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ABSTRACT

Stochastic optimization has become the workhorse behind many successful ma-
chine learning applications, which motivates a lot of theoretical analysis to un-
derstand its empirical behavior. As a comparison, there is far less work to study
the generalization behavior especially in a non-convex learning setting. In this pa-
per, we study the generalization behavior of stochastic optimization by leveraging
the algorithmic stability for learning with β-gradient-dominated objective func-
tions. We develop generalization bounds of the order O(1/(nβ)) plus the conver-
gence rate of the optimization algorithm, where n is the sample size. Our stabil-
ity analysis significantly improves the existing non-convex analysis by removing
the bounded gradient assumption and implying better generalization bounds. We
achieve this improvement by exploiting the smoothness of loss functions instead
of the Lipschitz condition in Charles & Papailiopoulos (2018). We apply our gen-
eral results to various stochastic optimization algorithms, which show clearly how
the variance-reduction techniques improve not only training but also generaliza-
tion. Furthermore, our discussion explains how interpolation helps generalization
for highly expressive models.

1 INTRODUCTION

Stochastic optimization has found tremendous applications in training highly expressive machine
learning models including deep neural networks (DNNs) (Bottou et al., 2018), which are ubiquitous
in modern learning architectures (LeCun et al., 2015). Oftentimes, the models trained in this way
have not only very small training errors or even interpolate the training examples, but also surpris-
ingly generalize well to testing examples (Zhang et al., 2017). While the low training error can be
well explained by the over-parametrization of models and the efficiency of the optimization algo-
rithm in identifying a local minimizer (Bassily et al., 2018; Vaswani et al., 2019; Ma et al., 2018), it
is still unclear how the highly expressive models also achieve a low testing error (Ma et al., 2018).
With the recent theoretical and empirical study, it is believed that a joint consideration of the in-
teraction among the optimization algorithm, learning models and training examples is necessary to
understand the generalization behavior (Neyshabur et al., 2017; Hardt et al., 2016; Lin et al., 2016).

The generalization error for stochastic optimization typically consists of an optimization error and
an estimation error (see e.g. Bousquet & Bottou (2008)). Optimization errors arise from the sub-
optimality of the output of the chosen optimization algorithms, while estimation errors refer to
the discrepancy between the testing error and training error at the output model. There is a large
amount of literature on studying the optimization error (convergence) of stochastic optimization al-
gorithms (Bottou et al., 2018; Orabona, 2014; Karimi et al., 2016; Ying & Zhou, 2017; Liu et al.,
2018). In particular, the power of interpolation is clearly justified in boosting the convergence rate
of stochastic gradient descent (SGD) (Bassily et al., 2018; Vaswani et al., 2019; Ma et al., 2018).
In contrast, there is far less work on studying estimation errors of optimization algorithms. In a
seminal paper (Hardt et al., 2016), the fundamental concept of algorithmic stability was used to
study the generalization behavior of SGD, which was further improved and extended in Charles
& Papailiopoulos (2018); Zhou et al. (2018b); Yuan et al. (2019); Kuzborskij & Lampert (2018).
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However, these results are still not quite satisfactory in the following three aspects. Firstly, the ex-
isting stability bounds in non-convex learning require very small step sizes (Hardt et al., 2016) and
yield suboptimal generalization bounds (Yuan et al., 2019; Charles & Papailiopoulos, 2018; Zhou
et al., 2018b). Secondly, majority of the existing work has focused on functions with a uniform
Lipschitz constant which can be very large in practical models if not infinite (Bousquet & Elisse-
eff, 2002; Hardt et al., 2016; Charles & Papailiopoulos, 2018; Kuzborskij & Lampert, 2018), e.g.,
DNNs. Thirdly, the existing stability analysis fails to explain how the highly expressive models still
generalize in an interpolation setting, which is observed for overparameterized DNNs (Arora et al.,
2019; Brutzkus et al., 2017; Bassily et al., 2018; Belkin et al., 2019).

In this paper, we make attempts to address the above three issues using novel stability analysis
approaches. Our main contributions are summarized as follows.

1. We develop general stability and generalization bounds for any learning algorithm to optimize
(non-convex) β-gradient-dominated objectives. Specifically, we show that the excess generalization
error is bounded by O(1/(nβ)) plus the convergence rate of the algorithm, where n is the sample
size. This general theorem implies that overfitting will never happen in this case, and generalization
would always improve as we increase the training accuracy, which is due to an implicit regularization
effect of gradient dominance condition. In particular, we show that interpolation actually improves
generalization for highly expressive models. In contrast to the existing discussions based on either
hypothesis stability or uniform stability which imply at best a bound of O(1/

√
nβ), the main idea is

to consider a weaker on-average stability measure which allows us to replace the uniform Lipschitz
constant in Hardt et al. (2016); Kuzborskij & Lampert (2018); Charles & Papailiopoulos (2018) with
the training error of the best model.

2. We apply our general results to various stochastic optimization algorithms, and highlight the ad-
vantage over existing generalization analysis. For example, we derive an exponential convergence of
testing errors for SGD in an interpolation setting, which complements the exponential convergence
of optimization errors (Bassily et al., 2018; Vaswani et al., 2019; Ma et al., 2018) and extends the
existing results (Pillaud-Vivien et al., 2018; Nitanda & Suzuki, 2019) from a strongly-convex setting
to a non-convex setting. In particular, we show that stochastic variance-reduced optimization out-
performs SGD by achieving a significantly faster convergence of testing errors, while this advantage
is only shown in terms of optimization errors in the literature (Reddi et al., 2016; Lei et al., 2017;
Nguyen et al., 2017; Zhou et al., 2018a; Wang et al., 2019).

2 RELATED WORK

Algorithmic Stability. We first review the related work on stability and generalization. Algorith-
mic stability is a fundamental concept in statistical learning theory (Bousquet & Elisseeff, 2002;
Elisseeff et al., 2005), which has a deep connection with learnability (Shalev-Shwartz et al., 2010;
Rakhlin et al., 2005). The important uniform stability was introduced in Bousquet & Elisseeff
(2002), where the authors showed that empirical risk minimization (ERM) enjoys the uniform sta-
bility if the objective function is strongly convex. This concept was extended to study randomized
algorithms such as bagging and bootstrap (Elisseeff et al., 2005). An interesting trade-off between
uniform stability and convergence was developed for iterative optimization algorithms, which was
then used to study convergence lower bounds of different algorithms (Chen et al., 2018). While gen-
eralization bounds based on stability are often stated in expectation, uniform stability was recently
shown to guarantee almost optimal high-probability bounds based on elegant concentration inequal-
ities for weakly-dependent random variables (Maurer, 2017; Feldman & Vondrak, 2019; Bousquet
et al., 2020). Other than the standard classification and regression setting, uniform stability was very
successfully to study transfer learning (Kuzborskij & Lampert, 2018), PAC-Bayesian bounds (Lon-
don, 2017), privacy learning (Bassily et al., 2019) and pairwise learning (Lei et al., 2020b). Some
other stability measures include the uniform argument stability (Liu et al., 2017), hypothesis sta-
bility (Bousquet & Elisseeff, 2002), hypothesis set stability (Foster et al., 2019) and on-average
stability (Shalev-Shwartz et al., 2010). An advantage of on-average stability is that it is weaker than
the uniform stability and can imply better generalization by exploiting either the strong convexity
of the objective function (Shalev-Shwartz & Ben-David, 2014, Corollary 13.7) or the more relaxed
exp-concavity of loss functions (Koren & Levy, 2015; Gonen & Shalev-Shwartz, 2017). Since
gradient-dominance condition is another relaxed extension of strong convexity, we use on-average
stability to study generalization bounds.
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Generalization analysis. We now review related work on generalization analysis for stochastic op-
timization. In a seminal paper (Hardt et al., 2016), the authors used the nonexpansiveness of gradient
mapping to develop uniform stability bounds for SGD to optimize convex, strongly convex and even
non-convex objective functions. This inspired some interesting work on stochastic optimization. An
interesting data-dependent stability bound was developed for SGD, a nice property of which is that it
shows how the initialization would affect generalization (Kuzborskij & Lampert, 2018). These sta-
bility bounds were integrated into a PAC-Bayesian analysis of SGD, yielding generalization bounds
for arbitrary posterior distributions (London, 2017). Almost optimal generalization bounds were
developed for differentially private stochastic convex optimization (Bassily et al., 2019). The on-
average variance of stochastic gradients was used to refine the generalization analysis of SGD (Hardt
et al., 2016) in non-convex optimization (Zhou et al., 2018b). The uniform stability was also studied
for SGD implemented in a stagewise manner (Yuan et al., 2019) and stochastic gradient Langevin
dynamics in a non-convex setting (Li et al., 2020; Mou et al., 2018). Very recently, the discussions in
Hardt et al. (2016) were extended to tackle non-smooth (Lei & Ying, 2020; Bassily et al., 2020) and
non-Lipscthiz functions (Lei & Ying, 2020). The most related work is Charles & Papailiopoulos
(2018), where some general hypothesis stability bounds were developed for learning algorithms that
converge to optima. A very interesting point is that their bounds depend only on the convergence of
the algorithm to a global minimum and the geometry of loss functions around the global minimum.
However, their discussion imply at best the slow generalization bounds O(1/

√
nβ) for β-gradient-

dominated objective functions, and can not explain the benefit of low optimization errors in helping
generalization. The underlying reason is that they used the pointwise hypothesis stability and did
not consider the smoothness of loss functions. We aim to improve these results by leveraging the
weaker on-average stability and smoothness of loss functions.

