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Abstract

Recent developments in Large Language Mod-
els (LLMs) have motivated widespread re-
search interest in exploring their potential in
downstream applications. Given the black
box nature of LLMs, prompt engineering be-
comes the natural method to interact with them.
Prompt tuning, including hard and soft prompts,
combine manually or automatically composed
text templates with adjustable vectors, aiming
to improve parameter efficiency with only a
small fraction of tunable parameters. How-
ever, the training cost has not been significantly
reduced due to the presence of network-wide
backpropagation, and it often leads to moderate
performance deterioration with a soft prompt
initialization issue. Late Prompt Tuning (LPT)
further reduces training cost and performance
drop, by inserting a parameterized vector into
the center of the model and introducing in-
trinsic dimension into the initial soft prompt.
With significant saving in training cost, per-
formance of LPT is still weak compared to
other parameter-efficiency methods like adapter
and LoRA (Low-Rank-Adaptation). We argue
that it is caused by the limited capacity of soft
prompts to carry complete downstream task in-
formation. To deal with this issue, we propose
a new parameter-efficient tuning method called
Back-and-Forth Tuning (BFT), which achieves
better results by combining hard prompts and
task information. With a new information
component and partially unfrozen module, our
model can store task-specific information with
limited parameters. Soft prompt and adapter
are both viable options for the information com-
ponent, and results show better performance of
the latter. Comprehensive experiments demon-
strate that our method improves 2.27% over
LPT on average accuracy of 10 tasks, together
with faster convergence speed and no increase
in training cost.

1 Introduction

With the widespread application of the Transformer
(Vaswani et al., 2017) framework, pre-trained large

language models have become the undoubtful cor-
nerstone of the Natural Language Processing (NLP)
research field. Since the proposal of BERT (De-
vlin et al., 2018), pre-trained models (Devlin et al.,
2018; Lewis et al., 2019; Liu et al., 2019; Raffel
et al., 2020; Brown et al., 2020; He et al., 2020;
Joshi et al., 2020; He et al., 2021b) have been con-
stantly refreshing benchmarks in NLP with updates
on the transformer network. Moreover, (Kaplan
et al., 2020) discovered that larger models are sig-
nificantly more sample-efficient with their stronger
representative power.

Full parameter fine-tuning of a model is a popu-
lar method to adapt to downstream tasks. However,
as the number of parameters in a model increases,
it becomes more and more costly to fine-tune all
of them. Parameter-efficient fine-tuning is a new
research area that tries to adjust a pre-trained model
to downstream tasks by fine-tuning only part of the
model’s parameters.

The concept of parameter-efficient fine-tuning
was first introduced in the adapter framework
(Houlsby et al., 2019). It only adjusts a small
percentage of the model’s parameters, ranging
from 0.5% to 8%, while achieving competitive re-
sults. Other parameter-efficient fine-tuning meth-
ods, such as soft prompt (Lester et al., 2021), Bitfit
(Ben Zaken et al., 2022), prefix tuning (Li and
Liang, 2021), and LoRA (Hu et al., 2021), also aim
to tune a minimal number of parameters to reduce
costs.

However, there is a common misconception that
reducing the number of adjustable parameters di-
rectly translates to cost reduction. As shown in Fig-
ure 1, there is no direct relationship between free
parameters and memory requirement. Although the
methods above have reduced the number of tunable
parameters to about 1% of the original model, they
only result in a reduction of approximately 20%
in GPU memory usage and a modest speedup of
about 1.5 times in training efficiency. This limited
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Figure 1: Number of free parameters and required mem-
ory for multiple parameter efficiency methods when
applied to RoBERTa-Large model.

improvement is attributed to the impact of back-
propagation. Most parameters, including the fixed
ones, still need to go through the backpropagation
process. It greatly reduces the expected improve-
ment in efficiency.

In contrast, Late Prompt Tuning (LPT) (Liu et al.,
2022b) proposed a solution by embedding a soft
prompt into a hidden layer of the model which is
closer to the output. Through carefully-designed
experiments, the researchers found that embedding
the soft prompt in the middle of the model’s hid-
den layer yields the best result. This method ef-
fectively reduces the backpropagation distance by
half, leading to significant reductions in training
time and GPU memory usage. Specifically, LPT
achieves 2.0x training speed of and reduces mem-
ory costs by 56.6% compared to a full model tuning
on RoBERTa-Large (Liu et al., 2019).

In this paper, our objective is to continue improv-
ing over the convergence speed of LPT and further
reduce training time. Inserting the soft prompt into
the hidden layer in the middle of the model would
face the same issue of transmission distance as
LPT. Experiments prove that this issue has negative
impacts the convergence speed as well as model
accuracy. To address it, we also modified the pa-
rameters of the last layer to better align with the
soft prompts in the middle of the model.

Building upon co-tuning of the middle and last
layers, we propose a method called Back-and-Forth
Tuning(BFT). Since the design is based on LPT
with additional parameters behind its hidden layer,
the memory footprint and training time stay about
the same as the original approach. Extensive exper-

iments demonstrate that compared with the tradi-
tional LPT under the RoBERTa-Large model, BFT
converges faster and leads to about 1.99% accu-
racy improvement, with similar memory usage and
training speed. In addition, we also explore the
feasibility of inserting a single hidden layer inside
the model in similar methods like adapter, resulting
in a better performing architecture.

