evalu- 221

ate the results accordingly. 222

The number of adjustable parameters in PEFT 223

methods is usually small, but the training cost has 224

not been significantly reduced, possibly due to the 225

influence of wide-range backpropagation. From 226

our understanding, the PEFT approach resembles a 227

variant of Prompt cues. It fuses additional informa- 228

tion about downstream tasks into these parameters 229

by adjusting a small portion of the model param- 230

eters. Depending on specific parameters adjusted, 231

the information carries different types of capabili- 232

ties that will empower the model for solving corre- 233

sponding tasks. 234

The optimal placement of prompt information 235

has been a key consideration in the evolution of 236

prompt engineering. Initially, manually designed 237

hard prompts were employed to simulate training 238

data related to the downstream task. Due to varia- 239

tions in manually designed templates and signifi- 240

cant disparities in results, some researchers shifted 241

towards soft prompts. Original soft prompts were 242

placed at the input layer, but they tend to yield 243

unsatisfactory outcomes. P-Tuning v2 (Liu et al., 244

2021) introduced prompts in each hidden layer of 245

the model, resulting in inspiring results, but the 246

training cost was also comparable to a full param- 247

eter tuning. LPT places soft prompts in a single 248

layer, which yields similar results to P-Tuning v2 249

with significant advantages in training cost and pa- 250

rameter quantity. We follow the LPT approach and 251

further explore possible improvements in conver- 252

gence speed and results. 253

3.2 BFT: Back-and-Forth Tuning 254

Problem Definition. Given a pre-trained language 255

model M, we begin by reconstructing the sentence 256

S using a hard prompt generator P, resulting in 257

E([CLS] P(S) [SEP]), where E represents the em- 258

bedding layer of model M. P has distinct designs 259

for various downstream tasks, each incorporating a 260

[MASK] token. Subsequently, we inject E into the 261

pre-trained model, and hidden state of the [MASK] 262

token in the last hidden layer is employed to predict 263

the label Y using a language model head. Notably, 264

Y is part of a small dictionary of model M we have 265

defined. 266

Architecture. Based on the previous analysis, the 267
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Figure 2: An illustration of BFT. Red color represents modules with adjustable parameters. Green modules may
have gradients optionally turn on. It should be noted that when the gradient in a module is turned on, the modules
above it also enter the gradient backpropagation process. According to the different information component, the
model is divided into BFT and BFT-adapter. The dotted box in soft prompt indicates its optional RELU module.

architecture we have ultimately chosen is illustrated268

in Figure 2. It is mainly composed of three parts:269

hard prompt, information component, and partially270

unfrozen component. Only parameters of the infor-271

mation module and the partpartially unfrozen are272

fine-tuned, with other parameters frozen. Among273

them, hard prompt is used to shorten the gap be-274

tween downstream task and pre-training, informa-275

tion component is used to store downstream task276

information, and partially unfrozen component is277

used to coordinate fine-tuning with information278

component. It should be noted that the information279

component has two types of different architecture.280

One is soft prompt that forms the BFT model. The281

other is BFT-adapter model which has an adapter282

module in its place. The partpartially unfrozen has283

a different variants Depending on the internal archi-284

tecture of the information component, the specified285

parameter module also has different setup.286

3.2.1 hard prompt287

Combination of soft and hard prompts has shown288

improved results (Liu et al., 2021; Han et al.; Ham-289

bardzumyan et al., 2021; Zhong et al., 2021). All290

the tasks we selected are classification tasks, in- 291

cluding single-sentence classification and multi- 292

sentence classification. For the single-sentence 293

classification tasks, the input sentence is directly 294

fed into the hard prompt. A single-sentence classifi- 295

cation prompt is "It was <mask>. ", where <mask> 296

is the verbalizer token limited to a small vocabu- 297

lary. 298

Regarding multi-sentence classification tasks, 299

the approach is similar to single-sentence classi- 300

fication. Due to contextual considerations, the posi- 301

tion of the prompt is not fixed at the end. Multiple 302

hard prompt formats are considered for different 303

tasks. This means that hard prompts can be placed 304

between two sentences, before sentences, or after 305

sentences. See the Appendix A for more descrip- 306

tions of the hard prompts. 307

3.2.2 information component 308

For the soft prompt from BFT, we follow the ap- 309

proach of (Wang et al., 2021) and utilize the mutual 310

information between the hidden states and label 311

of each input. Regarding the initialization of soft 312

prompts, (Gu et al., 2021) have explored this issue. 313
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Due to cost and time constraints, we did not employ314