Other than the stability approach, there is interesting generalization analysis of SGD based on either
a uniform convergence approach (Lin et al., 2016), an integral operator approach (Lin & Rosasco,
2017; Ying & Pontil, 2008; Dieuleveut & Bach, 2016; Dieuleveut et al., 2017; Mücke et al., 2019)
or an information-theoretic approach (Xu & Raginsky, 2017; Negrea et al., 2019; Bu et al., 2020).

3 MAIN RESULTS

Let ρ be a probability measure defined on a sample spaceZ = X×Y withX ⊆ Rd andY ⊆ R, from
which a training dataset S =

{
z1, . . . , zn

}
is drawn independently and identically. The aim is to find

a good model w from a model parameter spaceW based on the training dataset S. The performance
of a prescribed model w on a single example z can be measured by a nonnegative loss function
f(w; z), where f :W ×Z 7→ R+. In machine learning we often apply an (randomized) algorithm
A : ∪nZn 7→ W to S to produce an output modelA(S) ∈ W . Oftentimes, the constructed model w
would have a small empirical risk FS(w) = 1

n

∑n
i=1 f(w; zi). However, we are mostly interested in

the generalization performance of a model w on testing examples measured by the population (true)
risk F (w) = Ez

[
f(w; z)

]
, where Ez denotes the expectation with respect to (w.r.t.) z. The gap

ES,A
[
F (A(S))−FS(A(S))

]
between the population risk and empirical risk is called the estimation

error, which is due to the approximation of ρ by sampling. Here EA denotes the expectation w.r.t.
the randomness of the algorithm A. For example, if A is SGD, then EA denotes the expectation
w.r.t. the random indices of training examples selected for the gradient computation. A powerful
tool to study the estimation error is the algorithmic stability (Bousquet & Elisseeff, 2002; Elisseeff
et al., 2005; Shalev-Shwartz et al., 2010; Hardt et al., 2016), which measures the sensitivity of the
algorithm’s output w.r.t. the perturbation of a training dataset. Below we give formal definitions of
stability measures, whose connection to generalization is established in Theorem A.1.

Definition 1 (Uniform Stability). A randomized algorithmA has uniform stability ε if for all datasets
S, S̃ ∈ Zn that differ by at most one example, we have supz EA

[
f(A(S); z)− f(A(S̃); z)

]
≤ ε.

The following on-average stability is similar to the average-RO stability in Shalev-Shwartz et al.
(2010). The difference is we do not use an absolute value. Form ∈ N, we denote [m] = {1, . . . ,m}.

Definition 2 (On-average Stability). Let S = {z1, . . . , zn} and S̃ = {z̃1, . . . , z̃n} be drawn in-
dependently from ρ. For each i ∈ [n], denote S(i) = {z1, . . . , zi−1, z̃i, zi+1, . . . , zn}. We say an
algorithm A has on-average stability ε if 1

n

∑n
i=1 ES,S̃,A

[
f(A(S(i)); zi)− f(A(S); zi)

]
≤ ε.
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In this paper, we are interested in the excess generalization error F (A(S)) − F (w∗), where w∗ ∈
arg minw∈W F (w) is the best model with the least testing error (population risk). For this purpose,
we introduce some basic assumptions. A basic assumption in non-convex learning is the smoothness
of loss functions (Ghadimi & Lan, 2013; Karimi et al., 2016), meaning the gradients are Lipschitz
continuous. Let ‖ · ‖2 denote the Euclidean norm and∇ denote the gradient operator.
Assumption 1 (Smoothness Assumption). We assume for all z ∈ Z , the differentiable function
w 7→ f(w; z) is L-smooth, i.e., ‖∇f(w; z)−∇f(w′; z)‖2 ≤ L‖w −w′‖2 for all w,w′ ∈ W .

Another assumption is the Polyak-Lojasiewicz (PL) condition on the objective function, which is
common in non-convex optimization (Zhou et al., 2018b; Reddi et al., 2016; Karimi et al., 2016;
Wang et al., 2019; Lei et al., 2017), and was shown to hold true for deep (linear) and shallow neural
networks (Hardt & Ma, 2016; Charles & Papailiopoulos, 2018; Li & Yuan, 2017).

Assumption 2 (Polyak-Lojasiewicz Condition). Denote F̂S = infw′∈W FS(w′). We assume FS
satisfies PL or gradient-dominated condition (in expectation) with parameter β > 0, i.e.,

ES
[
FS(w)− F̂S

]
≤ 1

2β
ES
[
‖∇FS(w)‖22

]
, ∀w ∈ W. (3.1)

It is worthy of mentioning that our results in this section continue to hold if the global PL condition
is relaxed to a local PL condition, i.e., (3.1) holds for w in a neighborhood of the minimizer of FS .

The existing stability analysis often imposes a bounded gradient assumption below (Bousquet &
Elisseeff, 2002; Hardt et al., 2016; Charles & Papailiopoulos, 2018; Yuan et al., 2019; Kuzborskij
& Lampert, 2018). Indeed, the resulting stability bounds depend on the uniform Lipschitz constant
G (see eq. (3.4)), which can be prohibitively large in practical models, e.g., DNNs, or even infinite,
e.g. least squares regression in an unbounded domain.
Assumption 3 (Bounded Gradient Assumption). We assume ‖∇f(w; z)‖2 ≤ G for all w ∈ W ,
z ∈ Z and a constant G > 0.

Our main result to be proved in Appendix B removes Assumption 3 and replaces the uniform Lips-
chitz constant G by the minimal empirical risk F̂S , which is significantly smaller than the Lipschitz
constant. Note the assumption L ≤ nβ/4 is mild, and the previous generalization bounds become
vacuous as O(1) (Yuan et al., 2019; Charles & Papailiopoulos, 2018) if this assumption is violated.
Theorem 1 (Main Theorem). Let Assumptions 1, 2 hold and wS = A(S). If L ≤ nβ/4, then

E
[
F (wS)− F̂S

]
≤ 16LE[F̂S ]

nβ
+
LE
[
FS(wS)− F̂S

]
2β

. (3.2)

An important implication is as follows. Since E
[
F̂S
]
≤ E

[
FS(w∗)

]
= F (w∗) and F̂S ≤ FS(wS),

Eq. (3.2) implies an upper bound on the excess generalization error E[F (wS)]− F (w∗) and

E
[
F (wS)− FS(wS)

]
= O

( 1

nβ
+

E
[
FS(wS)− F̂S

]
β

)
. (3.3)

The above two terms can be explained as follows. The term O(1/(nβ)) reflects the intrinsic com-
plexity of the problem, while E

[
FS(wS) − F̂S

]
is called the optimization error. An interesting

observation is that the overfitting phenomenon would never happen for learning under the PL condi-
tion (analogous to learning with strongly convex objectives where the global minimizer generalizes
well (Bousquet & Elisseeff, 2002)). Indeed, if the optimization algorithm finds more and more ac-
curate solutions, it achieves the limiting generalization bound O(1/(nβ)). This shows an important
message that optimization can be beneficial to generalization. This seemingly counterintuitive phe-
nomenon is due to the implicit regularization enforced by the PL condition (analogous to the strong
convexity condition). Another notable property is that Theorem 1 applies to any algorithm. We can
plug any known optimization error bounds into it to immediately get generalization bounds.
Remark 1. We show that our result significantly improves the existing stability analysis. The
work (Charles & Papailiopoulos, 2018) showed the pointwise hypothesis stability is controlled

by 2G2

nβ + 2
√

2G

√
E[FS(wS)− F̂S ]/β, which together with the connection between stability and

generalization (cf. (A.1)), implies with probability 1− δ that

F (wS) ≤ FS(wS) +

(
M2

nδ
+

24MG2

nβδ
+

24MG

√
2E[FS(wS)− F̂S ]
√
βδ

) 1
2

. (3.4)
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The above bound requires the bounded gradient assumption ‖∇f(w; z)‖2 ≤ G and the bounded
loss assumption 0 ≤ f(w; z) ≤ M for all w ∈ W and z ∈ Z , which are successfully removed
in our generalization analysis. Furthermore, our generalization bound significantly improves (3.4).
Indeed, assume E[FS(wS)− F̂S ] ≤ ε2β for some ε > 0, then (3.3) implies

E
[
F (wS)

]
= E

[
FS(wS)

]
+O

( 1

nβ
+ ε2

)
, (3.5)

while (3.4) becomes F (wS) = FS(wS) +O
(

1√
nβ

+
√
ε
)

. To achieve the generalization guarantee

O(1/
√
nβ), the above bound requires the optimization accuracy ε = O(1/(nβ)), while our bound

(3.5) only requires the accuracy ε = O(1/
√
nβ) but gets the significantly better generalization

bound 1/(nβ). We actually develop a better stability bound. Specifically, the pointwise hypothesis
stability is bounded by O

(
1
nβ + ε

)
in Charles & Papailiopoulos (2018) while we show that the on-

average stability is bounded by O
(

1
nβ + ε2

)
, which is significantly tighter if 1

nβ ≤ ε ≤ 1 (ignoring
constant factors). It should be mentioned that Charles & Papailiopoulos (2018) did not impose a
smoothness assumption. However, the smoothness assumption is widely used in non-convex opti-
mization to derive meaningful rates (Ghadimi & Lan, 2013). As compared to probabilistic bounds
in Charles & Papailiopoulos (2018), our bounds are stated in expectation. The extension to high-
probability bounds will lead to additional O(1/

√
n) term (Feldman & Vondrak, 2019).

Remark 2 (Bounded gradient assumption). Very recently, the bounded gradient assumption was
also removed for the stability analysis (Lei & Ying, 2020). However, their analysis considered SGD
applied to convex loss functions. As a comparison, we study stability and generalization in a non-
convex learning setting, and our analysis applies to any stochastic optimization algorithms.

