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Abstract

Egocentric video-language pretraining has significantly advanced video represen-
tation learning. Humans perceive and interact with a fully 3D world, develop-
ing spatial awareness that extends beyond text-based understanding. However,
most previous works learn from 1D text or 2D visual cues, such as bounding
boxes, which inherently lack 3D understanding. To bridge this gap, we intro-
duce EgoDTM, an Egocentric Depth- and Text-aware Model, jointly trained
through large-scale 3D-aware video pretraining and video-text contrastive learn-
ing. EgoDTM incorporates a lightweight 3D-aware decoder to efficiently learn
3D-awareness from pseudo depth maps generated by depth estimation models. To
further facilitate 3D-aware video pretraining, we enrich the original brief captions
with hand-object visual cues by organically combining several foundation mod-
els. Extensive experiments demonstrate EgoDTM’s superior performance across
diverse downstream tasks, highlighting its superior 3D-aware visual understand-
ing. Code: https://github.com/xuboshen/EgoDTM.
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Figure 1: Comparison of egocentric pretraining
paradigms. While previous paradigms focus on
text-based [36, 51, 87] or 2D spatial region-aware
learning [80], EgoDTM incorporates 3D spatial
information to enhance video representations.

The development of embodied AI capable of
fulfilling diverse societal roles has long been
a goal in artificial intelligence [25, 49]. A
promising path to achieving this vision in-
volves developing egocentric AI, which can
comprehend human activities by analyzing
large-scale egocentric videos captured from a
first-person perspective using wearable devices.
These videos provide rich insights into hand-
object interactions (HOI) [19, 79, 11, 39], of-
fering a window into how individuals inter-
act with nearby objects through their hands.
With the emergence of large-scale egocentric
datasets [22], video-language pretraining [36,
87] has become a dominant paradigm for learn-
ing egocentric video representations, signifi-
cantly improving performance on downstream
tasks such as video-text retrieval [11, 67] and
action recognition [66, 34].

Humans possess an innate ability to perceive and reason about 3D spatial relationships, effortlessly
perceiving relative distances and spatial arrangements from visual cues alone [68, 28, 65]. While
there is no universal definition of a model’s 3D awareness, we define it as the ability to infer 3D
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information from 2D images. However, models pretrained solely on 2D frames and general-purpose
text (e.g., CLIP [52]) often struggle to develop robust 3D awareness [18, 42, 56]. To equip ego-
centric models with such 3D awareness, we wonder: Can video-language models better understand
egocentric contexts by incorporating 3D-aware perception?

Achieving this goal presents two key challenges. First, 3D representations are diverse, and obtaining
corresponding labels is often costly. Recent works [78, 84] explore using multi-view images for 3D
reconstruction to distill 3D awareness into 2D models. However, in egocentric scenarios, depth maps
are more practical and easier to obtain. Depth maps provide direct 3D distance information and help
distinguish salient objects from the background, offering crucial cues for spatial understanding.
Unfortunately, existing egocentric datasets with depth maps [39, 55, 29] remain limited in both
scale and diversity for large-scale pretraining. Recent foundation models for depth estimation [76,
77, 5] demonstrate strong out-of-domain generalization, enabling us to construct a large-scale depth-
augmented egocentric dataset at a low cost.

Second, effective 3D-aware pretraining requires bridging the modality gap between depth and text.
As illustrated in Figure 1, common video-language pretraining [36, 51, 87] primarily relies on tex-
tual supervision, thus avoiding this challenge. Recent works [80, 47] explore region-aware video-
language pretraining using non-pixel-level cues, such as text and sparse object bounding boxes,
which face only minor modality gaps. However, unlike these non-pixel-level cues, regressing the
pixel-level outputs (e.g., depth maps) requires fundamentally different capabilities compared to pre-
dicting texts or bounding boxes, as suggested by previous studies [30, 31]. Additionally, depth es-
timation typically requires high-resolution inputs and multi-scale features, whereas video-language
models rely on large batch sizes for contrastive learning, making direct integration nontrivial. Thus,
designing an effective learning approach and enriching textual supervision with spatial information
are crucial for successful 3D-aware pretraining.