the pre-training method for soft prompt mentioned315

by (Gu et al., 2021). Instead, we adopted one of316

their conclusions, which suggests that random ini-317

tialization performs better than initialization from318

a dictionary or the last classification label.319

For the architecture of soft prompts, we em-320

ploy a re-parameterization approach. This involves321

transforming the soft prompt matrix into the prod-322

uct of two smaller matrices. There are two re-323

parameterization methods available: traditional324

feed forward or direct matrix multiplication. Tak-325

ing the former approach, the soft prompt SP can be326

represented by the following formula:327

SP1 = W2(RELU(W1 × hn + b1)) + b2 (1)328

329

SP = reshape(SP1) (2)330

where W1 ∈ Rm×d,W2 ∈ R(l×d)×m, hn ∈ Rd331

and SP ∈ Rl×d. In the matrices, m represents332

the lower dimension of our projection, d repre-333

sents the dimension of the hidden layer, and hn334

represents the n-th hidden layer from which we335

specify the added information module from the336

model. The range of n depends on the backbone337

model we choose. In RoBERTa-Large model which338

has 24 layers, the range of n is 1 to 24. The re-339

parameterization effect becomes apparent when d340

is significantly larger than m.341

For the adapter (Houlsby et al., 2019) from BFT-342

adapter, we take the original bottleneck architecture343

and attach it behind the hidden layer. Its detailed344

formula is shown below:345

htmp = W1 × LayerNorm(hn) + b1 (3)346

347

Adapter(hn) = W2 × RELU(htmp) + b2 (4)348

where W1 ∈ Rm×d,W2 ∈ R(l×d)×m and hn ∈349

Rd. In the matrices, m represents the lower dimen-350

sion of our projection, d represents the dimension351

of the hidden layer, and h represents the hidden352

layer. The new hidden layer hnew that leads to the353

next layer is as follows:354

hnew = Adapter(hn) + hn (5)355

Here, hnew indicates that after the n-th layer hidden356

layer is updated, it still leads to the original n+1357

layer model.358

3.2.3 partially unfrozen component 359

To lower training cost in LLMs, LPT reduces the 360

distance of backpropagation for soft prompts, but 361

its improvement is limited from the performance 362

perspective. Taking RoBERTa-Large as an exam- 363

ple, when the soft prompts are placed in the hidden 364

layer in the middle of the model, specifically in 365

the 12-th layer, all 12 layers leading up to the fi- 366

nal output have to be fully back-propagated to get 367

to the soft prompt. LPT also demonstrates that 368

placing the soft prompts closer to the output leads 369

to degraded results. Long-distance transmission 370

becomes its performance bottleneck. In order to 371

reduce training cost, we focus on the last few layers 372

with the idea in (Lee et al., 2019). In addition, we 373

look for other architectures that would allow the 374

component to be placed closer to the output of the 375

model, further reducing cost. 376

The partially unfrozen component selects certain 377

parameters located in the last layers. Gradients of 378

these parameters are turned on to coordinate train- 379

ing with the information module. For cost consider- 380

ations, we set the scope of the selected parameters 381

at LLM_head and the Encoder at the last layer of 382

the language model. The detailed experiment is 383

carried out in Section A.5, and three variants are fi- 384

nally selected: The BFT benchmark method which 385

turns on the gradient only in the LLM_head mod- 386

ule; BFT with ffd variant method which opens the 387

gradient of all parameters from the feed forward 388

module to the output module; BFT with ln which 389

opens the gradient for all parameters from the layer 390

normalization (Ba et al., 2016) module up to the 391

output. From Figure 2, the layer normalization 392

module is right after attention. 393

4 Experiments 394

4.1 Datasets 395

For a fair comparison to LPT, we use the same 396

datasets including 5 single-sentence classification 397

and 5 multi-sentence classification tasks. Six of the 398

datasets are from GLUE (Wang et al., 2018), and 399

the other four include MR (Pang and Lee, 2005), 400

SUBJ (Pang and Lee, 2005), TREC (Voorhees and 401

Tice, 2000) and MPQA (Wiebe et al., 2005). See 402

the Appendix A for more details about datasets. 403

4.2 Experiment Settings 404

All experiments were run on a single NVIDIA 405

RTX-3090 GPU with 24GB memory. The 406

RoBERTa-Large model (Raffel et al., 2020) is 407
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taken as the backbone and tested on full task data.408