Remark 3. If A is ERM, Theorem 1 immediately implies E
[
F (wS) − F̂S

]
≤ 16L

nβ E[F̂S ]. If FS
is β-strongly convex and L < nβ/2, it was shown for ERM that E

[
F (wS) − F̂S

]
≤ 48L

nβ E
[
F̂S
]

(Shalev-Shwartz & Ben-David, 2014, Corollary 13.7). Their result is extended here from a strongly
convex setting to a gradient-dominated setting, and from the particular ERM to any algorithm.

As a direct corollary, we can derive the following optimistic bound in the interpolation setting, which
is the most intriguing case for over-parameterized or highly expressive DNN models.

Corollary 2. Let Assumptions 1, 2 hold and wS = A(S). If E[F̂S ] = 0 and L < nβ/2, then
E
[
F (wS)

]
≤ L

2βE
[
FS(wS)

]
.

Remark 4. Corollary 2 shows a benefit of interpolation in boosting the generalization by achieving
a generalization bound O(ε) for any ε > 0 if we minimize FS sufficiently well. This benefit can
not be explained by the existing discussions (Hardt et al., 2016; Charles & Papailiopoulos, 2018) as
they imply the same generalization bound O(1/

√
nβ) in the interpolation setting. Although it was

observed that interpolation helps in training (Bassily et al., 2018; Vaswani et al., 2019; Ma et al.,
2018; Oymak & Soltanolkotabi, 2020; Allen-Zhu et al., 2019; Zou et al., 2018), it is still largely
unclear, as indicated in Ma et al. (2018), that how interpolation helps in generalization. Corollary 2
shows new insights on how interpolation from highly expressive models helps generalization.

We now move on to the discussion on the critical assumption in Corollary 2, i.e. L < nβ/2.
According to the proof, the two parameters L and β can be replaced by their local counterparts, i.e.,
the smoothness and PL condition related to a particular minimizer w′ of FS(i) (Eqs. (B.6), (B.7)).
For example, β can be replaced by 1

2‖∇FS(w′)‖22/(FS(w′) − F̂S), which can be larger than β.
Below are some examples on explaining L/β < n/2. As we will see, the quantity L/β reflects
the complexity of the problem (related to condition number as shown in Examples 1, 2). Therefore,
the condition L/β < n/2 imposes implicitly a constraint on the complexity of the problems. This
explains why the optimization algorithm would never overfit when applied to gradient-dominated
objective functions if L/β < n/2, as shown in Theorem 1.
Example 1. Let φ : Rd 7→ Rm be a feature map, and ` : R×R 7→ R+ be a loss function which isL`-
smooth and σ`-strongly convex w.r.t. the first argument. Consider f(w; z) = `(〈w, φ(xi)〉, yi) with
〈·, ·〉 being an inner product. Then, FS satisfies the PL condition with the parameter σ′min(ΣS)σ`,
where ΣS = 1

n

∑n
i=1 φ(xi)φ(xi)

> is the empirical covariance matrix, A> denotes the transpose of
a matrix A and σ′min(A) means the minimal non-zero singular value of A. The empirical counterpart
(we have an expectation w.r.t. S in PL condition) of L/β is of the order of σmax(ΣS)/σ′min(ΣS),
where σmax(A) means the maximal singular value (we give details in Appendix E.1).
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Example 2. Consider neural networks with a single hidden layer with d inputs, m hidden neu-
rons and a single output neuron, for which the prediction function takes the form hv,w =∑m
k=1 vkφ

(
〈wk, x〉

)
. Here wk ∈ Rd and vk ∈ R denote the weight of the edges connecting the k-th

hidden node to the input and output node, respectively, while φ : R 7→ R is the activation function.
Analogous to Arora et al. (2019); Oymak & Soltanolkotabi (2020), we fix v = (v1, . . . , vm)> with
|vk| = a for some a > 0 and train w = (w1,w2, . . . ,wm)> ∈ Rm×d from S. The loss function
then takes the form f(w; z) =

(
v>φ(wx)−y

)2
. If we consider the identity activation function, i.e.,

φ(t) = t, then FS satisfies the PL condition with the parameter σmin(ΣS), where σmin(A) denotes
the minimal singular value of A and ΣS = 1

n

∑n
i=1 xix

>
i . The empirical counterpart of L/β is of

the order of σmax(ΣS)/σmin(ΣS) (we give details in Appendix E.2 for a general activation function).

It is possible to get generalization bounds under some other conditions. Since one-point strong
convexity condition together with smoothness assumption implies the PL condition (Yuan et al.,
2019), all our results apply to one-point strongly convex functions. We can also get generalization
bounds for objective functions satisfying the quadratic growth condition (Necoara et al., 2018),
which is weaker than the PL condition. However, we need to impose a realizability condition which
was also imposed in Charles & Papailiopoulos (2018). The proof of Theorem 3 is given in Section C.
Let w(S) denote the Euclidean projection of w onto the set of global minimizers of FS inW .
Definition 3 (Quadratic Growth Condition). We say FS : W 7→ R satisfies the quadratic growth
condition (in expectation) with parameter β if E

[
FS(w)−F̂S

]
≥ β

2E
[
‖w−w(S)‖22

]
for all w ∈ W .

Theorem 3. Let Assumption 1 hold and FS satisfy the quadratic growth condition with parameter β.
If the problem is realizable, i.e., E[F̂S ] = 0 and L ≤ nβ/4, then E

[
F (wS)

]
≤ 2Lβ−1E

[
FS(wS)

]
.

Finally, we consider any optimization algorithms applied to gradient-dominated and Lipschitz con-
tinuous functions. We do not require loss functions to be smooth here. It shows that the excess
generalization bound can decay as fast as O(1/(nβ)) if we solve the optimization problem to a suf-
ficient accuracy, which is much better than the generalization bound O(1/

√
nβ) in Charles & Pa-

pailiopoulos (2018). Recall the analysis in Charles & Papailiopoulos (2018) requires Assumptions
2, 3 and a further assumption on boundedness of loss functions. The proof is given in Section C.
Theorem 4. Let Assumptions 2, 3 hold and wS = A(S). Then the following inequality holds

E
[
F (wS)− F̂S

]
≤ 2G2

nβ
+
G
(
E
[
FS(wS)− F̂S

]) 1
2

√
2β

.

4 APPLICATIONS

In this section, we apply Theorem 1 to different stochastic optimization algorithms such as stochastic
gradient descent, randomized coordinate descent, and stochastic variance-reduced optimization. In
particular, we study the number of stochastic gradient evaluations required to achieve a prescribed
generalization bound, which is summarized in Table 1. We always assume L ≤ nβ/4 in this section.

4.1 STOCHASTIC GRADIENT DESCENT

We need some notations to state results on SGD. Specifically, denote by w1 ∈ W an initial point of
SGD. At the t-th iteration, we first randomly select an index it ∼ unif[n], and then update {wt}t by

wt+1 = wt − ηt∇f(wt; zit), (4.1)
where {ηt}t is a sequence of positive step sizes and unif[n] denotes the uniform distribution over
[n]. The proof of Theorem 5 is given in Appendix D.1.
Theorem 5. Let Assumptions 1, 2 hold with L ≤ nβ/4. Let A be SGD with the step size sequence

ηt = 2t+1
2β(t+1)2 . Then E

[
F (wT+1)

]
− F (w∗) = O

(
1
nβ + 1

Tβ3

)
. We can take O( nβ2 ) stochastic

gradient evaluations to get excess generalization bounds O(1/(nβ)).
Remark 5. We compare Theorem 5 with the recent generalization analysis of SGD under the PL
condition. Based on pointwise hypothesis stability analysis and the optimization error bound in
Karimi et al. (2016), it was shown with probability at least 1− δ (Charles & Papailiopoulos, 2018)

F (wT+1)− F (w∗) = O
( 1√

nβδ
+

1

T
1
4 β

3
4 δ

1
2

)
. (4.2)
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Algorithm Complexity for 1/(nβ) Complexity for ε if E[F̂S ] = 0
SGD n

β2
1
β2 log 1

βε

RCD d logn
β

d
β log 1

βε

SVRG, SCSG
(
n+ n

2
3 /β

)
log n

(
n+ n

2
3 /β

)
log 1

βε

SARAH, SpiderBoost
(
n+ 1/β2

)
log n

(
n+ 1/β2

)
log 1

βε

SNVRG
(
n+
√
n/β

)
log4 n

(
n+
√
n/β

)
log4 1

βε

Table 1: Iteration complexity for different optimization algorithms to achieve a stated generalization
bound under Assumptions 1, 2. In the second column, we present the number of stochastic gradient
evaluations to achieve excess generalization bounds O(1/(nβ)). In the third column, we present
the number of stochastic gradient evaluations to achieve generalization bounds O(ε) if E[F̂S ] = 0.
We ignore constant factors. It is known that variance-reduction techniques improve the iteration
complexity to achieve small training errors. Our stability analysis shows that such an improvement
is also achieved for testing errors. Note that the stability analysis in Charles & Papailiopoulos (2018)
can at most imply an excess generalization bound O(1/

√
nβ) for these algorithms.

