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Abstract

Over the last few years, many saliency models have shifted to using Deep Learning
(DL). DL models can be viewed in this context as a double-edged sword. On
the one hand, they boost estimation performance and on the other hand have less
explanatory power than more explicit models. This drop in explanatory power is
why DL models are often dubbed implicit models. Explainable AI (XAI) techniques
have been formulated to address this shortfall. They work by extracting information
from the network and explaining it. Here, we demonstrate the effectiveness of the
Relevant Information Approach in accounting for saliency networks. We apply
this approach to saliency models based on explicit algorithms when represented
as neural networks. These networks are known to contain relevant information in
their neurons. We estimate the relevant information of each neuron by capturing
the relevant information with respect to first layer features (intensity, red, blue) and
its higher-level manipulations. We measure relevant information by using Mutual
Information (MI) between quantified features and the label. These experiments
were conducted on a subset of the CAT2000 dataset.

1 Introduction

The cones (sensors) in the human eye are not equally distributed across the retina. Many are confined
to a small central area of the retina known as the fovea. The fovea’s high density of cones is unique.
Given the uniqueness of the fovea, it is important to allocate it wisely to observe objects in the field
of view.
In non-task-oriented gaze behavior, humans tend to implement a bottom-up approach. In this case the
fovea is directed towards the most salient regions. These include bright, red or blinking regions [11].
Foveal vision can be mapped to estimate the field of view where the value of each point on the map
is its level of saliency. Research on the functionalities of saliency maps goes back several decades
[5][12][11][9]. Specifically, one of the goals of saliency mapping is to estimate gaze distribution as a
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function of a visual stimulus . Saliency prediction algorithms can be divided into several families,
two of which are those that have implicit or explicit descriptions of these algorithms.
One of the first explicit saliency prediction algorithms was introduced by Koch and Ullman [11].
They explored feature-specific saliency maps (such as color, orientation, and disparity, heuristic
priors towards center), and modeled their relationship with an overall saliency map. This family
of algorithms also explores a second layer in that they are applied on top of the feature specific
saliency maps to extract information from them. Examples include center surround, feature selection
and augmentation, and probability mass concentration[7]. Higher layer algorithms have also been
addressed in this family as well [9]; see [2] for a detailed review.
The implicit family of saliency prediction algorithms has gained momentum over the last few years
as a result of the introduction of Deep learning (DL). Here, in what constitutes a paradigm shift, the
researcher no longer constructs a saliency or higher layer algorithm and then evaluates them. Rather
researchers train a multi layered Neural Network (NN) algorithm that learns the functions connecting
images and their saliency distribution. The reference saliency distribution in this case was a set based
on human eye gazing patterns. Participants were presented with a set of images and their eye gaze
patterns and fixations were recorded. Most of these NNs had many neurons and layers. They were
trained to improve the estimation of the saliency distribution.
In some cases, the NNs are initiated from parts of other networks. For example, in [12] part of the
VGG-16 network was used to initiate the first stages of the net, and to some extent was used to
initiate the preprocessing. One of the downsides of this approach is that it makes it more difficult to
intuitively understand and explain the algorithms that are executed. Some of the explicit aspects are
sacrificed to boost performance. Luckily, this downside proved to be a blessing in disguise because
they prompted the invention of a set of techniques to cope with this problem. These are known as
eXplainable Artificial Intelligent (XAI). They explore and explain the behavior of networks, not only
qualitatively, but quantitatively as well [16]. They were so overwhelming effective [15], that they
were applied in explicit models as well [1][4][13].
Here, we applied XAI to the explicit family to gain quantitative insights. In what follows, we present
the behavior of the explicit model in two stages. First, we express the explicit model as an implicit
model; i.e., we represent the explicit model as a neural network. Then, we evaluate the importance
of each part of the network. This dual stage process generates neural networks. These networks are
simple, relatively small, and have small sets of parameters. This simplicity amplifies the XAI’s power
and links prediction power to specific explicit features.

2 Model

As stated above, our first step was to turn the explicit saliency model into a Convolution Neural
Network (CNN). We generated a CNN inspired by [11]. Specifically, our CNN has three stages
(Figure 1(a)). In the first stage, the lower level saliency features are extracted, which in our case
were red, blue, and intensity. The second stage was associated with derivation ( Center Surround
(CS), [10] Constant False Alarm Rate (CFAR) [14]). During the third stage, the signal from several
saliency channels was combined into a single unified channel by summing all channels.
In most of the saliency literature, it is assumed that color related saliency maps include red, blue,
and intensity related saliency maps. Let’s denote these as Mr,Mb,Mi respectively. However, this
description is a bit coarse. Here, we defined the three color related saliency maps to be:

Mi =
r + g + b

3
(1)

Mb = b− r + g

2
(2)

Mr = r − g + b

2
(3)

where r,g, and b are the red, green, and blue values of a pixel respectively. Figure 1(a) presents a
neural network implementation of the color related saliency maps as described in equations 1 - 3.
The channels are defined as the linear representations of the original r,g, and b. This computation can
be performed one pixel at a time, so there is no need to look at the pixel vicinity.