Most of our hyperparameters follow the design of409

LPT, with an exception of prompt length, which is410

optimized for our model. The adapter information411

module is inserted into layer 18 and the prompt412

information module is inserted into layer 12, which413

is derived from the results of section 4.4.1 on two414

datasets. For the partially unfrozen component,415

BFT is the base method and the two variants mod-416

els from Table 7 are selected: BFT with ffd and417

BFT with ln. Regarding the length of the prompt418

information module, we set it to 5 in all tasks. The419

loss curve was observed on the GPT-2 model (Rad-420

ford et al., 2019), with an insertion position lo-421

cated at the 18-th layer. All datasets use 10 epochs.422

More implementation details are provided in the423

Appendix A.424

4.3 Baseline425

Baseline methods include LPT and the earlier mod-426

els in Section 2. Addition-based PEFT methods427

include Adapter (Houlsby et al., 2019), Adapter428

Drop (Rücklé et al., 2020), Prompt Tuning (Lester429

et al., 2021), P-tuning v2 (Liu et al., 2021) and430

IDPG (Wu et al., 2022). The only specification-431

based methods is Bitfit (Zaken et al., 2021). For Re-432

parameterization-based PEFT based methods, we433

selected LoRA (Hu et al., 2021). Results are taken434

directly from the LPT paper (Liu et al., 2022b),435

with an exception of LPT, whose performance can-436

not be accurately replicated in our experiment. Ex-437

cept for the results taken directly from reference,438

three random seeds were used for all results. BFT439

is the prompt-based method, also referred to as440

LLM_head in Table 1. BFT with LN and BFT with441

FFD represent ADD&NORM1 and FFD in Table442

1, respectively. BFT-adapter is the adapter-based443

method.444

4.4 Results445

4.4.1 Memory profile446

In this section, we mainly explore correlation be-447

tween the use of GPU memory and the number of448

adjustable parameters. Table 1 shows the memory449

footprint and training speedup for various PFET450

methods. As we can see, excessive attention on451

reducing parameter count may not result in com-452

parable reduction in training costs. For example,453

IDPG and prompt tuning methods show smallest454

number of parameters within these methods, but455

1https://github.com/xyltt/LPT

Method Tuable Training Speed Memory
Parameters tokens/ms(↑) Cost GB(↓)

Model Tuning 355M 11. 6 23. 3
Adapter 1. 6M 15. 5 (1. 3×) 16. 5 (29. 8%)

AdapterDrop 811K 21. 6 (1. 9×) 9. 5 (59. 6%)
Prompt Tuning 21K 16. 9 (1. 5×) 17. 8 (24. 3%)

P-tuning v2 985K 19. 2 (1. 7×) 16. 8 (28. 5%)
S-IDPG-PHM 114K 12. 0 (1. 0×) 16. 8 (28. 5%)

BitFit 273K 16. 5 (1. 4×) 15. 7 (33. 2%)
LoRA 788K 16. 4 (1. 4×) 16. 2 (31. 1%)
LPT 792K 23. 2 (2. 0×) 10. 285(55. 9%)
BFT 1. 9M 23. 2 (2. 0×) 10. 287(55. 8%)

BFT with ffd 10. 289M 23. 2 (2. 0×) 10. 407(55. 3%)
LPT-adapter 36K 27. 8(2. 4×) 5. 949(74. 5%)
BFT-adapter 1. 13M 27. 8 (2. 4×) 5. 999(74. 3%)

BFT-adapter with ln 9. 535M 27. 8 (2. 4×) 6. 027(74. 1%)

Table 1: Full data comparison on ten classification tasks.
All results were obtained under the test set except for the
six datasets of GLUE. LPT results are replicated from its
codebase1. Results for other methods are taken directly
from the LPT paper. We report mean and standard
deviation of performance over 3 different random seeds
for LPT and BFT. All the results are obtained using
RoBERTa-Large. Bold face shows the best result for
each column, and the underline score is the second best.