In summary, main contributions of this paper are
as follows:

1. We explore the mechanism behind the cost-
effectiveness of LPT training and introduce
further architectural modifications.

2. Combining the soft prompt and partially un-
frozen modules, we propose BFT as an im-
provement over LPT, showing faster conver-
gence and better performance without increas-
ing cost.

3. With an adapter-based information component
added to the BFT framework, the BFT-adapter
model achieves even better performance. In
comparison to LPT under the RoBERTa-Large
model, it reduces training time by 16.5% and
training cost by 41.4%, and average accuracy
is 2.27% higher in 10 tasks.

2 Related Work

Parameter-Efficient Fine-Tuning (PEFT) methods
mainly focus on reducing the number of tunable
parameters. They are mainly divided into four cat-
egories.

Addition-based PEFT: All the original parame-
ters in the network are frozen, with only additional
parameters fine-tuned. According to where the
additional parameters are added, it includes two
categories: adding parameters at the architecture
level and to the existing vectors. For the first type,
Adapter (Houlsby et al., 2019) add a bottleneck
network twice to each transformer layer: after the
projection following multi-head attention and after
the two feed-forward layers, while tiny attention
adapter (Zhao et al., 2022) adds a small attention
mechanism (Vaswani et al., 2017) after the trans-
former layer. Although models of this type perform
well in full-sample learning, they tend to yield
lower performance in few-shot learning. As for
the second type, soft prompt (Lester et al., 2021)
adds additional parameters to input embeddings,
prefix tuning (Li and Liang, 2021) links them to



the key and value matrices in the attention mech-
anism, P-Tuning v2 (Liu et al., 2021) injects soft
prompts into each layer of the model’s hidden layer
for better performance, LPT (Liu et al., 2022b)
only connects parameters to hidden vectors in the
middle layer of the model, and (1 A4)? (Liu et al.,
2022a) adds parameters to the key and value ma-
trices in the attention mechanism in the vertical
dimension plus the feedforward mechanism in the
parallel dimension. Except for soft prompt and LPT
that only make modifications to one specific layer,
other models have additional parameters added to
each layer.

Specification-based PEFT: In this method, most
of the original parameters are frozen, and only the
specified parameters are fine-tuned. For example,
Bitfit (Zaken et al., 2021) fine-tunes only the biases
of the model, and (Lee et al., 2019) achieves 90%
performance of the original model by fine-tuning
only the last few layers.

Re-parameterization PEFT: This method keeps
the original parameters but re-parameterizes the
update vectors. For instance, (Aghajanyan et al.,
2020) replaces the update of the original parame-
ters with the product of two low-rank matrices, and
LoRA (Hu et al., 2021) re-parameterizes only the
query and value matrices in the attention mecha-
nism at each layer of the model.

Fusion method: This type of approaches combines
multiple methods mentioned above. Compacter
(Karimi Mahabadi et al., 2021) re-parameterizes
the matrix of the Adapter architecture and shares
a subset of parameters in each layer of the model.
(He et al., 2021a) combines Adapters with prefix
tuning and LoRA to explore a better model, and
they find that parallel adapters provide the best
performance. Delta tuning (Ding et al., 2022) com-
bines the aforementioned methods and designs an
automated process to select the appropriate combi-
nation for the tasks at hand. Black box tuning (Sun
et al., 2022) re-parameterizes and de-gradients the
updates of soft prompts, providing an idea for per-
sonalized fine-tuning of large models like GPT-3
(Brown et al., 2020).

3 Method
3.1 PEFT revisited

The original intention of PEFT was to reduce both
the storage cost and the training cost associated
with each downstream task. However, traditional
focus of the field has shifted towards minimizing

the number of adjustable parameters, primarily ad-
dressing the storage problem without considering
the training cost. Our research aims to find a bal-
ance between the space and time factors and evalu-
ate the results accordingly.

The number of adjustable parameters in PEFT
methods is usually small, but the training cost has
not been significantly reduced, possibly due to the
influence of wide-range backpropagation. From
our understanding, the PEFT approach resembles a
variant of Prompt cues. It fuses additional informa-
tion about downstream tasks into these parameters
by adjusting a small portion of the model param-
eters. Depending on specific parameters adjusted,
the information carries different types of capabili-
ties that will empower the model for solving corre-
sponding tasks.

The optimal placement of prompt information
has been a key consideration in the evolution of
prompt engineering. Initially, manually designed
hard prompts were employed to simulate training
data related to the downstream task. Due to varia-
tions in manually designed templates and signifi-
cant disparities in results, some researchers shifted
towards soft prompts. Original soft prompts were
placed at the input layer, but they tend to yield
unsatisfactory outcomes. P-Tuning v2 (Liu et al.,
2021) introduced prompts in each hidden layer of
the model, resulting in inspiring results, but the
training cost was also comparable to a full param-
eter tuning. LPT places soft prompts in a single
layer, which yields similar results to P-Tuning v2
with significant advantages in training cost and pa-
rameter quantity. We follow the LPT approach and
further explore possible improvements in conver-
gence speed and results.

