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ABSTRACT

The paper studies the convergence properties of a zero-order multidimensional
stochastic optimization algorithm with a constant step-size. An estimate of the
finite time convergence error is given. The operation of the algorithm is illustrated
by the simulation of the spacecraft spatial position adjustment within a satellite
constellation, which is relevant in controlling the orientation of an interferometric
mega-constellation space telescope under conditions of uncertainty.

1 INTRODUCTION

Algorithm can be used with two possible step size selection strategies: a constant step size strategy
and an adaptive step size. Initially, the works considered an algorithm with a variable step size.
Choosing the step size is also a major challenge. In practice, the step size affects the accuracy. The
algorithm SPSA allows to solve many problems in different areas where optimization of a function
of a large number of parameters is required and when it is expensive to calculate the objective
function for a long time. SPSA is used for study of variational quantum algorithms Periyasamy et al.
(2024), in Experimental verification of active oscillation controller for vehicle drivetrain Yonezawa
et al. (2024) , The properties of the algorithm are still being researched Zago et al. (2024) and
the algorithm is developing and shows its advantages when compared with others Dieleman et al.
(2024) the algorithm is used in optimization of CO2 flooding for Enhanced Oil Recovery Liu et al.
(2024) also for tuning for flight control system of morphing arm octorotor Kose (2024) Since the
level of interference and its statistic properties is not known in advance, a constant step-size could
be considered as a better option to achieve a globally optimal solution.

2 PROBLEM STATEMENT

Consider the problem of minimizing a differentiable with respect to x function.

f(x) := Ew [F (w, x)] =

∫
Rp

F (w, x)Pw(dw), (1)

where F (w, x) is some penalty function (loss function) on the set Rp × Rd → R1, {wn} -
uncontrolled sequence of p-dimensional random variableswn (perturbations) with the same (maybe)
unknown distribution Pw(·) with compact support W = supp(Pw(·)) ⊂ Rp. Here and below E is
a symbol of mathematical expectation. Let x1, x2, . . . , xN be a sequence of measurement points
(observation plan selected or controlled by the experimenter), in which at each moment of time
n = 1, 2, . . . , N the value of the function F (wn, xn) with noise:

yn = F (wn, xn) + vn, (2)

where vn is additive observation noise.

Problem: using available observations, it is necessary to construct a sequence of estimates θ̂n of the
unknown vector θ that minimizes the function f(x). To solve the problem, we will use an iterative
algorithm with two dimensions.
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Let the trial simultaneous disturbance ∆n, n = 1, 2, . . . N — observable (set or user-controlled)
sequence independent random vectors from Rd with known distribution functions Pn(·) — and
specified vector functions Kn(·) : Rd → Rd, satisfy the conditions∫

Kn(x)Pn(dx) = 0,

∫
Kn(x)x

TPn(dx) = I, (3)

sup
n

∫
∥Kn(x)∥2Pn(dx) <∞, n = 1, 2, . . . N. (4)

Let Fn−1 be the σ-algebra of all probabilistic events which happened during time interval n − 1
before start of time interval n. Hereinafter EFn−1

is a symbol of the conditional mathematical
expectation with respect to the σ-algebra Fn−1, E is a symbol of the mathematical expectation. The
minimum point θ of function

f(θ) = EFn−1
F(·, θ) → min

θ

needs to be estimated.

More precisely, using the observations y1, y2, . . . , yn and inputs θ1, θ2, . . . , θn, construct an estimate
θ̂n of an unknown vector θ minimizing the time-varying mean-risk functional.

2.1 ASSUMPTIONS

Let us formulate Assumptions about disturbances and functions f(θ), F (·, θ).
Assumption 1. For n = 1, 2, . . . N , the successive differences v̄n = v+n − v−n of observation noise
are bounded: |v̄n| ≤ cv < ∞, or Ev̄2n ≤ c2v if a sequence {vn} is random, where v+n , v−n are
observation noises occurred during the same time interval n but at different time instants.
Assumption 2. Function f(·) have unique minimum point θ∗ and ∀θ ⟨θ − θ∗,EFn−1

∇F(·, θ)⟩ ≥
µ∥θ − θ∗∥2 with a constant µ > 0. Here and further ⟨·, ·⟩ is a scalar product of two vectors.
Assumption 3. The gradient ∇f is uniformly bounded in the mean-squared sense at the minimum
points θ∗ : E∥∇f(θ∗)∥2 ≤ g2

Assumption 4. The gradient ∇F(·, θ) satisfies the Lipschitz condition: ∀θ′, θ′′

∥∇F(·, θ′)−∇F(·, θ′′)∥ ≤M∥θ′ − θ′′∥
with a constant M ≥ µ.
Assumption 5. ∀n ≥ 1 random vector ∆n does not depend on w̄n, random vectors w̄n,∆n do
not depend on w̄1, . . . , w̄n−1; if {v̄n} are random variables, then w̄n,∆n also do not depend on
v̄1, . . . , v̄n.