their training speed and memory saving are almost 456

worst. On contrary, LPT keeps a much larger num- 457

ber of adjustable parameters, but the training speed 458

up and memory usage are one of the best. 459

With this important observation, we argue that 460

the main training cost are involved in error back- 461

propagation instead of parameter updates. There- 462

fore, some PFET methods may not effectively re- 463

duce training costs even with a small number of pa- 464

rameters. Our research direction focuses on reduc- 465

ing backpropagation distance or adopting more effi- 466

cient parameter update method, such as derivative- 467

free optimization (Hansen and Ostermeier, 2001; 468

Hansen et al., 2003; Rios and Sahinidis, 2013). In 469

this paper, we mainly use the former approach to 470

find a better trade-off in terms of training budget 471

and task performance. As can be seen from Table 1, 472

our LPT-based improvements do not involve sig- 473

nificantly performance cost even with additional 474

parameters, while staying far ahead of other models 475

in case of training speed and memory costs. 476

4.4.2 Main Results 477

Main experiment results are shown in Table 2. On 478

the average of 10 tasks, BFT has clear performance 479

improvement over traditional LPT method. Espe- 480

cially for the four tasks with test datasets (MPQA, 481

MR, Subj, TREC), BFT significantly improves 482

over LPT. Compared with the original LPT, LPT- 483

adapter variant has obvious advantages over the 484

prompt architecture on most tasks expect SST-2. 485

An interesting observation is that prompt-based 486

6
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Method Tunable SST-2 MPQA MR Subj TREC MNLI MRPC QNLI QQP RTE Avg
Parameters (acc) (acc) (acc) (acc) (acc) (acc) (acc and F1) (acc) (acc and F1) (acc) (acc)

Model Tuning 355M 95. 6 90. 2 91. 3 96. 8 97. 6 89. 3 91. 2 94. 6 90. 7 86. 2 92. 35
Adapter 1. 6M 96.2 (0.2) 89. 2 (0. 5) 91. 6 (0. 4) 96.8 (0.4) 97. 0 (0. 3) 90. 5(0. 1) 90. 3 (1. 0) 94. 7(0. 3) 89. 4(0. 7) 85. 5(1. 2) 92. 3

AdapterDrop 811K 95. 3 (0. 3) 89. 1 (0. 7) 91. 0 (0. 5) 95. 3 (0. 6) 95. 7 (0. 5) 88. 5 (0. 2) 90. 1 (1. 3) 93. 3 (0. 3) 88. 3 (0. 3) 81. 1 (2. 0) 90. 8
Prompt Tuning 21K 94. 9 (0. 5) 88. 8 (0. 8) 89. 6 (0. 5) 93. 9 (0. 6) 86. 4 (0. 7) 86. 7 (0. 9) 75. 7 (0. 7) 91. 4 (0. 1) 81. 2 (0. 8) 60. 8 (0. 5) 84. 9

P-tuning v2 985K 95. 8 (0. 4) 89. 9 (0. 6) 91. 4 (0. 4) 96. 5 (0. 2) 95. 8 (0. 6) 88. 2 (0. 2) 86. 5 (2. 1) 93. 7 (0. 3) 85. 3 (0. 2) 66. 9 (2. 3) 89
S-IDPG-PHM 114K 94. 8 (0. 3) 89. 5 (0. 6) 90. 8 (0. 5) 95. 9 (0. 6) 89. 3 (0. 4) 87. 4 (0. 5) 77. 3 (1. 2) 91. 2 (0. 4) 82. 3 (1. 9) 62. 7 (1. 9) 86. 1

BitFit 273K 95. 9 (0. 1) 89. 2 (0. 9) 91. 8 (0. 5) 96. 9 (0. 1) 96. 2 (0. 3) 90. 0(0. 1) 89. 6 (0. 9) 94. 4 (0. 2) 87. 9 (0. 4) 82. 4 (1. 1) 91. 4
LoRA 788K 96. 2 (0. 3) 90. 1 (0. 3) 92. 0 (0. 1) 97. 1(0. 4) 96. 8 (0. 6) 89. 8 (0. 3) 91. 1 (0. 6) 94. 8(0. 2) 89. 8 (0. 1) 84. 8 (2. 1) 92. 3
LPT 792K 95. 68 (0. 46) 90. 89 (0. 26) 91. 23 (0. 15) 96. 23 (0. 14) 94. 67 (0. 5) 86. 50 (0. 16) 83. 79 (1. 2) 90. 47 (0. 49) 83. 77 (0. 09) 76. 17 (0. 72) 88. 98