3.2 BFT: Back-and-Forth Tuning

Problem Definition. Given a pre-trained language
model M, we begin by reconstructing the sentence
S using a hard prompt generator P, resulting in
E([CLS] P(S) [SEP]), where E represents the em-
bedding layer of model M. P has distinct designs
for various downstream tasks, each incorporating a
[MASK] token. Subsequently, we inject E into the
pre-trained model, and hidden state of the [MASK]
token in the last hidden layer is employed to predict
the label Y using a language model head. Notably,
Y is part of a small dictionary of model M we have
defined.

Architecture. Based on the previous analysis, the
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Figure 2: An illustration of BFT. Red color represents modules with adjustable parameters. Green modules may
have gradients optionally turn on. It should be noted that when the gradient in a module is turned on, the modules
above it also enter the gradient backpropagation process. According to the different information component, the
model is divided into BFT and BFT-adapter. The dotted box in soft prompt indicates its optional RELU module.

architecture we have ultimately chosen is illustrated
in Figure 2. It is mainly composed of three parts:
hard prompt, information component, and partially
unfrozen component. Only parameters of the infor-
mation module and the partpartially unfrozen are
fine-tuned, with other parameters frozen. Among
them, hard prompt is used to shorten the gap be-
tween downstream task and pre-training, informa-
tion component is used to store downstream task
information, and partially unfrozen component is
used to coordinate fine-tuning with information
component. It should be noted that the information
component has two types of different architecture.
One is soft prompt that forms the BFT model. The
other is BFT-adapter model which has an adapter
module in its place. The partpartially unfrozen has
a different variants Depending on the internal archi-
tecture of the information component, the specified
parameter module also has different setup.

3.2.1 hard prompt

Combination of soft and hard prompts has shown
improved results (Liu et al., 2021; Han et al.; Ham-
bardzumyan et al., 2021; Zhong et al., 2021). All

the tasks we selected are classification tasks, in-
cluding single-sentence classification and multi-
sentence classification. For the single-sentence
classification tasks, the input sentence is directly
fed into the hard prompt. A single-sentence classifi-
cation prompt is "It was <mask>. ", where <mask>
is the verbalizer token limited to a small vocabu-
lary.

Regarding multi-sentence classification tasks,
the approach is similar to single-sentence classi-
fication. Due to contextual considerations, the posi-
tion of the prompt is not fixed at the end. Multiple
hard prompt formats are considered for different
tasks. This means that hard prompts can be placed
between two sentences, before sentences, or after
sentences. See the Appendix A for more descrip-
tions of the hard prompts.

3.2.2

For the soft prompt from BFT, we follow the ap-
proach of (Wang et al., 2021) and utilize the mutual
information between the hidden states and label
of each input. Regarding the initialization of soft
prompts, (Gu et al., 2021) have explored this issue.

information component



Due to cost and time constraints, we did not employ
the pre-training method for soft prompt mentioned
by (Gu et al., 2021). Instead, we adopted one of
their conclusions, which suggests that random ini-
tialization performs better than initialization from
a dictionary or the last classification label.

For the architecture of soft prompts, we em-
ploy a re-parameterization approach. This involves
transforming the soft prompt matrix into the prod-
uct of two smaller matrices. There are two re-
parameterization methods available: traditional
feed forward or direct matrix multiplication. Tak-
ing the former approach, the soft prompt SP can be
represented by the following formula:

SPy = WQ(RELU(Wl X hy + bl)) + by (1)

SP = reshape(SP1) 2)

where Wy € R™4 W, € RUDxm p, e Rd
and SP € R'*?. 1In the matrices, m represents
the lower dimension of our projection, d repre-
sents the dimension of the hidden layer, and h,,
represents the n-th hidden layer from which we
specify the added information module from the
model. The range of n depends on the backbone
model we choose. In RoBERTa-Large model which
has 24 layers, the range of n is 1 to 24. The re-
parameterization effect becomes apparent when d
is significantly larger than m.

For the adapter (Houlsby et al., 2019) from BFT-
adapter, we take the original bottleneck architecture
and attach it behind the hidden layer. Its detailed
formula is shown below:

h¢mp = W1 X LayerNorm(hy) +by (3)

Adapter(h,) = Wo x RELU(hgmp) + b2 (4)

where Wy, € R™*d W, € RUXdDxm gqnd p, €
R?. In the matrices, m represents the lower dimen-
sion of our projection, d represents the dimension
of the hidden layer, and & represents the hidden
layer. The new hidden layer h,¢,, that leads to the
next layer is as follows:

huew = Adapter(hy,) + hn, 5)
Here, hy¢y, indicates that after the n-th layer hidden

layer is updated, it still leads to the original n+1
layer model.