The above bound indicates thatO(n2/β) stochastic gradient evaluations are needed to get the excess
generalization bounds O(1/

√
nβ). Based on the uniform stability bound in Hardt et al. (2016) and

the optimization error bound in Karimi et al. (2016), it was shown in Yuan et al. (2019) that

E[F (wT+1)]− F (w∗) = O
(
n−1(βT )

L/β
1+L/β

)
+O

( 1

Tβ2

)
. (4.3)

By taking an optimal T = n
1+L/β
1+2L/β β−

2+3L/β
1+2L/β (ignoring a constant factor) to balance the above

two terms, we derive E[F (wT+1)] − F (w∗) = O
(
n−

1+L/β
1+2L/β β−

L/β
1+2L/β

)
. If L/β is moderately

large, then this bound quickly becomes E[F (wT+1)] − F (w∗) = O(1/
√
nβ). With high proba-

bility at least 1 − δ, it was shown that SGD with the step size ηt = c
(t+2) log(t+2) gets the bound

F (wT+1)−FS(wT+1) = O
(√
c log T/

√
nδ
)

(Zhou et al., 2018b). However, it is not clear how the
optimization errors decay with such step sizes. Typically, c should be of the order O(1/β) as shown
in Karimi et al. (2016) and therefore the stability analysis in Zhou et al. (2018b) can at best achieve
the generalization boundsO

(√
log T/

√
nβ
)
. To summarize, the existing stability analysis generally

implies the generalization bound O(1/
√
nβ) for SGD in learning with gradient-dominated objec-

tives (Charles & Papailiopoulos, 2018; Zhou et al., 2018b; Yuan et al., 2019), which is significantly
improved to O(1/(nβ)) in our paper by the refined stability analysis. It is worth mentioning that,
in this comparison, we have used the same optimization error bounds in Karimi et al. (2016), and
the analysis in Charles & Papailiopoulos (2018); Zhou et al. (2018b); Yuan et al. (2019) requires a
bounded gradient assumption and a bounded loss assumption, which are removed in our analysis.

The above iteration complexity in Theorem 5 can be further improved if we impose a restricted
secant inequality (Karimi et al., 2016) on FS , which has been considered for non-convex optimiza-
tion, e.g., optimizing neural networks (Li & Yuan, 2017). This is a slightly stronger assumption than
the PL condition as shown in Karimi et al. (2016).
Definition 4 (Restricted Secant Inequality). We say FS : W 7→ R satisfies the restricted secant
inequality with parameter β if E

[
〈w −w(S),∇FS(w)〉

]
≥ βE[‖w −w(S)‖22] for all w ∈ W .

Theorem 6. Assume FS satisfies the restricted secant inequality with parameter β. Let Assumption
1 hold with L ≤ nβ/4. LetA be SGD with ηt = 1/(β(t+1)). Then one can takeO(n/β) stochastic
gradient evaluations to achieve the excess generalization bounds O(1/(nβ)).

Below we apply Theorem 1 to establish fast generalization bounds in an interpolation setting. Our
analysis shows that interpolation actually boosts SGD by achieving an exponential convergence of
testing errors, which can not be derived from the bound (3.4) in Charles & Papailiopoulos (2018).
Theorem 7. Let Assumptions 1, 2 hold with L ≤ nβ/4, and E[F̂S ] = 0. Let A be SGD with
ηt = β/L2. Then E[F (wT+1)] ≤ L(1−β2/L2)T

2β E
[
FS(w1)

]
. We can take O

(
β−2 log(1/(βε)))

stochastic gradient evaluations to achieve the generalization bound O(ε) for any ε > 0.

The above linear convergence does not contradict existing minimax lower bounds where the benefit
of interpolation is not considered. The proofs for Theorems 6, 7 are given in Appendix D.1.
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Remark 6. We discuss some recent work on error bounds in low-noise conditions. Optimization
errors of SGD were studied for general non-convex objectives (Vaswani et al., 2019; Ma et al., 2018)
and gradient-dominated objectives (Bassily et al., 2018). For binary classification problems with the
specific squared loss, it was shown SGD achieves an exponential convergence of testing classifica-
tion errors under a margin condition, i.e., positive and negative classes are separated by a margin that
is strictly positive (Pillaud-Vivien et al., 2018). This was extended to general convex loss functions
under the same margin condition (Nitanda & Suzuki, 2019). These discussions consider regular-
ized objective functions (Pillaud-Vivien et al., 2018; Nitanda & Suzuki, 2019), which are strongly
convex. The exponential convergence in Pillaud-Vivien et al. (2018); Nitanda & Suzuki (2019) was
established for the testing classification errors, i.e., 0-1 loss. As a comparison, we establish an expo-
nential convergence for the testing errors measured by loss functions used in training. In addition,
the exponential convergence in Pillaud-Vivien et al. (2018); Nitanda & Suzuki (2019) comes into
effect only after a sufficiently large number of iterations, which is not required in Theorem 7.

4.2 RANDOMIZED COORDINATE DESCENT

Randomized coordinate descent (RCD) is an efficient optimization algorithm particularly useful for
high-dimensional learning problems (Nesterov, 2012). At each iteration it firstly randomly selects
a single coordinate it ∈ {1, . . . , d}, and then performs the update along the it-th coordinate as
wt+1 = wt − ηt∇itFS(wt)eit , where ∇iFS denotes the derivative of FS w.r.t. the i-th coordinate
and ei is a vector in Rd with the i-th coordinate being 1 and other coordinates being 0.
Theorem 8. Let Assumptions 1 and 2 hold with L ≤ nβ/4. Let A be RCD with ηt = 1/L. Then

E[F (wT+1)]−F (w∗) = O
(

1
nβ + 1

β

(
1− β

dL

)T)
. We takeO((d log n)/β) stochastic gradient eval-

uations to get excess generalization bounds O(1/(nβ)). If E[F̂S ] = 0, we take O
(
β−1d log 1/(βε)

)
stochastic gradient evaluations to get generalization bounds O(ε) for any ε > 0.

The detailed proof for the above theorem is given in Appendix D.2. As indicated in Remark 1, the
discussion in Charles & Papailiopoulos (2018) can only imply the generalization boundO(1/

√
nβ).

4.3 STOCHASTIC VARIANCE-REDUCED OPTIMIZATION

SGD needs a diminishing step size due to the inherent variance of stochastic gradients, which gen-
erally yields a sublinear convergence rate (Bottou et al., 2018). Recently, there is a large amount of
work to accelerate SGD by using some different gradient estimates with a reduced variance (Johnson
& Zhang, 2013; Xiao & Zhang, 2014; Zhang et al., 2013; Allen-Zhu & Hazan, 2016; Fang et al.,
2018; Wang et al., 2019; Nguyen et al., 2017; Zhou et al., 2018a; Schmidt et al., 2017; Defazio et al.,
2014; Reddi et al., 2016). This class of algorithms proceeds in epochs. Let w̃0 be an initialization
point. At the beginning of s-th epoch, we set a reference point w0 = w̃s−1, draw a batch Ĩs ⊆ [n]
and compute v0 = ∇fĨs(w0), where we denote fI(w) = 1

|I|
∑
i∈I f(w; zi) for I ⊆ [n] and |I|

is the cardinality of I . The batch Ĩs can be equal to [n] (Johnson & Zhang, 2013; Xiao & Zhang,
2014; Wang et al., 2019; Reddi et al., 2016) or drawn with replacement according to the uniform
distribution over [n] (Lei et al., 2017; Fang et al., 2018). Then we proceed with ms inner iterations
by using some gradient estimators with reduced variances. At the t-th inner iteration, we first draw a
batch It ⊆ [n] from the uniform distribution over [n]. The original SVRG (Johnson & Zhang, 2013;
Reddi et al., 2016; Xiao & Zhang, 2014) uses the gradient estimator (we omit the dependency on s)

vt = ∇fIt(wt)−∇fIt(w0) + v0. (4.4)
Recently a different update of gradient estimator is proposed (Nguyen et al., 2017; Fang et al., 2018)

vt = ∇fIt(wt)−∇fIt(wt−1) + vt−1. (4.5)
An important observation is that the variance of vt diminishes to zero as we are approaching the
minimum, which allows us to update the iterate with a constant step size wt+1 = wt − ηvt (John-
son & Zhang, 2013). The framework of stochastic variance-reduced optimization is described in
Algorithm 1 in Appendix D.3. The following theorem gives generalization bounds O(1/(nβ)) for
stochastic variance-reduced optimization, which significantly improves the boundO(1/

√
nβ) based

on (3.4). The proof is given in Appendix D.3.
Theorem 9. Let Assumptions 1 and 2 hold with L ≤ nβ/4. Let A be either the SARAH in Nguyen
et al. (2017) or the SpiderBoost in Wang et al. (2019). We can take O

((
n+ 1/β2

)
log n

)
stochastic

gradient evaluations to get excess generalization boundsO(1/(nβ)). If E[F̂S ] = 0, we takeO
((
n+

1/β2
)

log 1/(βε)
)

stochastic gradient evaluations to get generalization bounds O(ε) for any ε > 0.
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Figure 1: κI versus |I| Figure 2: Testing error versus number of passes

As compared to SGD (Section 4.1), Theorem 9 shows SARAH/SpiderBoost requires significantly
fewer iterations to achieve the same testing errors. This shows a clear advantage of stochastic
variance-reduced optimization over SGD in generalization other than training. Other than SARAH
and SpiderBoost, we also develop generalization bounds for SVRG in Reddi et al. (2016), SCSG in
Lei et al. (2017) (Theorem D.3) and SNVRG-PL in Zhou et al. (2018a) (Theorem D.4).

5 SIMULATIONS AND CONCLUSIONS

Simulations. We report some preliminary experiments to support our theory. We consider the
dataset IJCNN available from the LIBSVM website (Chang & Lin, 2011) and report the average of
experimental results from 25 repetitions. In our first experiment, we aim to check how the condition
σmax(ΣS)/σmin(ΣS) ≤ n/4 would be satisfied in practice. To this aim, we randomly pick a subset
I ⊂ {1, 2, . . . , n} and build an empirical covariance matrix ΣI = 1

|I|
∑
i∈I xix

>
i , where |I| denotes

the cardinality of I . Then we compute the term κI := σmax(ΣI)
σmin(ΣI)|I| . Figure 1 plots the κI as a function

of |I|. It is clear that the condition κI ≤ 1/4 is violated if |I| is small. As |I| increases, κI decreases
and can be as small as 10−3. Then, the condition κI ≤ 1/4 holds trivially for sufficiently large n.