BFT 1. 9M 95. 53 (0. 11) 91. 83 (0. 4) 92. 19 (0. 15) 96. 57 (0. 44) 96. 47 (0. 42) 88. 31 (0. 06) 82. 91 (0. 98) 91. 81 (0. 04) 87. 64 (0. 05) 80. 02 (0. 55) 90. 43
BFT with ffd 10. 289M 95. 18(0. 2) 96. 9 (0. 43) 93. 51(0. 44) 96. 58 (0. 08) 96. 33(0. 61) 88. 33(0. 1) 85. 31(1. 49) 92. 18(0. 5) 87. 83(0. 03) 77. 5(1. 71) 90. 97
BFT with ln 10. 291M 95. 49(0. 47) 95. 9(1. 04) 93. 61(0. 43) 96. 53 (0. 13) 96. 33(0. 61) 88. 19(0. 09) 84. 51(1. 55) 91. 62(0. 72) 88. 2(0. 09) 75. 93(1. 78) 90. 63
LPT-dapter 36K 94. 99(0. 52) 92. 18(0. 3) 92. 52(0. 24) 96. 64(0. 3) 97. 0(0. 2) 86. 93(0. 16) 83. 72(0. 04) 91(0. 05) 86. 01(0. 06) 77. 98(0. 36) 89. 9

BFT-adapter 1. 13M 95. 14(0. 73) 92. 92(0. 08) 93. 59(0. 25) 96. 98(0. 16) 96. 67(0. 12) 87. 57(0. 1) 86. 05(0. 3) 91. 24(0. 09) 87. 57(0. 1) 78. 22(0. 75) 90. 64
BFT-adapter with ffd 9. 533M 94. 92(0. 35) 95. 94(0. 51) 94. 81(0. 47) 97. 03(0. 19) 96. 67(0. 42) 87. 48(0. 09) 87. 48(1. 2) 91. 59(0. 22) 87. 48(0. 09) 76. 41(1. 99) 91. 08
BFT-adapter with ln 9. 535M 95. 07(0. 23) 95. 89(0. 35) 94. 8(0. 36) 97. 2(0. 1) 96. 8(0. 2) 87. 52(0. 07) 88. 15(1. 27) 91. 29(0. 08) 87. 52(0. 07) 77. 14(1. 24) 91. 25

Table 2: Full data comparison on ten classification tasks. All results were obtained under the test set except for the
six datasets of GLUE. LPT results are replicated from its codebase. Results for other methods are taken directly
from the LPT paper. We report mean and standard deviation of performance over 3 different random seeds for LPT
and BFT. All the results are obtained using RoBERTa-Large. Bold face shows the best result for each column except
for model tuning, and the underline score is the second best.

methods such as P-tuning v2 and prompt tuning in487

the table is generally not as good as the adapter-488

based methods such as Adapter drop and Adapter.489

The same applies to our proposed new architecture,490

BFT-Adapter. Looking closely at the result distri-491

bution, it can be found that prompt methods have492

clear disadvantage in the tasks of MNLI, MRPC,493

QNLI, QQB, RTE. These are all inference tasks494

and Similarity and Paraphrase tasks belonging to495

the GLUE dataset. We speculate the prompt meth-496

ods can only carry superficial task information, so497

their performance is on par with the adapter-based498

methods in simple single-sentence tasks, failing the499

more complex tests.500

The traditional LPT method only injects one501

layer of prompt information, and its limited capac-502

ity results in poor performance in complex tasks.503

With the additional adjustable parameters in the504

BFT model, it can alleviate the above problems505

without increasing the cost. In the prompt-based506

architecture, results get better as the number of pa-507

rameters increases. The ‘BFT with ffd‘ model has508

performace comparable to some low-cost adapter509

architecture models such as AdapterDrop (Rücklé510

et al., 2020). Although the adapter carries more511

information than a single prompt, single layer, still512

limits the amount of information can carry. There-513

fore, increasing the number of adjustable parame-514

ters is also effective for LPT-Adapter. Unlike the515

prompt-based method, the adapter-based method516

has a rebound effect. Adding one more layer of gra-517

dient propagation to ’BFT-adapter with ffd’ does518

not show significant performance improvement, so519

our assumption is that involving more layers may520

result in overfit.521

A more interestingly observation is that MR and 522

MPQA tasks benefit fromt the additional parame- 523

ters, no matter the base model is a prompt-based or 524

adapter-based method. The parameter unfreezing 525

process can indeed improve the information acqui- 526

sition ability of the LPT model. For example, on 527

the MPQA and MR data sets, some models with un- 528

frozen modules have helped the benchmark model 529

reach another level. 530

5 Ablation Study 531
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Figure 3: Learning curve showing training loss and
accuracy of GPT-2 model on SST-2 and TREC.