3.2.3 partially unfrozen component

To lower training cost in LLMs, LPT reduces the
distance of backpropagation for soft prompts, but
its improvement is limited from the performance
perspective. Taking RoBERTa-Large as an exam-
ple, when the soft prompts are placed in the hidden
layer in the middle of the model, specifically in
the 12-th layer, all 12 layers leading up to the fi-
nal output have to be fully back-propagated to get
to the soft prompt. LPT also demonstrates that
placing the soft prompts closer to the output leads
to degraded results. Long-distance transmission
becomes its performance bottleneck. In order to
reduce training cost, we focus on the last few layers
with the idea in (Lee et al., 2019). In addition, we
look for other architectures that would allow the
component to be placed closer to the output of the
model, further reducing cost.

The partially unfrozen component selects certain
parameters located in the last layers. Gradients of
these parameters are turned on to coordinate train-
ing with the information module. For cost consider-
ations, we set the scope of the selected parameters
at LLM_head and the Encoder at the last layer of
the language model. The detailed experiment is
carried out in Section A.5, and three variants are fi-
nally selected: The BFT benchmark method which
turns on the gradient only in the LLM_head mod-
ule; BFT with ffd variant method which opens the
gradient of all parameters from the feed forward
module to the output module; BFT with In which
opens the gradient for all parameters from the layer
normalization (Ba et al., 2016) module up to the
output. From Figure 2, the layer normalization
module is right after attention.

4 Experiments

4.1 Datasets

For a fair comparison to LPT, we use the same
datasets including 5 single-sentence classification
and 5 multi-sentence classification tasks. Six of the
datasets are from GLUE (Wang et al., 2018), and
the other four include MR (Pang and Lee, 2005),
SUBJ (Pang and Lee, 2005), TREC (Voorhees and
Tice, 2000) and MPQA (Wiebe et al., 2005). See
the Appendix A for more details about datasets.

4.2 Experiment Settings

All experiments were run on a single NVIDIA
RTX-3090 GPU with 24GB memory. The
RoBERTa-Large model (Raffel et al., 2020) is



taken as the backbone and tested on full task data.
Most of our hyperparameters follow the design of
LPT, with an exception of prompt length, which is
optimized for our model. The adapter information
module is inserted into layer 18 and the prompt
information module is inserted into layer 12, which
is derived from the results of section 4.4.1 on two
datasets. For the partially unfrozen component,
BFT is the base method and the two variants mod-
els from Table 7 are selected: BFT with ffd and
BFT with In. Regarding the length of the prompt
information module, we set it to 5 in all tasks. The
loss curve was observed on the GPT-2 model (Rad-
ford et al., 2019), with an insertion position lo-
cated at the 18-th layer. All datasets use 10 epochs.
More implementation details are provided in the
Appendix A.

4.3 Baseline

Baseline methods include LPT and the earlier mod-
els in Section 2. Addition-based PEFT methods
include Adapter (Houlsby et al., 2019), Adapter
Drop (Riicklé et al., 2020), Prompt Tuning (Lester
et al., 2021), P-tuning v2 (Liu et al., 2021) and
IDPG (Wu et al., 2022). The only specification-
based methods is Bitfit (Zaken et al., 2021). For Re-
parameterization-based PEFT based methods, we
selected LoRA (Hu et al., 2021). Results are taken
directly from the LPT paper (Liu et al., 2022b),
with an exception of LPT, whose performance can-
not be accurately replicated in our experiment. Ex-
cept for the results taken directly from reference,
three random seeds were used for all results. BFT
is the prompt-based method, also referred to as
LLM_head in Table 1. BFT with LN and BFT with
FFD represent ADD&NORMI1 and FFD in Table
1, respectively. BFT-adapter is the adapter-based
method.

4.4 Results
4.4.1 Memory profile

In this section, we mainly explore correlation be-
tween the use of GPU memory and the number of
adjustable parameters. Table 1 shows the memory
footprint and training speedup for various PFET
methods. As we can see, excessive attention on
reducing parameter count may not result in com-
parable reduction in training costs. For example,
IDPG and prompt tuning methods show smallest
number of parameters within these methods, but

1h'ctps ://github.com/xyltt/LPT

Tuable Training Speed Memory
Method Parameters  tokens/ms(?) Cost GB(])
Model Tuning 355M 11.6 23.3

Adapter 1. 6M 15.5 (1. 3x) 16. 5 (29. 8%)

AdapterDrop 811K 21. 6 (1. 9x) 9.5(59. 6%)
Prompt Tuning 21K 16. 9 (1. 5x) 17. 8 (24. 3%)
P-tuning v2 985K 19. 2 (1. 7x) 16. 8 (28. 5%)
S-IDPG-PHM 114K 12. 0 (1. 0x) 16. 8 (28. 5%)
BitFit 273K 16. 5 (1. 4x) 15.7 (33. 2%)
LoRA 788K 16. 4 (1. 4x) 16. 2 (31. 1%)

e T9RK T 23.2(2.0x)  10.285(55.9%)