Theorem 1 implies that overfitting would never happen for learning with gradient-dominated func-
tions. Our second experiment aims to verify this phenomenon. We consider a generalized linear
model for binary classification with the loss function f(w; z) =

(
`(w>x) − y

)2
, where ` is the

logistic link function `(a) = (1 + exp(−a))−1. It was shown that the corresponding objective func-
tion is gradient-dominated (Foster et al., 2018). We use 80 percents of the dataset for training and
reserve the remaining 20 percents for testing. We apply SGD with the step size ηt = 1/(1 + 0.001t)
and compute the testing error of {wt} on the testing dataset. In Figure 2, we plot the testing errors
versus the number of passes (iteration number divided by sample size). It is clear that the testing er-
ror continue to decrease along the learning process, and there is no overfitting even after 100 passes
of the dataset. This is well consistent with Theorem 1.

Conclusions. We study stochastic optimization under the PL condition. We show that the general-
ization errors can be bounded byO(1/(nβ)) plus the convergence rate of algorithms. An observation
is that the optimization always helps in generalization under the PL condition. Our analysis based
on a weak on-average stability measure removes the bounded gradient assumption in the literature,
and can imply significantly better bounds. In particular, we show how the interpolation accelerates
the generalization. Our study relies on an essential PL condition on the objective function. While
this assumption is widely used in the non-convex learning setting, it would be very interesting to
extend the discussions here to general non-convex objective functions.
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A STABILITY AND GENERALIZATION

We first give the definition of pointwise hypothesis stability. For any i ∈ [n], denote S\zi =
{z1, . . . , zi−1, zi+1, . . . , zn}.
Definition 5 (Pointwise Hypothesis Stability). We say a randomized algorithm A has pointwise
hypothesis stability ε if for all i ∈ [n] there holds ES,A

[∣∣f(A(S); zi)− f(A(S\zi); zi)
∣∣] ≤ ε.

Theorem A.1 establishes the key connection between the generalization and various stability mea-
sures. Part (a) and part (b) show that the algorithm with either uniform stability or pointwise hypoth-
esis stability generalizes well to testing examples (Bousquet & Elisseeff, 2002). Initially, they were
developed for deterministic algorithms (Bousquet & Elisseeff, 2002), which were then extended to
the setting of randomized algorithms (Elisseeff et al., 2005). Part (c) shows the connection between
the generalization and the on-average stability (Shalev-Shwartz et al., 2010). Note part (b) involves
a square root of 1/δ instead of a log(1/δ).
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Theorem A.1 (Generalization by Stability). Let A be a randomized algorithm.

(a) If A has uniform stability ε, then
∣∣ES,A[FS(A(S))− F (A(S))

]∣∣ ≤ ε.
(b) Let M > 0. If A has pointwise hypothesis stability ε and 0 ≤ f(w; z) ≤M for all w ∈ W and

z ∈ Z . Then for all δ ∈ (0, 1) with probability at least 1− δ

F (A(S)) ≤ FS(A(S)) +
(M2 + 12Mnε

nδ

) 1
2

. (A.1)

(c) If A has on-average stability ε, then ES,A
[
F (A(S))− FS(A(S))

]
≤ ε.

Proof. The proof of Part (a) can be found in Hardt et al. (2016, Theorem 2.2). Part (b) was first
proved for deterministic algorithms (Bousquet & Elisseeff, 2002, Theorem 11), and then extended
to randomized algorithms (Elisseeff et al., 2005, Theorem 12). We prove Part (c) here due to its
simplicity. Since zi and z̃i are drawn from the same distribution, we know

ES,A
[
F (A(S))− FS(A(S))

]
=

1

n

n∑
i=1

ES,S̃,A
[
F (A(S(i)))− FS(A(S))

]
=

1

n

n∑
i=1

ES,S̃,A
[
f(A(S(i)); zi)− f(A(S); zi)

]
,

where the last identity holds since zi is independent of A(S(i)). The proof is complete by noting the
definition of on-average stability.

B PROOF OF THEOREM 1

In this section, we prove Theorem 1. We begin our analysis with some useful properties of smooth
functions. If g is L-smooth, we have the following self-bounding property (Srebro et al., 2010)

‖∇g(w)‖22 ≤ 2L
(
g(w)− inf

w′
g(w′)

)
, ∀w ∈ W (B.1)

and the following elementary inequality for all w, w̃ ∈ W (Nesterov, 2012)

g(w) ≤ g(w̃) + 〈∇g(w̃),w − w̃〉+
L‖w − w̃‖22

2
. (B.2)

In particular, if g is further nonnegative, then
‖∇g(w)‖22 ≤ 2Lg(w), ∀w ∈ W. (B.3)

The following lemma follows directly from the self-bounding property of smooth loss functions.

Lemma B.1. Assume F is L-smooth. Then (w can depend on S)

E[‖∇F (w)‖22] ≤ 2LE
[
F (w)− F̂S

]
.

Proof. Recall w∗ = arg minw∈W F (w). According to the self-bounding property (B.1) and the
definition of w∗ we know

E[‖∇F (w)‖22] ≤ 2LE
[
F (w)− F (w∗)

]
= 2LE

[
F (w)− FS(w∗)

]
≤ 2LE

[
F (w)− F̂S

]
,

where we have used E[FS(w∗)] = F (w∗) since w∗ is independent of S, and F̂S ≤ FS(w∗) due to
the definition of F̂S . The proof is complete.

In the following lemma, we derive the on-average stability bounds under the PL condition. Recall
for any w, we denote by w(S) the Euclidean projection of w onto the set of global minimizers of
FS inW .

Lemma B.2. If Assumptions 1, 2 hold, then A has on-average stability ε satisfying

ε ≤ 2L

nβ

(
E[F̂S ] + E[F (w

(S)
S )]

)
+ E

[
F (wS)− F (w

(S)
S )

]
+ E

[
F̂S − FS(wS)

]
.
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Proof. Let S̃ = {z̃1, . . . , z̃n} be drawn independently from ρ. For each i ∈ [n], let S(i) be defined

in Definition 2. For each i ∈ [n], we denote wS(i) = A(S(i)) and w
(S(i))

S(i) the projection of wS(i)

onto the set of global minimizer of FS(i) . We decompose f(wS(i) ; zi)− f(wS ; zi) as follows

f(wS(i) ; zi)− f(wS ; zi) =
(
f(wS(i) ; zi)− f(w

(S(i))

S(i) ; zi)
)

+
(
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

)
+
(
f(w

(S)
S ; zi)− f(wS ; zi)

)
. (B.4)

We now address the above three terms separately. We first address f(w
(S(i))

S(i) ; zi) − f(w
(S)
S ; zi).

According to the definition of FS , S, S(i), we know

f(w
(S(i))

S(i) ; zi) = nFS(w
(S(i))

S(i) )− nFS(i)(w
(S(i))

S(i) ) + f(w
(S(i))

S(i) ; z̃i).

Since zi and z̃i follow from the same distribution, we know E[f(w
(S(i))

S(i) ; z̃i)] = E[f(w
(S)
S ; zi)] and

further get

E
[
f(w

(S(i))

S(i) ; zi)
]

= nE
[
FS(w

(S(i))

S(i) )
]
− nE

[
FS(i)(w

(S(i))

S(i) )
]

+ E
[
f(w

(S)
S ; zi)

]
.

It then follows that

E
[
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

]
= nE

[
FS(w

(S(i))

S(i) )− FS(i)(w
(S(i))

S(i) )
]

= nE
[
FS(w

(S(i))

S(i) )− inf
w∈W

FS(w)
]
, (B.5)

where we have used the following identity due to the symmetry between zi and z̃i

E[FS(i)(w
(S(i))

S(i) )] = E[F̂S ] = E
[

inf
w∈W

FS(w)
]
.

By the PL condition of FS , it then follows from (B.5) that (in our assumption of PL condition, w may
depend on S. This was also imposed in the literature (Yuan et al., 2019; Charles & Papailiopoulos,
2018; Zhou et al., 2018b). Indeed, the PL condition was often shown for empirical functions FS)

E
[
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

]
≤ n

2β
E
[
‖∇FS(w

(S(i))

S(i) )‖22
]
. (B.6)

According to the definition of w(S(i))

S(i) we know ∇FS(i)(w
(S(i))

S(i) ) = 0 and therefore ((a + b)2 ≤
2a2 + 2b2)

‖∇FS(w
(S(i))

S(i) )‖22 =
∥∥∥∇FS(i)(w

(S(i))

S(i) )− 1

n
∇f(w

(S(i))

S(i) ; z̃i) +
1

n
∇f(w

(S(i))

S(i) ; zi)
∥∥∥2

2

≤ 2

n2
‖∇f(w

(S(i))

S(i) ; z̃i)‖22 +
2

n2
‖∇f(w

(S(i))

S(i) ; zi)‖22

≤ 4L

n2
f(w

(S(i))

S(i) ; z̃i) +
4L

n2
f(w

(S(i))

S(i) ; zi), (B.7)

where we have used the self-bounding property of smooth loss functions (B.3). Since zi and z̃i
follow from the same distribution, we know

E[f(w
(S(i))

S(i) ; z̃i)] = E[f(w
(S)
S ; zi)], E[f(w

(S(i))

S(i) ; zi)] = E[f(w
(S)
S ; z̃i)].

It then follows that

E
[
‖∇FS(w

(S(i))

S(i) )‖22
]
≤ 4L

n2
E[f(w

(S)
S ; zi)] +

4L

n2
E[f(w

(S)
S ; z̃i)],

which, combined with (B.6), gives

E
[
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

]
≤ 2L

nβ

(
E[f(w

(S)
S ; zi)] + E[f(w

(S)
S ; z̃i)]

)
.