5.1 Convergence speed 532

In addition to final performance, training curve is 533

another factor to consider. To compare the conver- 534
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Method Tunable SST-2 MPQA MR Subj TREC MNLI MRPC QNLI QQP RTE Avg
Parameters (acc) (acc) (acc) (acc) (acc) (acc) (acc and F1) (acc) (acc and F1) (acc) (acc)

5epoch
LPT 792K 94. 6 90. 8 90. 9 95. 6 84 86. 3 82. 17 90. 5 83. 4 75. 8 87. 41
BFT 1. 9M 94. 2 92. 2 91. 4 97. 2 95. 8 88. 1 82. 21 86. 9 86. 4 78 89. 24

LPT-adapter 36K 94. 95 92. 05 92. 23 96. 65 97 86. 22 82. 4 90. 88 85. 23 75. 45 89. 31
BFT-adapter 1. 13M 94. 27 92. 6 92. 53 97 96. 8 86. 87 87. 22 91. 23 87. 01 72. 2 89. 77
BFTw/oLPT 1. 1M 91. 51 88. 7 88. 1 96. 8 68. 2 73. 88 79. 51 73. 16 81. 17 71. 12 81. 22

1epoch
LPT 792K 94. 6 88. 8 89. 4 91. 9 49 85. 2 77. 4 86. 8 81. 9 57. 8 80. 28
BFT 1. 9M 94. 4 90 89. 1 96. 8 84. 4 86. 4 79. 4 89. 7 83. 2 65. 7 85. 91

LPT-adapter 36K 94. 61 90. 02 90. 58 95. 85 78. 2 85. 78 76. 02 89. 58 84. 55 63. 54 84. 87
BFT-adapter 1. 13M 94. 38 89. 52 90. 47 95. 8 96. 2 86. 42 77. 66 89. 86 84. 91 73. 65 87. 89
BFTw/oLPT 1. 1M 90. 48 85. 27 88. 55 94. 8 57. 2 71. 3 78. 4 71. 48 78. 64 71. 48 78. 76

Table 3: Performance of BFT and LPT in low-batch training. BFTw/oLPT means just use our partially unfrozen
component. Bold face shows the best result for each column, and the underline score is the second best.