3 STOCHASTIC OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION

3.1 ALGORITHM

In case of presence of systematic error in the model a method should be chosen that gives unbiased
estimates under these conditions. A stochastic approximation method, based on SPSA algorithm
introduced by Spall Spall (1992), is capable of providing estimates under an unknown-but-bounded
noise Granichin & Amelina (2015). In case the noise is random the knowledge of distribution
and its parameters is not required, apart from upper bound of the second raw moment, to provide
efficient estimates of the required variable. If the noise is not random it is only required to know an
upper bound on the difference of subsequent noise values. Such variety in possible noise is caused
by the usage of the randomized input ∆n which is required to be independent of the noise. This
property allows to cancel the bias induced by external disturbance when estimating the mathematical
expectation of the parameter deviation. It should be noted that in theory it is not always easy to prove
the required independence of the randomized input and the noise. However, in practice it is quite
reasonable to assume the independence of the generated random values and external disturbances
affecting the considered object.

Let’s choose an arbitrary initial estimate vector θ̂0 ∈ Rd and scalar parameters α, β for an iterative
algorithm
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x+n = θ̂n−1 + β∆n, x

−
n = θ̂n−1 − β∆n

y+n = F (w+
n , x

+
n ) + v+n , y

−
n = F (w−

n , x
−
n ) + v−n

θ̂n = θ̂n−1 − α
2βKn(∆n)(y

+
n − y−n ),

(5)

where θ̂n is the estimate of true vector of parameters θ, θ+n and θ−n are the disturbed estimates, y+n and
y−n are the noised measurements with noises v+n and v−n respectively, ∆n ∈ Rd is the randomized
vector, Kn(·) are vector functions specified above equation 3-equation 4, α and β are the algorithm
parameters. Elements of random perturbation vectors ∆n are chosen randomly +1 or −1 with equal
probability.

4 ANALYSIS OF CONVERGENCE OF ESTIMATES

To analyze the convergence of algorithm estimates (5) the method from Polyak (1976) is used,
similar to the second Lyapunov method in stability theory. For the Lyapunov function we choose

V (θ̂n−1) =
1

2
∥θ̂n−1 − θ∥2. (6)

Let us list the main conditions Theorems 1-3 from Polyak (1976), the fulfillment of which must be
verified.
(a) The iterative process has a Markov character, i.e. the distribution of the random vector Yn
depends only on θ̂n−1 and n:

Yn = Gn(w̄n, θ̂n−1). (7)
For the algorithm (5) we have

E{Gn(w̄n, θ̂n−1)} = E{Kn(∆n)
y+n − y−n
(2β)

|Fn−1}. (8)

(b) V (θ̂n−1) — non-negative, inf V (θ̂n−1) = 0, V (θ̂n−1) — is differentiable, and its gradient
satisfies the Lipschitz condition:

∥∇V (x)−∇V (θ)∥ ≤ L∥x− θ∥

(c) Pseudogradient condition:

⟨∇V (θ̂n−1),E{Gn(w, θ̂n−1)}⟩ ≥ δnV (θ̂n−1)− γn, δn > 0, γn ≥ 0 (9)

For the algorithm (5), taking into account the Lyapunov function chosen in the form (6), the follow-
ing expression is obtained:

⟨∇V (θ̂n−1),E{Gn(w, θ̂n−1)}⟩ = ⟨θ̂2n−2 − θ,E{Kn(∆n)
y2n − y−n
(2β)

|Fn−1}⟩ (10)

Considering that
yn = F (wn, xn) + vn (11)

y+n = F (w+
n , x

+
n ) + v+n (12)

y−n = F (w−
n , x

−
n ) + v−n (13)

x+n = θ̂n−1 + β∆n (14)

x−n = θ̂n−1 − β∆n (15)

y+n = F (w+
n , θ̂n−1 + β∆n) + v+n (16)

y−n = F (w−
n , θ̂n−1 − β∆n) + v−n (17)

let’s rewrite E{Gn(w, θ̂n−1)} in the form:

E{Gn(w, θ̂n−1)} = E{Kn(∆n)
F (w+

n , θ̂n−1 + β∆n) + v+n − F (w−
n , θ̂n−1 − β∆n)− v−n

(2β)
|Fn−1} (18)
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4.1 MAIN RESULT

To provide estimates of the expected discrepancy between the system state vector and its estimates
obtained via algorithm equation 5 we use Theorem 1 from Polyak (1976). To utilize the theorem, 6
propositions given inside the proof below have to be met. We show that they follow from assump-
tions 1–5. Let us introduce the following notation:

ν = α

(
0.5− µ− LαCτ

2

)
, ϕ = αγ +

L

2
α2Cσ, γ = 0.5 (C1β)

2
, ψ =

ϕ

ν

HereCτ , Cσ could be chosen to satisfy inequation E∥ 1
2β (f(θ+β∆n)+v

+
n −f(θ−β∆n)−v−n )∥2 ≤

Cσ+Cτ∥θ−θ∥2 andC1 ≥
∫
∥Kn(x)∥M∥x∥2Pn(dx) and α chosen to satisfy following conditions:

0 ≤ α ≤ 4µ− 2

LCτ
, α ≤

2µ− 1−
√
(2µ− 1)2 − 2LCτ

LCτ

α ≥
2µ− 1 +

√
(2µ− 1)2 − 2LCτ

LCτ
.

(19)

Theorem 1. Let Assumptions 1–5 and conditions for kernels K equation 3-equation 4 and α equa-
tion 19 be satisfied. Set θ̂0, choose interval size parameter k

E{∥θ̂n − θ∥2} ≤ E{∥θ̂0 − θ∥2}(1− νi)
n + ψ(1− (1− νi)

n). (20)
Proof 1. To analyze the convergence of the algorithm equation 5 estimates, a method from Polyak
(1976) is used. Choose

V (θ̂n) =
1

2
∥θ̂n − θ∥2 (21)

as Lyapunov function. To prove the theorem equation 20 is true it is sufficient to show the following
six propositions are satisfied.
Proposition 1. The iterative process Yn, which defines the direction of the estimate change, is a
Markov process, i.e. the distribution of the random vector Yn depends only on θ̂n and n:

Yn =
1

2β
Kn(∆n)(y

+
n − y−n ) (22)

For algorithm equation 5 we have

E{Yn} = E{Kn(∆n)
y+n − y−n

2β
|Fn−1}, (23)

where the right-hand side depends only on θ̂n and n in the sense that ∆n does not depend on any
other random variables. Proposition is true.

Proposition 2. V (θ̂n) ≥ 0, inf V (θ̂n) = 0, V (θ̂n) has first-order derivative, and its gradient
satisfies Lipshitz condition:

∥∇V (x)−∇V (θ)∥ ≤ L∥x− θ∥ ∀x, θ ∈ Rd.

The proposition is valid due to the choice of Lyapunov function equation 21.
Proposition 3. Pseudo-gradient condition:

⟨∇V (θ̂n),E{Yn}⟩ ≥ δnV (θ̂n)− γn, δn > 0, γn ≥ 0. (24)

At first consider E{Yn}. Due to equation 5 pseudo-gradient equation 22 after using Assumption 5
becomes

E{Yn} = E{Kn(∆n)
1

2β

(
f(θ+n )− f(θ−n )

)
|Fn−1} (25)

Consider the expression under mathematical expectation. Using Taylor series representation it
could be written as:

1

2
∇f(θ̂n) +

1

2β

∫
Kn(x)x

T

∫ 1

0

(
∇xF (·, θ̂n + tβx)−∇xF (·, θ̂n)

)
dtPn(dx)+

+
1

2
∇f(θ̂n)−

1

2β

∫
Kn(x)x

T

∫ 1

0

(
∇xF (·, θ̂n − tβx)−∇xF (·, θ̂n)

)
dtPn(dx)
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Estimate absolute value of the sum of integral elements in the obtained expression. After using equa-
tion 3, Assumption 4 we get

|
∫
(·)Pn(dx)|+ |

∫
(·)Pn(dx)| ≤

2β2

2β

∫
∥Kn(x)∥∥x∥M∥x∥Pn(dx) ≤ C1β. (26)

Substitute the estimate, elements containing gradients of Fn and equation 21 into equation 24,
regard the relation

∫
(·)Pn(dx) ≥ −|

∫
(·)Pn(dx)| and Cauchy–Bunyakovsky–Schwarz inequality:

⟨θ̂n − θ,E{Yn}⟩ ≥ ⟨θ̂n − θ,∇f(θ̂n)⟩ − ∥θ̂n − θ∥C1β.