BFT 1. 9M 23.2 (2. 0x) 10. 287(55. 8%)
BFT with ffd 10. 289M 23.2(2.0x) 10. 407(55. 3%)
LPT-adapter 36K 27. 8(2. 4x) 5. 949(74. 5%)
BFT-adapter 1. 13M 27. 8 (2. 4x) 5.999(74. 3%)
BFT-adapter with In 9. 535M 27. 8 (2. 4x) 6. 027(74. 1%)

Table 1: Full data comparison on ten classification tasks.
All results were obtained under the test set except for the
six datasets of GLUE. LPT results are replicated from its
codebase!. Results for other methods are taken directly
from the LPT paper. We report mean and standard
deviation of performance over 3 different random seeds
for LPT and BFT. All the results are obtained using
RoBERTa-Large. Bold face shows the best result for
each column, and the underline score is the second best.

their training speed and memory saving are almost
worst. On contrary, LPT keeps a much larger num-
ber of adjustable parameters, but the training speed
up and memory usage are one of the best.

With this important observation, we argue that
the main training cost are involved in error back-
propagation instead of parameter updates. There-
fore, some PFET methods may not effectively re-
duce training costs even with a small number of pa-
rameters. Our research direction focuses on reduc-
ing backpropagation distance or adopting more effi-
cient parameter update method, such as derivative-
free optimization (Hansen and Ostermeier, 2001;
Hansen et al., 2003; Rios and Sahinidis, 2013). In
this paper, we mainly use the former approach to
find a better trade-off in terms of training budget
and task performance. As can be seen from Table 1,
our LPT-based improvements do not involve sig-
nificantly performance cost even with additional
parameters, while staying far ahead of other models
in case of training speed and memory costs.

4.4.2 Main Results

Main experiment results are shown in Table 2. On
the average of 10 tasks, BFT has clear performance
improvement over traditional LPT method. Espe-
cially for the four tasks with test datasets (MPQA,
MR, Subj, TREC), BFT significantly improves
over LPT. Compared with the original LPT, LPT-
adapter variant has obvious advantages over the
prompt architecture on most tasks expect SST-2.
An interesting observation is that prompt-based
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Method Tunable SST-2 MPQA MR Subj TREC MNLI MRPC QNLI QQrP RTE Avg
Parameters (acc) (acc) (acc) (acc) (acc) (acc) (acc and F1) (acc) (acc and F1) (acc) (acc)
Model Tuning 355M 95.6 90. 2 91.3 96. 8 97. 6 89.3 91.2 94. 6 90. 7 86. 2 92. 35
Adapter 1. 6M 96.2 (0.2) 89.2(0.5) 91.6 (0. 4) 96.8 (0.4) 97.0(0. 3) 90.5(0. 1) 90.3(1.0) 94.7(0. 3) 89. 4(0.7) 85.5(1.2) 92.3
AdapterDrop 811K 95.3(0.3) 89.1(0.7) 91.0(0.5) 95.3(0. 6) 95.7(0.5) 88.5(0.2) 90.1(1.3) 93.3(0.3) 88.3(0.3) 81.1(2.0) 90. 8
Prompt Tuning 21K 94.9(0.5)  88.8(0.8) 89.6(0.5  93.9(0.6) 86.4(0.7) 86.7(0.9) 75.7(0.7) 91.4(0.1) 81.2(0.8)  60.8(0.5) 84.9
P-tuning v2 985K 95. 8 (0. 4) 89.9 (0. 6) 91.4(0. 4) 96. 5 (0.2) 95. 8 (0. 6) 88.2(0.2) 86.5(2. 1) 93.7(0.3) 85.3(0.2) 66. 9 (2.3) 89
S-IDPG-PHM 114K 94. 8 (0. 3) 89.5(0. 6) 90. 8 (0. 5) 95.9(0. 6) 89.3(0.4) 87.4(0.5) 77.3(1.2) 91.2(0.4) 82.3(1.9) 62.7(1.9) 86. 1
BitFit 273K 95.9(0. 1) 89.2(0.9) 91.8(0.5) 96.9 (0. 1) 96.2(0.3) 90. 0(0. 1) 89.6(0.9) 94.4(0.2) 87.9(0. 4) 82.4(1. 1) 91.4
LoRA 788K 96.2(0.3)  90.1(0.3) 92.0(0.1)  97.1(0.4) 96.8(0.6) 89.8(0.3) 91.1(0.6) 94.80.2)  89.8(0.1) 84.8(2.1) 92.3
””” LPT 79K 95.68(0.46) 90.89(0.26) 91.23(0.15) 96.23(0.14) 94.67(0.5 86.50(0.16) 83.79(1.2) 90.47(0.49) 83.77(0.09) 76.17(0.72) 88.98
BFT 1. 9M 95.53(0.11) 91.83(0.4) 92.19(0.15) 96.57(0.44) 96.47(0.42) 88.31(0.06) 82.91(0.98) 91.81(0.04) 87.64(0.05) 80.02(0.55) 90.43
BFT with ffd 10. 289M 95. 18(0. 2) 96.9(0.43) 93.51(0.44) 96.58(0.08) 96.33(0.61) 88.33(0.1) 85.31(1.49) 92.18(0.5) 87.83(0.03) 77.5(1.71) 90.97
BFT with In 10.291M  95.49(0.47)  95.9(1.04)  93.61(0.43) 96.53 (0. 13) 96.33(0. 61) 88.19(0.09) 84.51(1.55) 91.62(0.72) 88.2(0.09) 75.93(1.78) 90.63
© " LPTdapter 36K 94.99(0.52)  92.18(0.3)  92.52(0.24)  96.64(0.3)  97.0(0.2)  86.93(0.16) 83.72(0.04)  91(0.05)  86.01(0.06) 77.98(0.36) 89.9
BFT-adapter 1. 13M 95. 14(0. 73)  92.92(0. 08)  93.59(0.25) 96.98(0. 16)  96.67(0. 12)  87.57(0. 1) 86.05(0.3)  91.24(0.09)  87.57(0. 1)  78.22(0.75) 90. 64