gence speed of LPT and BFT, we ran experiments535

with the GPT-2 Large model on SST-2 (Socher536

et al., 2013) and TREC. Although BFT does not537

improve the performance of GPT-2 as much as538

the RoBERTa model, it converges much faster539

than LPT. Figure 3 shows that BFT consistently540

outperforms LPT for GPT-2, and its training loss541

drops much faster, about two epoch ahead in most542

cases. However, that pattern is not so clear on other543

datasets.544

We also tested the convergence speed on the545

RoBERTa model. During the training process, the546

epoch parameter is usually a fixed value, and the547

learning rate will change accordingly . For practi-548

cal reasons, we tested the performance of 1 epoch549

and 5 epochs on the RoBERTa model. From Ta-550

ble 3, our BFT architecture model performs well551

in lower batches. Compared with other models552

that add information modules, using only some un-553

frozen modules performs well when there is only554

1 epoch, but as the training time increases, it loses555

any advantage. Due to the excellent architecture556

of the adapter, both the LPT and BFT versions of557

the information component using adapter are supe-558

rior to the information component using prompt. A559

model with only adapter information component560

(only 36K parameters) is not enough to support the561

model to store enough task information by compar-562

ing LPT-adapter and BFT-adapter. Each module563

has a task that it is good at from beginning to end.564

For example, the prompt information module is565

always better than the adapter information module566

on rte.567

6 Conclusion568

Traditional PEFT methods place their research em-569

phasis on reducing number of adjustable parame-570

ters, but a small number of parameters does not 571

translate directly into savings in training cost. On 572

the other hand, LPT considers the cost of backprop- 573

agation and inserts soft prompts in the middle of a 574

Transformer network, resulting in larger speedup 575

as well as a small memory footprint. Our proposed 576

model combined the idea of hard prompt and in- 577

formation component consisting of soft prompts or 578

adapter, as well as a re-parameterization process, 579

leading to both better performance and training 580

speed. It also shows faster convergence speed than 581

LPT. Our assumption is that parameters in the last 582

layer of a Transformer network are the key to adapt 583

to downstream tasks. In addition, unfreezing cer- 584

tain parameters show significant performance boost 585

for complex tasks, but its additional capacity may 586

also cause overfitting for simpler tasks. How to 587

automatically adapt model design to downstream 588

task information is an important research topic we 589

plan to work on next. 590

7 Limitation 591

Our model was only tested on relatively small mod- 592

els (RoBERTa-Large and GPT-2 Large), which lim- 593

its our ability to verify its performance on more 594

complex natural language inference tasks. Ad- 595

ditionally, we solely utilized prompt tuning and 596

adapter in the addition-based methods and did not 597

investigate the potential synergy of other addition- 598

based methods to achieve similar effects. As a 599

result, some of our future work will focus on veri- 600

fying the performance of similar approaches. More- 601

over, we aim to investigate whether addition-based 602

methods can run in synergy with specification- 603

based models to attain faster training as well as 604

improved performance. 605
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A Appendix 798

A.1 Datasets 799

The specific information of the dataset used in our 800

experiment is shown in the Table 4 below. Single- 801

sentence tasks: 802

A.2 Implementation Details 803

The classification of multi-sentence tasks is compli- 804

cated, so we tested 5 hand-designed hard tips and 805

selected the best construction in Table 5. 806

SST-2 (The Stanford Sentiment Treebank) 807

records the evaluation of the film and its emo- 808

tional emotions. MPQA (The Multi-Perspective 809

Question Answering) extracts from news articles 810

from various sources. It is a sentiment classifi- 811

cation task. Subj (Subjectivity dataset) extracts 812

sentence from movie review document. It deter- 813

mines whether the sentence is subjective or objec- 814

tive. TREC (The Text REtrieval Conference) is a 815

10



Category Datasets Train Dev Test Y Type Labels

Single-sentence

SST-2 67349 872 1821 2 sentiment positive, negative
MPQA 7606 1000 2000 2 opinion polarity positive, negative

MR 7662 1000 2000 2 sentiment positive, negative
Subj 7000 1000 2000 2 subjectivity subjective, objective

TREC 4952 500 500 6 question cls. abbr. , entity, description, human, loc. , num.

Sentence-pair

MNLI 392702 19647 19643 3 NLI entailment, netural, contradiction
MRPC 3668 408 1725 2 paraphrase equivalent, not equivalent
QNLI 104743 5463 5463 2 NLI entailment, not entailment
QQP 363846 40430 390965 2 paraphrase equivalent, not equivalent
RTE 2490 277 3000 2 NLI entailment, not entailment

Table 4: Specific information for each dataset

TASK Template label words
MRPC Two sentences are [mask]. <S1>, <S2>. equivalent: Yes, not equivalent: No
QNLI Two sentences are [mask]. <S1>, <S2>. equivalent: Yes, not equivalent: No
QQP <S1>[mask] , <S2> equivalent: Yes, not equivalent: No
RTE <S1>[mask] , <S2> entailment: Yes, not entailment: No

MNLI <S1>[mask] , <S2> entailment: Yes, netural: Maybe, contradiction: No

Table 5: Hard-prompt design for multi-sentence classification tasks.