Apply Assumption 2 and estimate ∥θ̂n − θ∥C1β ≤ 1
2 (∥θ̂n − θ∥2 + (C1β)

2) :

⟨θ̂n − θ,E{Yn}⟩ ≥ (2µ− 1)
1

2
∥θ̂n − θ∥2 − 1

2
C2

1β
2

Proposition is true for µ > 1/2.
Proposition 4.

E{∥Yn∥2} ≤ σ2
n + τV (x), σn ≥ 0, τn ≥ 0.

Using equation 4, Cauchy–Bunyakovsky–Schwarz inequality, Assumptions 1 and 3 it could be shown
that

E{∥Yn∥2} ≤ 1

2
sup
x

Kn(x)
2E{(v+n )2 + (v−n )

2|Fn−1}+

+

∫ (
f(θ̂+n )− f(θ̂−n )

)2

∥Kn(x)∥2Pn(dx) ≤ C2β
2(∥θ̂n−1 − θ∥2) + C3β

4 + C4v̄
2
n

Proposition holds true with τ = 2C2β
2, σ2

n = C3β
4 + C4v̄

2
n.

Proposition 5. EV (θ̂0) <∞.

Proposition is valid due to arbitrariness of initial approximation θ̂0 choice and an assumption re-
garding final order of the external disturbance W affecting the system and thus the final order of
the system state vector.
Proposition 6. 0 ≤ ν ≤ 1;

∑
n ν = ∞, n→ ∞

The first inequality could be met by choice of α and the second one is true since ν is constant.
Proposition is true. The fulfillment of the given propositions allow to prove the theorem using the
result in Polyak (1976).

Remark 1. After the algorithm converges the parameter estimates θ̂n continue to fluctuate around
the true parameter value θ.

5 APPLICATION FOR ORIENTATION IMPROVEMENT OF INTERFEROMETRIC
MEGA-CONSTELLATION SPACE TELESCOPE

The main tasks of the telescope are: to collect radiation that falls on the mirror system, with mini-
mal losses, and also obtain the most accurate image of the object. If the radiation is collected with
significant errors, then the image will be disturbed. An important and time-consuming part of im-
age acquisition is the precise tuning of the radio telescope antenna (or systems consisting of such
antennas). The quality of the image obtained on a radio telescope directly depends on the quality
of the construction of a reflecting system of mirrors that focuses the radiation coming from outside.
To improve the image quality, it is necessary to focus the radiation of the device in such a way that
it works as accurately as possible, especially if it is located in space. Conventional antenna tuning
algorithms are sufficient. However, they lose their effectiveness under uncontrolled unpredictable
external influences such as deformations of the radio telescope shields that arise due to environmen-
tal influences e.g. temperature changes, wind etc. Moreover, if we consider an autonomous system
representing a grouping of spacecraft, the relevance of the approach used is obvious. In particular,
the SPSA algorithm can be applied to improve the orientation of a megaconstellation interferometric
space telescope such as Knapp et al. (2024)
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One of the ways to solve such a problem is using of randomized stochastic approximation algorithms
Granichin et al. (2021).

The main criterion for efficiency is the recording power of the desired signal and the time required
for the parameters adjustment.

The antenna segments can be set to the optimal position to improve the quality of image recording.
Consider an irradiator (radiation generator), a receiver and a mirror system of a radio telescope,
consisting of identical plates that reflect the incoming signal i = 1 . . .K. Radiation is created in the
irradiator, falls on the plates and is focused in the receiver. Let’s consider time intervals of duration
δ, n is the index of the time interval. Assume the following parameters are known:
1) the position (orientation) of each i-th plate, which is specified by the vector of parameters
(ai, bi, ci)

T , where ai is the rotation angle of the i-th reflective element horizontally; bi is the
vertical rotation angle, ci is the forward horizontal displacement of the i-th reflecting element.
Let θn be a vector that contains all parameters of the mirror system in a given time interval n,
θn = (a1, a2, ..., aK , b1, b2, ..., bK , c1, c2, ..., cK)T ,
2) radiation coming from each mirror zi(t), which depends on parameters ai, bi, ci,
3) the common signal coming from all mirrors to the receiver Z(θ, t) =

∑
i=1...K zi(t),

4) characteristics of the signal in the generator.

The front of a signal is the sum of harmonics with different phases from a certain direction. The
perfect placement of the plates brings all radiation from the objects into focus. The signal is obtained
as a sum of sine waves with different phases. Different zi arrive at different times with different
phases.