To address these aforementioned challenges, we introduce EgoDTM, a novel 3D-aware egocen-
tric video-language model that learns video representation from depth maps and spatially informed
captions. In addition to dual transformer encoders for video-text alignment, EgoDTM adopts a 3D-
aware module for video pretraining and a data construction pipeline to enrich captions with spatial
information. To adapt the 3D-aware module for the video-language framework, we propose a uni-
fied visual representation with a lightweight depth decoder, supervised by depth predictions from
foundation models [76]. Specifically, the lightweight depth decoder takes as input the visual repre-
sentation from the last layer of the video encoder and predicts the composition of discrete adaptive
bins [3, 4, 64, 35] to estimate low-resolution depth maps. Moreover, we adopt off-the-shelf visual
foundation models [63, 59] to create high-quality HOI masks by first detecting HOIs, then select-
ing key frames, and finally tracking bidirectionally. To enrich the original captions with spatial
information, we leverage a large language model (LLM) guided by the temporally consistent HOI
masks. Through 3D-aware video-language pretraining, EgoDTM improves visual generalization on
downstream tasks involving egocentric HOIs.

Our contributions are threefold: (1) We introduce EgoDTM, a 3D-aware egocentric video-language
model learned from 3D-aware video-language pretraining. (2) We develop a lightweight 3D-aware
decoder for depth estimation and a data construction pipeline to enrich captions with spatial infor-
mation. As a byproduct, we generate millions of egocentric data, including captions, HOI boxes,
HOI masks, and depth maps. (3) Extensive experiments demonstrate that EgoDTM significantly en-
hances performance on video understanding tasks like video-text matching, and 3D understanding
tasks like robot manipulation.

2 Related Works

Egocentric Video-Language Pretraining. Egocentric video understanding [22, 8, 50, 83, 43,
74, 11, 73, 75, 33, 72] typically involves human daily interaction between hands and objects
from a first-person perspective. Inspired by visual-language pretraining paradigms in third-
person datasets [2, 41, 52, 47, 80], EgoVLP [36] firstly proposes to conduct egocentric video-
language pretraining on the large-scale egocentric dataset Ego4D [22], which aims to learn video
representations from massive video-text data via contrastive learning. Since EgoVLP, similar
paradigms [36, 51, 87, 1] have gained large success in EgoHOI understanding, For example, LaV-
iLa [87] employs a video-conditioned GPT-2 [53] and a T5 [54] rephraser to generate text descrip-
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Figure 2: EgoDTM learns 3D-aware representations from depth and text. Our dual encoders are
constructed using only transformers [16, 70, 52] with flash attention [12]. During pretraining, we
conduct (1) 3D-aware video pretraining: we design a lightweight 3D-aware decoder to predict depth
using visual feature maps, supervised by a teacher foundation model [77]. The decoder contains
a plain feature pyramid to get multi-scale features, a depth-aware transformer decoder to process
depth queries with video features, and the heads to predict depth maps; (2) Spatial-aware textual
enrichment: we enhance captions with spatial information by organically combining foundation
models in the detect-track-generate pipeline. Different green markers denote inconsistency of HOI
predictions; identical ones indicate consistency.

tions for egocentric videos to expand video-text data. Despite the progress, pretraining with text
alone often lacks precision in target localization. In response, some studies have focused on de-
veloping region-aware representations for EgoVLMs. For example, HelpingHands [80] proposes
learning from noisy hand-object detection results, while HENASY [47] ensembles an additional hi-
erarchical encoder to learn HOI region-aware representation. However, these methods are limited
to 2D reasoning and lack an understanding of real-world 3D context. In this work, we take a step
towards 3D-aware egocentric video-language pretraining.