question classification task, and it has 6 labels, 47816

level-2 labels. Sentence-pair tasks: MNLI (The817

Multi-Genre Natural Language Inference Corpus)818

gives premises and hypotheses, judge the relation-819

ship between premises and hypotheses. Accord-820

ing to the data sources of the training set and the821

test set, it is uniformly divided into two versions:822

matched and mismatched. Our results used the av-823

erage of both as an evaluation criterion. MRPC824

(The Microsoft Research Paraphrase Corpus) ex-825

tracts sentence pairs from newsfeeds and marks826

whether they were semantically equivalent. The827

sample distribution is uneven, with positive sam-828

ples containing 68% of the total. Our results used829

the accuracy and F1 averages. QNLI (Qusetion-830

answering NLI) is a question-and-answer dataset831

that determines whether a question and answer are832

entailment. QQP (The Quora Question Pairs) ex-833

tracts question pairs from the Q&A website and834

records whether the question pairs are semantically835

equivalent to each other. The distribution of QQP836

samples was also uneven, with positive cases ac-837

counting for 37% of the total. Our results used the838

accuracy and F1 averages. RTE (The Recognizing839

Textual Entailment datasets) is built from News840

and Wikipedia, and mainly determines whether the841

sentence pair is implied relationship.842

The hyperparameters required for training are843

listed in Table 6. Since the adapter is directly844

input from the hidden layer, it has no hyperpa-845

rameter num_prompt_token, and its downward846

Hyperparameter Prompt Adapter
Value Value

max_seq_length 256 256
learning_rate 1. 00E-03 1. 00E-03
weight_decay 0. 1 0. 1
logging_steps 10000 10000

num_prompt_tokens 5
proj_down_size 128 16

warmup_rate 0. 06 0. 06
batch_size 64 64

add_prompt_layer 12 18

Table 6: Experiment hyperparameter settings

projection matrix is the hidden states dimension 847

m× proj_down_size. 848

A.3 Additional experiments 849

A.4 Information Component position 850

Since most methods only allow additional informa- 851

tion modules to be inserted into one hidden layer 852

of the model, we need to find a place where perfor- 853

mance and cost are balanced. We tested the impact 854

of insertion layer index on the performance of the 855

LPT, BFT, LPT-adapter, and BFT-adapter models 856

on RTE and TREC, respectively, and the results 857

are shown in Figure 4. From the result, we chose 858

the location that has good performance on both 859

datasets while also close to the output. Layer 12 is 860

selected for the prompt method and 18 is chosen 861

for the adapter information module. 862

As seen in Figure 4, BFT performs slightly bet- 863

ter than LPT regardless of the type of information 864
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method/ Tunable rte mrpc SST-2
behind Parameters acc loss acc F1 acc&F1 loss acc loss

ADD&NORM1 10.291M 77.98 0.6164 79.9 86.56 83.23 0.6046 95.3 0.2217
FFD 10.289M 77.98 0.6761 78.19 85.81 82 0.6072 95.41 0.224

ADD&NORM2 1.897M 73.65 0.7373 75.98 84.64 80.31 0.6523 94.27 0.2536
LLM_head 1.895M 77.26 0.7151 76.72 84.99 80.85 0.6673 94.84 0.2522

Table 7: Fine-tune schema choices. All results are after training of 5 epochs with the same random seed. The best
result in each column is in bold face, and the second best is underlined. LLM_head is our base model. It only
adds gradients to the Language Modeling Head. ADD&NORM2 opens gradients from layer normalization module
close to LLM_head to output; FFD turn on gradients from feed-forward module to output; ADD&NORM1 opens
gradients from layer normalization module to output.The bold face in the "method behind" column represents the
BFT and its variants that we use.
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Figure 4: Mean and standard deviation of accuracy over
3 different random seeds, when information compo-
nent is inserted at different layers in a RoBERTa-Large
model.

component, especially when the information com-865

ponent is placed at either end of the model. This866

shows that our partially unfrozen component is very867

helpful for coordinating the training of information868

component together. In addition, it can be found869

that the optimal position of the adapter is closer870

to the model output than the prompt, which helps871

to reduce its training cost. Despite its advantage,872

BFT has a turning point, with performance rapidly873

deteriorating after that. Although an insertion point874

closer to output is good for reducing training cost,875

keeping good performance is still the main concern.876

A.5 partially unfrozen component877

For training cost considerations, we only allow un-878

frozen parameters in the last layer of the language879

models. To get a clear view how the backpropa-880

gation process impacts performance, we unfreeze881

the sublayers one by one. For example, in the882

RoBERTa-Large model, there are several modules883

of in 24th encoder layer. To facilitate compari-884

son, we turned on gradients for all parameters from885

the selected module to the final output. Only the886

gradients after the attention module are turned on,887

and the experimental results are shown in Table 7.888

Layout of these modules are displayed in Figure 2. 889

Based on performance, we finally selected three 890

variants of the BFT model as shown in Table 2. 891
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