Let us evaluate the difference between the signals from an ideal antenna and from a real one (with
deformations). Signals reflected from ideal mirror segments will have the same phase ϕi (ϕ1 =
ϕ2 = · · · = ϕK). The signals from segments with deformations will look like this:

z1 = sin (ωt+ ϕ1), z2 = sin (ωt+ ϕ2), . . . zK = sin (ωt+ ϕK) (27)

The objective function of the problem (F (θ) is the signal power) is defined as follows:

F (θ) =

∫ δ

0

|Z(θ, t)|2dt. (28)

We maximize the objective function:
F (θ) → max

θ
(29)

We consider the problem of optimizing the position of mirrors in the limit over time (not over a
specific time interval).

The reflective elements of the antenna are made exactly the same, so they provide equivalent obser-
vations in all directions.

At the same time, if one moves along an ideal reflective surface, its local characteristics change.
Therefore, a real reflective surface composed of identical elements will repeat deviations from the
ideal surface from element to element. These deviations will be greater, if the shape of the surface
of the element differs from the shape of that portion of the ideal surface which this element should
represent. If the size of the reflective elements increases, then the deviations naturally increase.
These deviations comprise an error distributed over the reflector of a variable profile antenna, which,
at large values, creates unacceptable distortions reducing the efficiency of the antenna. We will call
vn the signal power measurement errors arising due to unknown and uncontrolled deformations in
the reflective elements of the antenna caused by weather, wind, and temperature changes.

After conventional procedures for adjusting the inclination angles and positions of the radio tele-
scope mirrors, we obtain an initial approximation θ̂0 of the mirror system parameters. Then there
is still a necessity of tuning in a certain neighborhood of θ̂0 to obtain the optimal value θ⋆ corre-
sponding to the maximum power of the received signal. For adjustment, we could use a stochastic
optimization algorithm with two measurements per iteration, which allows us to reduce the negative
impact of various disturbances on the power of the recorded signal.
Algorithm:
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1. Select initial approximation θ̂0, put n = 0.

2. n→ n+ 1.

3. Generate vectors ∆n according to Bernoulli distribution with components taking values 1
or −1 with probability 0.5.

4. Measure the power values for two positions of the antenna system: (θ̂n + β∆n) and (θ̂n −
β∆n). Measurements are obtained with noise v+n and v−n :

y+n = F (θ̂n + β∆n) + v+n ; (30)

y−n = F (θ̂n − β∆n) + v−n ; (31)

5. Update estimate θ̂n according to the rule:

θ̂n+1 = PT

(
θ̂n +

αKn(∆n)

2β
(y+n − y−n )

)
, (32)

where α, β are the parameters of the algorithm, PT is the projection onto the set T of
admissible parameter values.

The kernels Kn could be constructed as vectors with i.i.d. components with Bernoulli distribution,
taking values ±1 with probability 0.5.

The test disturbance is formed in such a way that ∀n ≥ 1 random vector ∆n does not depend on
v̄1, . . . , v̄n and E{(v+n − v−n )

2/2} ≤ c2v, (E{v̄2n} ≤ c2v).

The main element that reflects the incoming signal is the segment of the mirror system.

Consider a system consisting of K = 50 satellites with reflective mirrors. The mirrors should be
placed in space in such a way that the reflected signal from the mirrors is focused in a small area
where the receiver is placed. One of the possible space configurations of such mirror system is a
circular paraboloid which, due to its properties, focuses the parallel beams in a single point. The
satellites equipped with the sensors could adjust their relative positions and the mirrors orientation
to form a paraboloid. However, due to the errors caused by measurement and the natural phenomena
the mirror system needs to be adjusted for better focusing.

Stochastic optimization algorithm equation 30-32 can be applied for tuning a system which consists
of a large number of satellites with reflective shields in space under conditions of interference and
also when individual elements of the system are deformed.

In Fig. 1 on page 8, the dependence of the signal power on the number of iterations of the algorithm
is given. The admissible adjustment angles for the mirrors lie in [−π/6, π/6], with the step β =
π/36. Step-size parameter α = 1e − 7 is chosen manually with respect to the simulation results.
The graph in Fig. 1 shows the signal power in the receiver computed according equation 28. The
graph is constructed by averaging the results of 40 simulations. After converging to the maximum
value the algorithm continues to fluctuate due to input randomization. The experiments show strong
dependence on step-size parameter value which has to be carefully adjusted to achieve fast and
monotonous convergence behavior.
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