3D-Awareness of 2D Vision Models. As suggested by research in developmental psychology and
psychophysics, we humans are capable of understanding 3D information, like depth and orienta-
tions, from only 2D visual signals [68, 28, 65]. With the growing interest in embodied intelli-
gence [25, 44] and personal AI assistants [49], the demand for 3D-aware 2D visual models has
become increasingly important. Although there is no widely accepted consensus to define and build
effective 3D-aware models, some studies have started to assess the 3D awareness of visual founda-
tion models. For example, Probing3D [18] demonstrated that CLIP, which is pretrained exclusively
with text, is significantly limited in predicting depth and 3D surface normals. EysWideShut[69]
revealed that CLIP struggles with 3D-related tasks, such as recognizing object orientation and un-
derstanding compositional contexts. More recently, relevant works have made endeavors to enable
visual foundation models (e.g., CLIP) with 3D awareness by fine-tuning on 3D-aware data. For
instance, FiT3D [78] finetunes visual foundation models with 3D Gaussian features reconstructed
from multi-view images. SpatialVLM [9] conducts visual instruction tuning on metric depth-aware
QA pairs for multi-modal large language models. Different from these learning paradigms, we
define 3D-awareness as the model’s latent ability to estimate depth and pretrain an egocentric video-
language model with a lightweight 3D-aware decoder.

3 Method

Our objective is to develop a 3D-aware egocentric video-language model, where 3D-awareness is
defined as the model’s ability to infer depth information from its representations. EgoDTM achieves
this by pretraining depth-aware and text-aligned video representations. Figure 2 illustrates the
architecture of our proposed EgoDTM. We first describe the video-language model architecture
in Section 3.1. Next, we introduce the 3D-aware video pretraining in Section 3.2 and then present
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our approach to generate spatial-aware captions in Section 3.3. The details of training and inference
are presented in Section 3.4.

3.1 Video-Language Model Architecture

The video-language model basically consists of a video encoder and a text encoder.

Video and text encoders. Our video encoder employs a plain vision transformer [16] backbone
to process video tokens. The video input V ∈ RF×H×W×3 is divided into N = F

F0
× H

H0
× W

W0

non-overlapping cubes of dimension F0 ×H0 ×W0 × 3, where F is the number of frames, H and
W denote height and width. These cubes are combined with positional embeddings and processed
by the video encoder to produce a feature map vZ ∈ RN×C . Note that a [CLS] token is added
to represent the global video embedding vcls. For the text encoder, captions T are tokenized via a
Byte Pair Encoding (BPE) tokenizer [62] and encoded with a transformer initialized from CLIP [52]
to output the sentence embedding tcls. Both encoders adopt the flash-attention [12] to mitigate the
memory bottleneck of the attention mechanism.

Video-text alignment loss. We use the InfoNCE loss to align video and text embeddings. For
simplicity, we define the video-to-text loss within a batch B = {(vi, ti}Bi=1 as follows:

Lvtc = − 1

B

∑
i

log
exp(vi · ti/τ)

Σjexp(vi · tj/τ)
(1)

where (vi, ti) represent the video and text embeddings (vcls, tcls) for the i-th (video, caption) pair
within the batch. The text-to-video loss is defined symmetrically.

3.2 3D-Aware Video Pretraining

A critical issue in leveraging depth maps for 3D-aware pretraining is that depth maps are typically
high-resolution images (e.g., 1024p). However, most low-level details in these maps are redundant,
as video-language models primarily benefit from the relative depth information between patches.
Therefore, high-resolution depth maps may be unnecessary and inefficient for pretraining. Addi-
tionally, video-text pretraining often requires a large batch size to ensure good performance, further
emphasizing the need for lightweight and memory-efficient processing. To address these concerns,
we design a lightweight 3D-aware decoder to estimate low-resolution depth maps from video repre-
sentations. Specifically, the decoder consists of a plain feature pyramid, a depth-aware transformer
decoder, and two specialized heads, as described below.