Taking a summation of the above inequality for i = 1, . . . , n, we get
n∑
i=1

E
[
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

]
≤ 2L

β

(
E[F̂S ] + E[FS̃(w

(S)
S )]

)
. (B.8)

We then address f(wS(i) ; zi) − f(w
(S(i))

S(i) ; zi). Since wS(i) and w
(S(i))

S(i) are independent of zi, we
know

E
[
f(wS(i) ; zi)− f(w

(S(i))

S(i) ; zi)
]

= E
[
F (wS(i))− F (w

(S(i))

S(i) )
]

= E
[
F (wS)− F (w

(S)
S )

]
, (B.9)

where we have used the symmetry between zi and z̃i.
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Finally, we address f(w
(S)
S ; zi)− f(wS ; zi). By the definition of w(S)

S we know
n∑
i=1

(
f(w

(S)
S ; zi)− f(wS ; zi)

)
= n

(
F̂S − FS(wS)

)
. (B.10)

Plugging (B.8), (B.9) and the above inequality back into (B.4), we derive
n∑
i=1

E
[
f(wS(i) ; zi)− f(wS ; zi)

]
≤ 2L

β

(
E[F̂S ] + E[FS̃(w

(S)
S )]

)
+

nE
[
F (wS)− F (w

(S)
S )

]
+ nE

[
F̂S − FS(wS)

]
.

The proof is complete by recalling the definition of on-average stability and E[FS̃(w
(S)
S )] =

E[F (w
(S)
S )].

We further require a lemma relating the convergence in terms of function values to the convergence
in terms of models. This shows that the PL condition is stronger than a quadratic growth condi-
tion (Karimi et al., 2016).
Lemma B.3 (Karimi et al. 2016). If FS satisfies the PL condition with parameter β > 0. Then for
all w ∈ W we have

E
[
FS(w)− FS(w(S))

]
≥ 2βE[‖w −w(S)‖22]. (B.11)

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Plugging the on-average stability established in Lemma B.2 back into Part (c)
of Theorem A.1, we derive

E
[
F (wS)− FS(wS)

]
≤ 2L

nβ

(
E[F̂S ] + E[F (w

(S)
S )]

)
+

E
[
F (wS)− F (w

(S)
S )

]
+ E

[
F̂S − FS(wS)

]
, (B.12)

from which we derive

E
[
F (w

(S)
S )− F̂S

]
≤ 2L

nβ

(
E[F̂S ] + E[F (w

(S)
S )]

)
. (B.13)

By (B.2), we know the following inequality for all γ > 0

F (wS)− F (w
(S)
S ) ≤ 〈∇F (w

(S)
S ),wS −w

(S)
S 〉+

L

2
‖wS −w

(S)
S ‖

2
2

≤ ‖∇F (w
(S)
S )‖2‖wS −w

(S)
S ‖2 +

L

2
‖wS −w

(S)
S ‖

2
2

≤ 1

4γ
‖∇F (w

(S)
S )‖22 +

(
γ +

L

2

)
‖wS −w

(S)
S ‖

2
2,

where we have used the Cauchy-Schwartz inequality. This together with Lemma B.1 with w = w
(S)
S

implies that

E[F (wS)− F (w
(S)
S )] ≤ L

2γ
E
[
F (w

(S)
S )− F̂S

]
+
(
γ +

L

2

)
E[‖wS −w

(S)
S ‖

2
2].

Plugging (B.13) into the above inequality, we get

E
[
F (wS)− F (w

(S)
S )

]
≤ L

2γ

2L

nβ

(
E[F̂S ] + E[F (w

(S)
S )]

)
+
(
γ +

L

2

)
E[‖wS −w

(S)
S ‖

2
2].

Taking γ = L/2, we then get

E
[
F (wS)− F (w

(S)
S )

]
≤ 2L

nβ

(
E[F̂S ] + E[F (w

(S)
S )]

)
+ LE[‖wS −w

(S)
S ‖

2
2].

Plugging the above inequality back into (B.12), we derive the following inequality

E
[
F (wS)− FS(wS)

]
≤ 4L

nβ

(
E[F̂S ] + E[F (w

(S)
S )]

)
+ LE[‖wS −w

(S)
S ‖

2
2] + E

[
F̂S − FS(wS)

]
.

It then follows that

E
[
F (wS)− F̂S

]
≤ 4L

nβ

(
E[F̂S ] + E[F (w

(S)
S )]

)
+ LE[‖wS −w

(S)
S ‖

2
2]. (B.14)
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Since L ≤ nβ/4, it follows from (B.13) that

E
[
F (w

(S)
S )− F̂S

]
≤ 1

2

(
E[F̂S ] + E[F (w

(S)
S )]

)
and therefore

E
[
F (w

(S)
S )

]
≤ 3E[F̂S ].

We can plug the above inequality back into (B.14) and derive

E
[
F (wS)− F̂S

]
≤ 16LE[F̂S ]

nβ
+ LE[‖wS −w

(S)
S ‖

2
2]. (B.15)

The stated bound then follows from (B.11). The proof is complete.

Our analysis in the proof of Theorem 1 actually gives

E
[
F (wS)− F̂S

]
≤ 8LE[F̂S ]

nβ − 2L
+
LE
[
FS(wS)− F̂S

]
2β

.

Since we assume E[F̂S ] = 0 in Corollary 2, we only need the condition L < nβ/2 to get Corollary
2.

C PROOF OF THEOREM 3 AND THEOREM 4

In this section, we present the proof of Theorem 3 and Theorem 4.

Proof of Theorem 3. Let w̃ be the projection of w(S(i))

S(i) onto the set of global minimizer of FS . Then
by the quadratic growth condition, we know

E
[
FS(w

(S(i))

S(i) )− F̂S
]
≥ β

2
E
[∥∥w(S(i))

S(i) − w̃
∥∥2

2

]
.

This together with (B.5) and non-negativity of f implies
nβ

2
E
[∥∥w(S(i))

S(i) − w̃
∥∥2

2

]
≤ E

[
f(w

(S(i))

S(i) ; zi)
]

= E
[
F (w

(S(i))

S(i) )
]

= E
[
F (w

(S)
S )

]
, (C.1)

where we have used the symmetry between S and S(i). By the realizability condition, we know
almost surely that

f(w
(S)
S ; zi) = f(w̃; zi) = 0

and ∇f(w̃; zi) = 0. It then follows from the smoothness assumption that

E
[
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

]
= E

[
f(w

(S(i))

S(i) ; zi)− f(w̃; zi)
]

≤ E
[
〈w(S(i))

S(i) − w̃,∇f(w̃; zi)〉+
L

2
‖w(S(i))

S(i) − w̃‖22
]

= E
[L

2
‖w(S(i))

S(i) − w̃‖22
]
≤
LE[F (w

(S)
S )]

nβ
.

We can plug (B.9), (B.10) and the above inequality back into (B.4), and derive the following bound
on the on-average stability ε

ε ≤
LE[F (w

(S)
S )]

nβ
+ E

[
F (wS)− F (w

(S)
S )

]
+ E

[
F̂S − FS(wS)

]
.

We then can analyze analogously to the proof of Theorem 1 but using the above stability bound and
get the stated generalization bound. The proof is complete.

Proof of Theorem 4. Similar to (B.7) but using the boundedness of gradients, we know

‖∇FS(w
(S(i))

S(i) )‖22 ≤
4G2

n2
.

We can plug this inequality into (B.6) and derive

E
[
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

]
≤ n

2β

4G2

n2
=

2G2

nβ
.
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Taking a summation of the above inequality gives
n∑
i=1

E
[
f(w

(S(i))

S(i) ; zi)− f(w
(S)
S ; zi)

]
≤ 2G2/β. (C.2)

Plugging (C.2), (B.9) and (B.10) back into (B.4), we derive the following inequality
n∑
i=1

E
[
f(wS(i) ; zi)− f(wS ; zi)

]
≤ 2G2

β
+ nE

[
F (wS)− F (w

(S)
S )

]
+ nE

[
F̂S − FS(wS)

]
≤ 2G2

β
+ nGE

[
‖wS −w

(S)
S ‖2

]
+ nE

[
F̂S − FS(wS)

]
,

where in the last step we have used the inequality F (wS) − F (w
(S)
S ) ≤ G‖wS − w

(S)
S ‖2 due to

the boundedness of gradients. According to the definition of on-average stability, we know that the
on-average stability ε of A satisfies

ε ≤ 2G2

nβ
+GE

[
‖wS −w

(S)
S ‖2

]
+ E

[
F̂S − FS(wS)

]
≤ 2G2

nβ
+
G
(
E
[
FS(wS)− F̂S

]) 1
2

√
2β

+ E
[
F̂S − FS(wS)

]
,

where we have used Lemma B.3. According to Part (c) of Theorem A.1, it follows that

E
[
F (wS)− FS(wS)

]
≤ 2G2

nβ
+
G
(
E
[
FS(wS)− F̂S

]) 1
2

√
2β

+ E
[
F̂S − FS(wS)

]
.

The stated bound then follows directly. The proof is complete.

D PROOFS ON APPLICATIONS

In this section, we prove generalization bounds for various stochastic optimization algorithms.

D.1 STOCHASTIC GRADIENT DESCENT

We consider here SGD. In the following proposition, we establish the variance of stochastic gra-
dients for SGD under the PL condition. The variance was also studied in a general nonconvex
setting (Lei et al., 2020a).
Proposition D.1. Let Assumptions 1, 2 hold. Let {wt}t be the sequence produced by SGD with step
size sequence {ηt}t∈N. If there exists t0 ∈ N such that ηt ≤ β/L2 for all t ≥ t0, then

E[‖∇f(wt; zit)‖22] ≤ 2Lmax{E[FS(wt0)], 2E[F̂S ]} ∀t ≥ t0.