BFT-adapter with ffd 9. 533M 94.92(0.35)  95.94(0.51) 94.81(0.47)  97. 03(0. 19)
BFT-adapter with In 9. 535M 95.07(0.23)  95.89(0.35)  94. 8(0. 36) 97.2(0. 1)

96. 67(0. 42)  87.48(0.09)  87.48(1.2)  91.59(0.22) 87.48(0.09) 76.41(1.99) 91.08
96. 8(0. 2) 87.52(0.07) 88.15(1.27) 91.29(0.08) 87.52(0.07) 77.14(1.24) 91.25

Table 2: Full data comparison on ten classification tasks.

All results were obtained under the test set except for the

six datasets of GLUE. LPT results are replicated from its codebase. Results for other methods are taken directly
from the LPT paper. We report mean and standard deviation of performance over 3 different random seeds for LPT
and BFT. All the results are obtained using RoBERTa-Large. Bold face shows the best result for each column except
for model tuning, and the underline score is the second best.

methods such as P-tuning v2 and prompt tuning in
the table is generally not as good as the adapter-
based methods such as Adapter drop and Adapter.
The same applies to our proposed new architecture,
BFT-Adapter. Looking closely at the result distri-
bution, it can be found that prompt methods have
clear disadvantage in the tasks of MNLI, MRPC,
QNLI, QQB, RTE. These are all inference tasks
and Similarity and Paraphrase tasks belonging to
the GLUE dataset. We speculate the prompt meth-
ods can only carry superficial task information, so
their performance is on par with the adapter-based
methods in simple single-sentence tasks, failing the
more complex tests.

The traditional LPT method only injects one
layer of prompt information, and its limited capac-
ity results in poor performance in complex tasks.
With the additional adjustable parameters in the
BFT model, it can alleviate the above problems
without increasing the cost. In the prompt-based
architecture, results get better as the number of pa-
rameters increases. The ‘BFT with ffd‘ model has
performace comparable to some low-cost adapter
architecture models such as AdapterDrop (Riicklé
et al., 2020). Although the adapter carries more
information than a single prompt, single layer, still
limits the amount of information can carry. There-
fore, increasing the number of adjustable parame-
ters is also effective for LPT-Adapter. Unlike the
prompt-based method, the adapter-based method
has a rebound effect. Adding one more layer of gra-
dient propagation to *BFT-adapter with ffd’ does
not show significant performance improvement, so
our assumption is that involving more layers may
result in overfit.

A more interestingly observation is that MR and
MPQA tasks benefit fromt the additional parame-
ters, no matter the base model is a prompt-based or
adapter-based method. The parameter unfreezing
process can indeed improve the information acqui-
sition ability of the LPT model. For example, on
the MPQA and MR data sets, some models with un-
frozen modules have helped the benchmark model
reach another level.

5 Ablation Study
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Figure 3: Learning curve showing training loss and
accuracy of GPT-2 model on SST-2 and TREC.

5.1 Convergence speed

In addition to final performance, training curve is
another factor to consider. To compare the conver-



Method Tunable SST-2 MPQA MR Subj TREC MNLI MRPC QNLI QQp RTE Avg
Parameters  (acc) (acc) (acc) (acc) (acc) (acc) (accand F1) (acc) (accand F1)  (acc) (acc)
Sepoch
LPT 792K 94.6 90.8 90. 9 95.6 86.3 82. 17 90. 5 83. 4 75.8 87.41
BFT 1. 9M 94.2 92.2 91.4 97.2 95.8 88.1 82.21 86. 9 86.4 78 89. 24
LPT-adapter 36K 94.95 92.05 92.23 96.65 86. 22 82.4 90. 88 85.23 75.45  89.31
BFT-adapter 1. 13M 94.27 92.6 92.53 97 96.8 86.87 87.22 91.23 87. 01 72.2  89.77
" BFT,,,LPT  1.1M  91.51 88.7 8.1 96.8 682 73.88  79.51  73.16  81.17  71.12 81.22
lepoch
LPT 792K 94. 6 88. 8 89. 4 91.9 85.2 77. 4 86. 8 81.9 57.8  80.28
BFT 1. 9M 94. 4 90 89. 1 96. 8 84.4 86.4 79. 4 89.7 83.2 65.7 85.91
LPT-adapter 36K 94.61 90.02 90.58 95.85 78.2 85.78 76. 02 89. 58 84. 55 63.54 84.87
BFT-adapter 1. 13M 94.38 89.52 90.47 95.8 96.2 86.42 77. 66 89. 86 84. 91 73.65 87.89
" BFT,,,LPT ~1.1IM  90.48 8527 88.55 94.8 57.2 71.3 784  71.48 78.64  71.48 78.76