Plain feature pyramid. Depth estimation methods [48, 3, 57] often utilize multi-scale features
from intermediate backbone layers. However, video-language pretraining typically uses only the
final-layer representations. To reconcile these differences, we adopt a simplified FPN [32] that
projects the video feature map vZ into multi-scale outputs {vZ1× ,vZ2× , · · · ,vZm×}, where vZm×

denotes the feature map of size (N × m2) × C, and the size of the predicted depth maps equals
N ×m2. Moreover, inspired by the adaptive bins [3, 4, 64, 35] in depth estimation, we segment the
depth range into intervals and predict distributions at each pixel over the interval centers.

Depth-aware transformer decoder. This module processes multi-scale features to generate depth-
aware representations capable of estimating distinct distance ranges. The transformer decoder fol-
lows standard architecture as [7, 10], transforming L learnable depth queries Q ∈ RL×C into depth-
aware representations Z ∈ RL×C using self-attention and cross-attention mechanisms. The cross
attention processes Q as queries and concatenates (vZ1× ,vZ2× , . . . ,vZm−1×) as key-value pairs
(k, v). The learned depth queries estimate depths at different distances, as illustrated by varied gray
colors in Figure 2.

Bin head. We partition the depth range of [0, 1] into L intervals. The bin head F(·) : RC → [0, 1]
processes depth-aware representations {zi}Li=1 to predict widths of depth interval bins {wi}Li=0,
satisfying

∑L
i=0 wi = 1 where we denote w0 = 0. The i-th depth interval is defined by boundaries

[
∑i−1

i=1 wi,
∑i

i=1 wi], with its center computed as:

ci =

i−1∑
i=1

wi +
wi

2
(2)
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Figure 3: Qualitative results of depth estimation from EgoDTM and DepthAnythingv2 [77](DAv2)
on datasets including in-domain but unseen Ego4D validation set [22], out-of-domain and unseen
data of EK100 [11], MECCANO [55], and H2O [29]. Note that DAv2 operates with a high resolu-
tion of 512p, while EgoDTM uses a lower resolution input of 224p and generates a depth map at a
resolution of 56p. Despite the lower resolution input, EgoDTM demonstrates intuitive generaliza-
tion across unseen egocentric datasets with diverse environments, illuminations, backgrounds, and
varying HOI object sizes.

Mask head. Then, we aim to predict distributions over the depth centers at each pixel. Specifically,
the mask head G(·) : RC → RC takes zi as input, and the output mi is multiplied by the largest
feature map mi⊗vZm× to acquire unnormalized probabilistic maps di ∈ RN×m2

, where ⊗ denotes
the composition of element-wise multiplication and sum along the feature dimension. After normal-
izing {di}Li=1 by the Softmax operation along the query dimension L, we get the probabilistic map
D = [D1, . . . , DL] ∈ RL×N×m2

. The process is described as:

D = Softmax(G(Z)⊗ vzm×) (3)

Finally, depth prediction D̃ ∈ RN×m2

is obtained by the linear combination of the depth-bin-centers
and the probabilistic maps:

D̃ =

L∑
k=1

ckDk (4)

3D-aware pretraining loss. Given the lack of depth annotations in large-scale egocentric
videos [22], we generate pseudo-depth labels using monocular depth estimation foundation mod-
els [57, 76, 77]. The pretraining loss is defined as:

Ldepth = ∥D̃ −Dgt∥2 (5)

where D̃ and Dgt are the predicted and ground-truths inverse depth maps within the range [0, 1].

3.3 Spatial-Aware Textual Enrichment

Previous egocentric video-language pretraining frameworks typically learn from short descriptions
composed of verbs and nouns. To foster 3D-aware pretraining, we argue that captions should contain
more spatial-temporal information like HOI positions, object shapes, and movements. We therefore
enrich the captions with visual cues by employing a detect-track-generate pipeline tailored for ego-
centric videos using foundation models [63, 59, 14].