Proof. By (B.2) and the update (4.1), we know

FS(wt+1) ≤ FS(wt) + 〈wt+1 −wt,∇FS(wt)〉+
L‖wt+1 −wt‖22

2

= FS(wt)− ηt〈∇f(wt; zit),∇FS(wt)〉+
Lη2

t ‖∇f(wt; zit)‖22
2

≤ FS(wt)− ηt〈∇f(wt; zit),∇FS(wt)〉+ L2η2
t f(wt; zit),

where we have used (B.3). Taking expectations on both sides we get the following inequality for all
t ≥ t0

E[FS(wt+1)] ≤ E[FS(wt)]− ηtE[‖∇FS(wt)‖22] + L2η2
tE[f(wt; zit)]

≤ E[FS(wt)]− 2ηtβE[FS(wt)− F̂S ] + ηtβE[FS(wt)], (D.1)
where we have used the PL condition and ηt ≤ β/L2 in the last step. It then follows the following
inequality for all t ≥ t0

E[FS(wt+1)] ≤ (1− ηtβ)E[FS(wt)] + ηtβ · 2E[F̂S ] ≤ max
{
E[FS(wt)], 2E[F̂S ]

}
.

Applying this inequality recursively, we derive
E[FS(wt+1)] ≤ max{E[FS(wt0)], 2E[F̂S ]} ∀t ≥ t0.

This together with (B.3) implies the following inequality for all t ≥ t0
E[‖∇f(wt; zit)‖22] ≤ 2LE[f(wt; zit)] ≤ 2Lmax{E[FS(wt0)], 2E[F̂S ]}.

The proof is complete.

18



Published as a conference paper at ICLR 2021

We now prove generalization bounds in Theorem 5. We denote B � B̃ if there exist some constants
c1 and c2 > 0 such that c1B ≤ B̃ ≤ c2B.

Proof of Theorem 5. Let t0 = bL2/β2c. It is clear that ηt ≤ β/L2 for all t ≥ t0. Let σ =

2Lmax{E[FS(w1)], . . . ,E[FS(wt0)], 2E[F̂S ]}. According to the self-bounding property (B.3) and
Proposition D.1, we know that E[‖∇f(wt; zit)‖22] ≤ σ2 for all t ∈ N. The following optimization
error bound was established in Karimi et al. (2016)

E
[
FS(wt+1)− F̂S

]
≤ Lσ2

2tβ2
. (D.2)

We can plug the above inequality into (3.2) with A(S) = wT+1, and get

E
[
F (wT+1)− F̂S

]
≤

16LE
[
F̂S
]

nβ
+
L2σ2

4Tβ3
.

Since
E
[
F̂S
]
≤ E

[
FS(w∗)

]
= F (w∗), (D.3)

we further get

E
[
F (wT+1)

]
− F (w∗) ≤ 16LF (w∗)

nβ
+
L2σ2

4Tβ3
.

By taking T � n/β2, we get E
[
F (wT+1) − F̂S

]
= O(1/(nβ)). This corresponds to O(n/β2)

stochastic gradient evaluations. The proof is complete.

Lemma D.2. Assume FS satisfies the restricted secant inequality with parameter β. Let A be SGD
with the step size sequence ηt = 1/(β(t+ 1)). Then there exists some σ ∈ R such that

E
[
‖wT −w

(S)
T ‖

2
2

]
≤ σ2/(β2T ).

Proof of Lemma D.2. Analogous to the proof of Theorem 5, we can find σ ∈ R+ such that
E[‖∇f(wt; zit)‖22] ≤ σ2 for all t ∈ N. Since w

(S)
t+1 is a projection of wt+1 onto the set of global

minimizer of FS , we know
‖wt+1 −w

(S)
t+1‖22 ≤ ‖wt+1 −w

(S)
t ‖22 = ‖wt − ηt∇f(wt; zit)−w

(S)
t ‖22

= ‖wt −w
(S)
t ‖22 + η2

t ‖∇f(wt; zit)‖22 + 2ηt〈w(S)
t −wt,∇f(wt; zit)〉.

Taking an expectation and using E[‖∇f(wt; zit)‖22] ≤ σ2, we derive

E
[
‖wt+1 −w

(S)
t+1‖22

]
≤ E

[
‖wt −w

(S)
t ‖22

]
+ η2

t σ
2 + 2ηtE

[
〈w(S)

t −wt,∇FS(wt)〉
]

≤ E
[
‖wt −w

(S)
t ‖22

]
+ η2

t σ
2 − 2ηtβE

[
‖wt −w

(S)
t ‖22

]
= (1− 2ηtβ)E

[
‖wt −w

(S)
t ‖22

]
+ η2

t σ
2,

where we have used the restricted secant inequality. For the step size ηt = 1/(β(t+ 1)), we have

E
[
‖wt+1 −w

(S)
t+1‖22

]
≤ t− 1

t+ 1
E
[
‖wt −w

(S)
t ‖22

]
+

σ2

β2(t+ 1)2
.

Multiplying both sides by t(t+ 1), we derive

t(t+ 1)E
[
‖wt+1 −w

(S)
t+1‖22

]
≤ (t− 1)tE

[
‖wt −w

(S)
t ‖22

]
+
σ2

β2
.

Taking a summation of the above inequality from t = 1 to T − 1 gives
(T − 1)TE

[
‖wT −w

(S)
T ‖

2
2

]
≤ σ2(T − 1)/β2.

The proof is complete.

Proof of Theorem 6. It was shown that functions satisfying restricted secant inequality with parame-
ter β also satisfies the PL condition with parameter β/L (Karimi et al., 2016). Therefore (B.15) holds
with β there replaced by β/L. According to Lemma D.2, we know E

[
‖wT −w(S)

T ‖22
]
≤ σ2/(β2T ).

We can plug this inequality back into (B.15) with A(S) = wT+1, and get

E
[
F (wT+1)

]
− F (w∗) = O

(F (w∗)

nβ
+

1

β2T

)
,

where we have used (D.3). By taking T � n/β, we get E
[
F (wT+1)

]
−F (w∗) = O(1/(nβ)). This

corresponds to O(n/β) stochastic gradient evaluations. The proof is complete.
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Proof of Theorem 7. Let η = β/L2. According to the assumption E[F̂S ] = 0 and (D.1), we know
E[FS(wt+1)] ≤ E[FS(wt)]− 2ηβE[FS(wt)] + ηβE[FS(wt)] =

(
1− ηβ

)
E[FS(wt)]. (D.4)

Applying this inequality recursively, we get E[FS(wT+1)] ≤ (1 − ηβ)TE[FS(w1)]. We can plug
the above inequality back into (3.2) with A(S) = wT+1 and get

E[F (wT+1)] ≤ LE[FS(wT+1)]

2β
≤ L(1− β2/L2)T

2β
E
[
FS(w1)

]
≤ L exp(−β2T/L2)

2β
E
[
FS(w1)

]
,

where we have used the elementary inequality
1− a ≤ exp(−a). (D.5)

To achieve E[F (wT+1)] ≤ ε, we can take T such that
exp

(
− β2T/L2

)
� εβ ⇐⇒ T � β−2 log(1/(βε)).

The proof is complete.

D.2 RANDOMIZED COORDINATE DESCENT

We prove here the generalization bounds for randomized coordinate descent. We further assume that
the gradient is coordinate-wise Lipschitz continuous in the sense that

FS(w + αei) ≤ FS(w) + α∇iFS(w) + Lα2/2, ∀α ∈ R,w ∈ Rd, i ∈ [d].

Proof of Theorem 8. According to Theorem 3 in Karimi et al. (2016), we know

E
[
FS(wT+1)− F̂S

]
≤
(

1− β

dL

)T
E
[
FS(w1)− F̂S

]
. (D.6)

Plugging the above inequality back into (3.2) and using (D.3), we get

E[F (wT+1)]− F (w∗) ≤
16LE

[
F̂S
]

nβ
+

L

2β

(
1− β

dL

)T
E[FS(w1)]

= O
(F (w∗)

nβ

)
+O

( 1

β
exp

(
− βT

dL

))
,

where we have used (D.5). To achieve the excess generalization bounds O(1/(nβ)), we require T
satisfying

exp
(
− βT

dL

)
� n−1 ⇐⇒ T � d log n

β
.

If E[F̂S ] = 0, then it follows from (3.2), (D.6) and (D.5) that

E[F (wT+1)] ≤ L

2β
exp

(
− Tβ

dL

)
E[FS(w1)].

To achieve the generalization bound ε, we require T satisfying

exp
(
− Tβ

dL

)
� βε ⇐⇒ T � β−1d log 1/(βε).

The proof is complete.

D.3 STOCHASTIC VARIANCE-REDUCED OPTIMIZATION

We prove here generalization bounds for various stochastic variance-reduced optimization algo-
rithms. We formulate the framework in Algorithm 1.

Algorithm 1: Stochastic Variance Reduced Optimization

Input: step size η, initialization w̃0, {ms}
1 for s = 1, 2, . . . do
2 set w0 = w̃s−1

3 draw a batch Ĩs ⊆ [n]
4 compute v0 = ∇fĨs(w0)

5 update w1 = w0 − ηv0

6 for t = 1, . . . ,ms − 1 do
7 draw a batch It ⊆ [n]
8 compute vt by either (4.4) or (4.5)
9 update wt+1 = wt − ηvt

10 set w̃s as wis , where is is drawn according to a distribution on [ms]

11 choose the output from {w̃s} according to some strategy
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We now consider the stochastic variance-reduced gradient descent (SVRG) (Reddi et al., 2016) and
stochastically controlled stochastic gradient (SCSG) (Lei et al., 2017).
Theorem D.3. Let Assumptions 1 and 2 hold with L ≤ nβ/4. Let A be either the SVRG in Reddi
et al. (2016) or the SCSG in Lei et al. (2017). Then we can take O

((
n + n

2
3 /β

)
log n

)
stochastic

gradient evaluations to get excess generalization bounds O(1/(nβ)). Furthermore, if E[F̂S ] = 0,
then we can take O

((
n + n

2
3 /β

)
log 1/(βε)

)
stochastic gradient evaluations to achieve the gener-

alization bound O(ε) for any ε > 0.