Table 3: Performance of BFT and LPT in low-batch training. BF'T’,,,L PT means just use our partially unfrozen
component. Bold face shows the best result for each column, and the underline score is the second best.

gence speed of LPT and BFT, we ran experiments
with the GPT-2 Large model on SST-2 (Socher
et al., 2013) and TREC. Although BFT does not
improve the performance of GPT-2 as much as
the ROBERTa model, it converges much faster
than LPT. Figure 3 shows that BFT consistently
outperforms LPT for GPT-2, and its training loss
drops much faster, about two epoch ahead in most
cases. However, that pattern is not so clear on other
datasets.

We also tested the convergence speed on the
RoBERTa model. During the training process, the
epoch parameter is usually a fixed value, and the
learning rate will change accordingly . For practi-
cal reasons, we tested the performance of 1 epoch
and 5 epochs on the RoOBERTa model. From Ta-
ble 3, our BFT architecture model performs well
in lower batches. Compared with other models
that add information modules, using only some un-
frozen modules performs well when there is only
1 epoch, but as the training time increases, it loses
any advantage. Due to the excellent architecture
of the adapter, both the LPT and BFT versions of
the information component using adapter are supe-
rior to the information component using prompt. A
model with only adapter information component
(only 36K parameters) is not enough to support the
model to store enough task information by compar-
ing LPT-adapter and BFT-adapter. Each module
has a task that it is good at from beginning to end.
For example, the prompt information module is
always better than the adapter information module
on rte.

6 Conclusion

Traditional PEFT methods place their research em-
phasis on reducing number of adjustable parame-

ters, but a small number of parameters does not
translate directly into savings in training cost. On
the other hand, LPT considers the cost of backprop-
agation and inserts soft prompts in the middle of a
Transformer network, resulting in larger speedup
as well as a small memory footprint. Our proposed
model combined the idea of hard prompt and in-
formation component consisting of soft prompts or
adapter, as well as a re-parameterization process,
leading to both better performance and training
speed. It also shows faster convergence speed than
LPT. Our assumption is that parameters in the last
layer of a Transformer network are the key to adapt
to downstream tasks. In addition, unfreezing cer-
tain parameters show significant performance boost
for complex tasks, but its additional capacity may
also cause overfitting for simpler tasks. How to
automatically adapt model design to downstream
task information is an important research topic we
plan to work on next.

7 Limitation

Our model was only tested on relatively small mod-
els (RoBERTa-Large and GPT-2 Large), which lim-
its our ability to verify its performance on more
complex natural language inference tasks. Ad-
ditionally, we solely utilized prompt tuning and
adapter in the addition-based methods and did not
investigate the potential synergy of other addition-
based methods to achieve similar effects. As a
result, some of our future work will focus on veri-
fying the performance of similar approaches. More-
over, we aim to investigate whether addition-based
methods can run in synergy with specification-
based models to attain faster training as well as
improved performance.
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A Appendix
A.1 Datasets

The specific information of the dataset used in our
experiment is shown in the Table 4 below. Single-
sentence tasks:

A.2 Implementation Details

The classification of multi-sentence tasks is compli-
cated, so we tested 5 hand-designed hard tips and
selected the best construction in Table 5.

SST-2 (The Stanford Sentiment Treebank)
records the evaluation of the film and its emo-
tional emotions. MPQA (The Multi-Perspective
Question Answering) extracts from news articles
from various sources. It is a sentiment classifi-
cation task. Subj (Subjectivity dataset) extracts
sentence from movie review document. It deter-
mines whether the sentence is subjective or objec-
tive. TREC (The Text REtrieval Conference) is a



Category Datasets  Train Dev Test Y Type Labels
SST-2 67349 872 1821 2 sentiment positive, negative
MPQA 7606 1000 2000 2 opinion polarity positive, negative
Single-sentence MR 7662 1000 2000 2 sentiment positive, negative
Subj 7000 1000 2000 2 subjectivity subjective, objective
TREC 4952 500 500 6 question cls. abbr. , entity, description, human, loc. , num.
MNLI 392702 19647 19643 3 NLI entailment, netural, contradiction
MRPC 3668 408 1725 2 paraphrase equivalent, not equivalent
Sentence-pair QNLI 104743 5463 5463 2 NLI entailment, not entailment
QQP 363846 40430 390965 2 paraphrase equivalent, not equivalent
RTE 2490 277 3000 2 NLI entailment, not entailment