We use the terms CS and CFAR interchangeably. There are many possible implementations of CS,
but we selected the filter presented in Figure 1(a). In the last stage, we simply summed the data from
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(a) (b)

Figure 1: Diagram of Convolutional Neural Network (CNN) representing a saliency algorithm based
on intensity and color and Visualization of the activation maps. (a)(b)(c) are the raw input data.
(e)(f)(g) are the single feature saliency maps. (i)(j)(k) introduces center- surround to address the
relative aspects of human perception. (l) is the agglomeration of all the saliency maps into a single
map.

the different channels (Intensity, Red, Blue). Overall, we generated a very small CNN that only has
ten neurons. This network is not only small, but simple . The perceptual field of each neuron is
limited to a few values in the former layer, yielding simple filters. Although small and simple, it still
conveys some of the essence of explicit saliency algorithms. Note that this network is completely
linear and therefore can be collapsed. However, in its current structure it provides insights into the
flow of information in it.
The network presented in Figure 1(a) has several activation maps. Figure 1(b) visualizes them for a
specific example. Subplots (a), (b), (c), (d) present the input. The first three present the 3 channels
of the input. The fourth subplot shows the three channels combined. Subfigures (e), (f), and (g)
show the saliency maps associated with intensity, blue, and red as articulated in equations 1, 2, and 3
respectively. (i),(j), and (k) are associated with CS. (l) presents the final output of the network. (h) is
the ground-truth of the fixation distribution.

3 Method

Our experiment was conducted on the CAT2000 dataset[3]. This dataset was specifically designed
for saliency model training and evaluation. It is quite a large corpus (4000 images), and its training
set is composed of 2000 images. We conducted our experiments on a subset of 300 images composed
of the Indoor, Outdoor Natural, and Outdoor Man-made categories.
We used the eye fixations that are part of the dataset. The eye fixation data in the dataset were
collected from 120 participants (80 females, median age 20). Each image was observed by 24
participants. During the data collection, each image was presented for a duration of five seconds
followed by three seconds of gray screen. Eye tracking data were collected using an Eyelink-1000
device with a sample rate of 1000Hz. The image resolution was 1920× 1080.

The explainability measure used in this work was the Mutual Information (MI) between the label
(saliency score) and the activation values of each of the neurons (a,b,c,e,f,g,i,j,k,l) [16][8][9][17].
Both the labels and the activations are continuous values. The MI was estimated using quantization of
the variables that was followed by discrete MI estimation of the discretized variables. The dynamic
range of each variable was divided into 100 equally spaced bins. For each neuron activation variable, a
100× 100 co-occurrence matrix was generated. It counted the co-occurrence between the discretized
activation values and the discretized saliency scores. The MI values were estimated from these
matrices which were then smoothed by adding one to each bin.

4 Results

Our goal in this work was to characterize the flow of relevant information in the network. This flow
was measured by estimating the MI between the activation of each neuron and the desired activation
of the output layer; i.e. the probability of the evaluated pixel in the fixation probability map that was
estimated based on human fixations. The MI of the activations of the different neurons is presented in
Figure 2 (a). Each bin in the figure represents a specific neuron. The different layers are separated
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Figure 2: (a) Mutual information between neuron activations and the corresponding saliency score.
(b) Activation MI alongside upper and lower bounds on a logarithmic scale. On one end the entropy
of the label bounds the MI from above. At the other end, the confidence interval based on the random
matrices, bounds the MI from below.

by a vertical solid black line. The layer id numbers are presented at the top, where the input layer is
denoted as layer 0. Before exploring our findings, we clarify their validity in terms of significance.
As stated above, about 300 images were evaluated in this experiment. The resolution of each image
was about 1920× 1080, yielding a set of about 1920× 1080× 300 ≈ 6× 108 samples (pixels) for
the estimation of the co-occurrence matrices. A total of one hundred matrices were generated through
this process. The means and standard deviations of the MI were extracted. The mean MI and standard
deviations were 1.18 × 10−5 and 1.7 × 10−7 respectively. Under the i.i.d. assumption, the mean
MI of the random matrices plus three standard deviations bounded the significance margin. From
the MI of the random matrices, we derived the lower bound (Figure 2(b)). The entropy of the label
was bound from above the MI of the label and the activation of a neuron. Here, the total amount of
information (entropy) of the fixation labels according to our model and data preparation was about
3.68 bits (Figure 2(b)). Overall, we showed that the observed MI values were distant from both the
upper and lower bounds. The observed MI had only about one hundredth of the information of the
entropy label. This is not surprising given the extremely small receptive field of our network. In an
image of 1920× 1080, our receptive field is only 3× 3. The lower bound is about one hundredth
of the observed MI. Under the i.i.d. assumption, this difference is significant and meaningful. The
entire flow of information was governed by the data processing inequality (DPI) [6]. It suggests that
during data processing, data are lost in the weak sense; i.e., information cannot be gained, just not
lost. The transformation from layer 0 to layer 1 was linear and reversible, suggesting that information
was not lost. In the transformation to layer 2, information was gained from adjacent pixels. This
introduction of a new source of information, can cause increases in data relative to the original signal.
In the last layer, no new source of information was added. In this layer, the averaging across the
different channels causes a concentration of information into one dimension but it also causes a loss
of information as well. It is interesting to observe that the MI of the neurons in the last layer was
higher than each of the neurons in the first layer. As stated earlier, we did not measure the MI directly.
Here, the MI was only approximated using quantization processes which could have introduced noise
to the process.