Proof. To achieve E[FS(A(S))− F̂S ] ≤ 2/n, it was shown that SVRG and SCSG requires O
((
n+

n
2
3 /β

)
log n

)
stochastic gradient evaluations (Reddi et al., 2016; Lei et al., 2017). We plug this

optimization error bound into Theorem 1 and get E[F (A(S))]− F (w∗) = O(1/(nβ)).

We now consider the case E[F̂S ] = 0. According to (3.2), to achieve generalization bound O(ε), it
suffices that E[F (A(S))−F̂S ] = O(βε). This can be achieved by takingO

((
n+n

2
3 /β

)
log 1/(βε)

)
stochastic gradient evaluations (Reddi et al., 2016; Lei et al., 2017). The proof is complete.

We now present the proof of Theorem 9 on the behavior of the stochastic recursive gradient algo-
rithm (SARAH) (Nguyen et al., 2017) and SpiderBoost (Wang et al., 2019).

Proof of Theorem 9. To achieve E[FS(A(S)) − F̂S ] ≤ 2/n, it was shown that SARAH and Spi-
derBoost requires O

((
n+ 1/β2

)
log n

)
stochastic gradient evaluations (Nguyen et al., 2017; Wang

et al., 2019). We plug this optimization error bound into Theorem 1 and get E[F (A(S))]−F (w∗) =
O(1/(nβ)).

We now consider the case E[F̂S ] = 0. According to (3.2), to achieve generalization bound O(ε), it
suffices that E[F (A(S))− F̂S ] = O(βε). This can be achieved by takingO

((
n+1/β2

)
log 1/(βε)

)
stochastic gradient evaluations (Nguyen et al., 2017; Wang et al., 2019). The proof is complete.

Finally, we consider SNVRG-PL (Zhou et al., 2018a).
Theorem D.4. Let Assumptions 1 and 2 hold with L ≤ nβ/4. Let A be the SNVRG-PL in Zhou
et al. (2018a). Then we can take O

((
n +
√
n/β

)
log4 n

)
stochastic gradient evaluations to get

excess generalization bounds O(1/(nβ)). Furthermore, if E[F̂S ] = 0, then we can take O
((
n +√

n/β
)

log4 1
βε

)
stochastic gradient evaluations to achieve the generalization bound O(ε) for any

ε > 0.

Proof. To achieve E[FS(A(S)) − F̂S ] ≤ 2/n, it was shown that SNVRG-PL requires O
((
n +√

n/β
)

log4 n
)

stochastic gradient evaluations (Zhou et al., 2018a). We plug this optimization error
bound into Theorem 1 and get E[F (A(S))]− F (w∗) = O(1/(nβ)).

We now consider the case E[F̂S ] = 0. According to (3.2), to achieve generalization bound
O(ε), it suffices that E[F (A(S)) − F̂S ] = O(βε). This can be achieved by taking O

((
n +√

n/β
)

log4 1/(βε)
)

stochastic gradient evaluations (Zhou et al., 2018a). The proof is com-
plete.

E DISCUSSIONS OF EXAMPLES

In this section, we present some discussions on understanding the assumption L/β < n/2 in Theo-
rem 2.

E.1 DISCUSSION OF EXAMPLE 1

We first give the definition of strong convexity. For any differentiable function g : W 7→ R, we say
g is σ-strongly convex if for any w,w′ ∈ W there holds

g(w′) ≥ g(w) + 〈w′ −w,∇g(w)〉+
σ

2
‖w −w′‖22.
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Introduce g : Rn 7→ R+ by g(v) = 1
n

∑n
i=1 `(vi, yi). Then the function FS can be written as

FS(w) =
1

n

n∑
i=1

`(〈w, φ(xi)〉, yi) = g(Aw),

where A =
(
φ(x1), . . . , φ(xn)

)> ∈ Rn×m is the matrix formed from the data. It is known that if g
is σg-strongly convex, then FS satisfies the PL condition (Karimi et al., 2016; Necoara et al., 2018)

FS(w)− F̂S ≤
1

2σg
(
σ′min(A)

)2 ‖∇FS(w)‖22. (E.1)

Since ` is σ`-strongly convex we know for any v,v′ ∈ Rn

g(v′) =
1

n

n∑
i=1

`(v′i, yi) ≥
1

n

n∑
i=1

`(vi, yi) +
1

n

n∑
i=1

`′(vi, yi)(v
′
i − vi) +

σ`
2n

n∑
i=1

(vi − v′i)2

= g(v) + 〈∇g(v),v′ − v〉+
σ`
2n
‖v′ − v‖22. (E.2)

That is, g is σ`
n -strongly convex. This together with (E.1) shows that

FS(w)− F̂S ≤
n

2σ`
(
σ′min(A)

)2 ‖∇FS(w)‖22 =
1

2σ`σ′min(ΣS)
‖∇FS(w)‖22, (E.3)

where we have used
1

n

(
σ′min(A)

)2
=

1

n
σ′min(A>A) = σ′min(ΣS). (E.4)

For any v,v′ ∈ Rn, it follows from the L`-strong smoothness of ` that

‖∇g(v)−∇g(v′)‖22 =
1

n2

n∑
i=1

∣∣`′(vi, yi)− `′(v′i, yi)∣∣2 ≤ L2
`

n2

n∑
i=1

|vi − v′i|2 =
L2
`

n2
‖v − v′‖22.

That is, g is L`
n -smooth. It then follows

‖∇FS(w)−∇FS(w′)‖2 =
∥∥A>∇g(Aw)−A>∇g(Aw′)

∥∥
2
≤ σmax(A)‖∇g(Aw)−∇g(Aw′)‖2

≤ L`σmax(A)

n
‖A(w −w′)‖2 ≤

L`σ
2
max(A)

n
‖w −w′‖2.

This together with (E.4) shows (σ′min replaced by σmax)
‖∇FS(w)−∇FS(w′)‖2 ≤ L`σmax(ΣS)‖w −w′‖2. (E.5)

It is reasonable to assume that L is of the order of the smoothness of FS . In this case, it follows
from (E.3) and (E.5) that empirical counterpart of L/β is of the order of σmax(ΣS)/σ′min(ΣS).

E.2 DISCUSSION OF EXAMPLE 2

We recall some notations in Example 2. Consider single-hidden-layer neural networks with d inputs,
m hidden neurons and a single output, for which the prediction function takes the form hv,w =∑m
k=1 vkφ

(
〈wk, x〉

)
. Here wk ∈ Rd and vk ∈ R denote the weight of the edges connecting the

k-th hidden node to the input and output node, respectively, while φ : R 7→ R is the activation
function. We fix v with |vk| = a for some a > 0 and train w = (w1,w2, . . . ,wm)> ∈ Rm×d from

S. Note we only use the PL condition FS(w)− F̂S ≤ 1
2β ‖∇FS(w)‖22 for w = w

(S(i))

S(i) in the proof

of Theorem 1 (only in (B.6)). We fix w = w
(S(i))

S(i) here. Analogous to Soltanolkotabi et al. (2019),

we define the Jacobian matrix J =
(
J1, J2, . . . , Jn

)
∈ Rmd×n at w = w

(S(i))

S(i) with

Jj =

 v1φ
′(w>1 xj)xj

...
vmφ

′(w>mxj)xj


and rj = v>φ(wxj)− yj for j ∈ [n]. It was shown that (Soltanolkotabi et al., 2019)

∇FS(w) =
1

n
Jr, for r = (r1, . . . , rn)>, (E.6)

and therefore
‖∇FS(w)‖22 =

1

n2
r>J>Jr =

1

n2
r>
(
J>j Jj′

)
j,j′∈[n]

r.
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According to the definition Jj , we know

J>j Jj′ =
(
v1φ
′(w>1 xj)x

>
j , . . . , vmφ

′(w>mxj)x
>
j

) v1φ
′(w>1 xj′)xj′

...
vmφ

′(w>mxj′)xj′


= a2

m∑
k=1

φ′(w>k xj)φ
′(w>k xj′)x

>
j xj′ .

It then follows that

J>J = a2
m∑
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>)� (XX>), (E.7)

where X = (x1, . . . , xn)> ∈ Rn×d is the data matrix and � denotes the Hadamard (entry-wise)
product of matrices. According to the definition of r, we know FS(w) = 1

n‖r‖
2
2. Then, it follows

from (E.6) and (E.7) that

‖∇FS(w)‖22 =
a2

n2
r>
( m∑
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>)� (XX>)
)
r

≥ a2

n2
σmin

( m∑
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>)� (XX>)
)
‖r‖22

=
a2

n
σmin

( m∑
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>)� (XX>)
)
FS(w).

That is, we can take the parameter of the PL condition as

β =
a2

2n
σmin

( m∑
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>)� (XX>)
)
.

It is reasonable to assume that L is of the order of a2

n σmax

(∑m
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>) �
(XX>)

)
(Soltanolkotabi et al., 2019). In this case, we have the empirical counterpart of L/β is of

the order of
σmax

(∑m
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>)� (XX>)
)

σmin

(∑m
k=1

(
φ′(Xwk)

(
φ′(Xwk)

)>)� (XX>)
) .

If we consider the identify activation function, i.e., φ(t) = t, then it follows from the definition of
ΣS that

L/β �
σmax

(
XX>

)
σmin

(
XX>

) =
σmax

(
ΣS
)

σmin
(
ΣS
) .
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