Table 4: Specific information for each dataset

TASK Template label words
MRPC Two sentences are [mask]. <S1>, <S2>. equivalent: Yes, not equivalent: No
QNLI Two sentences are [mask]. <S1>, <S2>. equivalent: Yes, not equivalent: No
QQP <S1>[mask] , <S2> equivalent: Yes, not equivalent: No
RTE <S1>[mask] , <S2> entailment: Yes, not entailment: No
MNLI <S1>[mask] , <S2> entailment: Yes, netural: Maybe, contradiction: No

Table 5: Hard-prompt design for multi-sentence classification tasks.

question classification task, and it has 6 labels, 47
level-2 labels. Sentence-pair tasks: MNLI (The
Multi-Genre Natural Language Inference Corpus)
gives premises and hypotheses, judge the relation-
ship between premises and hypotheses. Accord-
ing to the data sources of the training set and the
test set, it is uniformly divided into two versions:
matched and mismatched. Our results used the av-
erage of both as an evaluation criterion. MRPC
(The Microsoft Research Paraphrase Corpus) ex-
tracts sentence pairs from newsfeeds and marks
whether they were semantically equivalent. The
sample distribution is uneven, with positive sam-
ples containing 68% of the total. Our results used
the accuracy and F1 averages. QNLI (Qusetion-
answering NLI) is a question-and-answer dataset
that determines whether a question and answer are
entailment. QQP (The Quora Question Pairs) ex-
tracts question pairs from the Q&A website and
records whether the question pairs are semantically
equivalent to each other. The distribution of QQP
samples was also uneven, with positive cases ac-
counting for 37% of the total. Our results used the
accuracy and F1 averages. RTE (The Recognizing
Textual Entailment datasets) is built from News
and Wikipedia, and mainly determines whether the
sentence pair is implied relationship.

The hyperparameters required for training are
listed in Table 6. Since the adapter is directly
input from the hidden layer, it has no hyperpa-
rameter num_prompt_token, and its downward

Prompt  Adapter
Hyperparameter Value Value
max_seq_length 256 256
learning_rate 1. 00E-03 1. 00E-03
weight_decay 0.1 0.1
logging_steps 10000 10000
num_prompt_tokens 5
proj_down_size 128 16
warmup_rate 0. 06 0. 06
batch_size 64 64
add_prompt_layer 12 18

Table 6: Experiment hyperparameter settings

projection matrix is the hidden states dimension
m X proj_down_size.

A.3 Additional experiments
A4 Information Component position

Since most methods only allow additional informa-
tion modules to be inserted into one hidden layer
of the model, we need to find a place where perfor-
mance and cost are balanced. We tested the impact
of insertion layer index on the performance of the
LPT, BFT, LPT-adapter, and BFT-adapter models
on RTE and TREC, respectively, and the results
are shown in Figure 4. From the result, we chose
the location that has good performance on both
datasets while also close to the output. Layer 12 is
selected for the prompt method and 18 is chosen
for the adapter information module.

As seen in Figure 4, BFT performs slightly bet-
ter than LPT regardless of the type of information
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method/ Tunable rte mrpc SST-2
behind Parameters  acc loss acc F1  acc&F1 loss acc loss
ADD&NORM1 10.291M 7798 0.6164 799 86.56 83.23 0.6046 953 0.2217
FFD 10.289M 7798 0.6761 78.19 85.81 82 0.6072 9541 0.224
ADD&NORM?2 1.897M  73.65 0.7373 7598 84.64 80.31 0.6523 9427 0.2536
LLM_head 1.895M  77.26 0.7151 76.72 8499  80.85 0.6673 94.84 0.2522

Table 7: Fine-tune schema choices. All results are after training of 5 epochs with the same random seed. The best
result in each column is in bold face, and the second best is underlined. LLM_head is our base model. It only
adds gradients to the Language Modeling Head. ADD&NORM?2 opens gradients from layer normalization module
close to LLM_head to output; FFD turn on gradients from feed-forward module to output; ADD&NORMI1 opens
gradients from layer normalization module to output.The bold face in the "method behind" column represents the

BFT and its variants that we use.
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Figure 4: Mean and standard deviation of accuracy over
3 different random seeds, when information compo-
nent is inserted at different layers in a RoOBERTa-Large
model.

component, especially when the information com-
ponent is placed at either end of the model. This
shows that our partially unfrozen component is very
helpful for coordinating the training of information
component together. In addition, it can be found
that the optimal position of the adapter is closer
to the model output than the prompt, which helps
to reduce its training cost. Despite its advantage,
BFT has a turning point, with performance rapidly
deteriorating after that. Although an insertion point
closer to output is good for reducing training cost,
keeping good performance is still the main concern.

A.5 partially unfrozen component

For training cost considerations, we only allow un-
frozen parameters in the last layer of the language
models. To get a clear view how the backpropa-
gation process impacts performance, we unfreeze
the sublayers one by one. For example, in the
RoBERTa-Large model, there are several modules
of in 24th encoder layer. To facilitate compari-
son, we turned on gradients for all parameters from
the selected module to the final output. Only the
gradients after the attention module are turned on,
and the experimental results are shown in Table 7.
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Layout of these modules are displayed in Figure 2.
Based on performance, we finally selected three
variants of the BFT model as shown in Table 2.