5 Conclusion

Saliency prediction neural networks have large sets of parameters, and in many cases, there is
no single neuron whose removal changes the score significantly. These qualities are one of the
reasons why such neural networks are referred as implicit models, and are complicated for humans to
explain and understand. Earlier models had far fewer parameters, and each parameter had a humanly
comprehensible explanation and hence are known as explicit models. In this work, we analyzed the
flow of information within a saliency prediction neural network and explained its behavior. This type
of analysis is important to overcome the implicit nature of neural networks. Specifically, we presented
a method that involved building an implicit model that was not trained on samples. Its synaptic
weights and perceptual fields were selected to imitate a known explicit model. In this network, we
already knew the meaning and importance of each neuron. We knew that each neuron contained
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relevant information. In this work, we were able to show that we could measure some of the relevant
information by estimating the quantified mutual information between the neuron activation and the
sample label. This suggests that such an approach can be used to explore larger saliency oriented
neural networks. At the most basic level, we can measure the MI between every neuron and the
saliency label. At a higher level, the MI can be measured between an entire layers in the saliency
network and the saliency label. At the highest level, we can compare to internal representations in
other networks.

References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity

checks for saliency maps. In Advances in Neural Information Processing Systems, pages 9505–9515, 2018.

[2] Ali Borji and Laurent Itti. State-of-the-art in visual attention modeling. IEEE transactions on pattern
analysis and machine intelligence, 35(1):185–207, 2012.

[3] Ali Borji and Laurent Itti. Cat2000: A large scale fixation dataset for boosting saliency research. arXiv
preprint arXiv:1505.03581, 2015.

[4] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand. What do different evaluation
metrics tell us about saliency models? IEEE transactions on pattern analysis and machine intelligence,
41(3):740–757, 2018.

[5] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. Predicting human eye fixations via an lstm-based
saliency attentive model. IEEE Transactions on Image Processing, 27(10):5142–5154, 2018.

[6] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

[7] Jonathan Harel, Christof Koch, and Pietro Perona. Graph-based visual saliency. In Advances in neural
information processing systems, pages 545–552, 2007.

[8] Ron M Hecht and Naftali Tishby. Extraction of relevant speech features using the information bottleneck
method. In Ninth European Conference on Speech Communication and Technology, 2005.

[9] Ron Moshe Hecht, Aharon Bar Hillel, Ariel Telpaz, Omer Tsimhoni, and Naftali Tishby. Information
constrained control analysis of eye gaze distribution under workload. IEEE Transactions on Human-
Machine Systems, 49(6):474–484, 2019.

[10] Daniel J Jobson, Zia-ur Rahman, and Glenn A Woodell. Properties and performance of a center/surround
retinex. IEEE transactions on image processing, 6(3):451–462, 1997.

[11] Christof Koch and Shimon Ullman. Selecting one among the many: A simple network implementing
shifts in selective visual attention. Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE
ARTIFICIAL INTELLIGENCE LAB, 1984.

[12] Srinivas SS Kruthiventi, Kumar Ayush, and R Venkatesh Babu. Deepfix: A fully convolutional neural
network for predicting human eye fixations. IEEE Transactions on Image Processing, 26(9):4446–4456,
2017.

[13] T Nathan Mundhenk, Barry Y Chen, and Gerald Friedland. Efficient saliency maps for explainable ai.
arXiv preprint arXiv:1911.11293, 2019.

[14] Ramon Nitzberg. Constant-false-alarm-rate signal processors for several types of interference. IEEE
Transactions on Aerospace and Electronic Systems, (1):27–34, 1972.

[15] Wojciech Samek and Klaus-Robert Müller. Towards explainable artificial intelligence. In Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning, pages 5–22. Springer, 2019.

[16] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

[17] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

5


	Introduction
	Model
	Method
	Results
	Conclusion