Detect. We use the detector [63], HOID, finetuned on egocentric data to detect hands, objects, and
their contact states for a given frame. The detector f(·) receives Vi as input and outputs diverse
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Epic-Kitchens-100-MIR EGTEA EgoMCQ

Method mAP (%) nDCG (%) mean top1 Inter IntraV→ T T→ V Avg. V→ T T→ V Avg.

EgoVLP [36] 26.0 20.6 23.3 28.8 27.0 27.9 - - 90.6 57.2
EgoVLPv2 [51] 35.1 26.6 30.8 33.7 30.4 32.0 30.9 35.1 91.0 60.9
LaViLa [87] 35.1 26.6 30.8 33.7 30.4 32.0 30.9 35.1 93.6 59.1
AVION [86] 37.1 28.7 32.9 34.4 31.0 32.7 38.6 42.3 94.4 62.1
HelpingHands∗ [80] 35.6 26.8 31.2 34.7 31.7 33.2 29.4 35.3 93.2 58.8
HENASY∗ [47] 35.5 27.1 31.3 34.6 31.7 33.2 29.6 35.9 94.1 61.3

EgoDTM (ours) 37.9 29.1 33.5 34.8 31.9 33.4 40.2 43.2 94.6 63.6

Table 1: Comparison with state-of-the-art methods on zero-shot video-text retrieval and action
recognition. All methods use the same 4M videos from Ego4D for pretraining and have similar
hidden dimension sizes. The numbers of the method with ∗ are sourced from [47].

information {(bj , cj , t, s)}j , where bj is the bounding boxes with confidence scores cj , t is object
type, and s is contact state of hand.

Track. Since predictions of HOID lack temporal consistency, we address this issue by tracking
across the video. We utilize SAM2 [59] g(·), a foundation model for promptable segmentation and
tracking. The initial tracking frame V ∗ is selected when the hands make contact with objects. The
HOI masks of this frame are obtained by prompting SAM2 with HOI boxes {m∗

j}j = g(V ∗, {b∗j}j),
where the bounding boxes serve as negative prompts for each other. Finally, the model tracks HOI
masks throughout all frames to acquire the temporal consistent masks M = ({m1j}j , . . . , {mFj}j).
Generate. As suggested by previous works [37, 20], LLMs are capable of understanding visual cues
like bounding boxes. We use an LLM h(·) to comprehend the HOI spatial information and original
captions, then generate spatial-aware captions T aug = h(T,M).

Equipped with the enriched video-text pairs, our new video-text contrastive learning objective is:

Laugvtc = − 1

B

∑
i

log
exp(vi · t′i)/τ)
Σjexp(vi · t′j/τ)

(6)

where t′i = rand(ti, t
aug
i ) is randomly sampled from the original and enriched text embedding taugi .

3.4 Training Strategy

Training and evaluation. We employ both the augmented video-text alignment loss and the 3D-
aware pretraining loss to pretrain our model:

L = Laugvtc + Ldepth (7)

Our pretraining improves video-language representations for downstream egocentric tasks without
modifying the dual-encoders themselves. As a result, only the dual-encoders are used for down-
stream tasks, introducing no additional computational costs at inference time.

Pretraining data. Our pretraining data consists of four million (video, text) pairs, with each video
approximately 1 second long. We generate enhanced text descriptions and depth maps specifically
for videos featuring hand-object interactions, resulting in two million (video, enriched texts, depths)
triplets. Specifically, for each video, we extract eight depth maps using the DAv2-Large [77] model.
The HOI boxes are detected by HOID [63], which is finetuned on egocentric data. The HOI masks
are segmented and tracked using the same unified SAM2-Large model [59]. The final enriched text
descriptions are generated using the DeepSeek-LLM-200B model [14].

4 Experiments

To evaluate our EgoDTM, we conduct experiments from three perspectives: short video understand-
ing (video-text retrieval and action recognition), 3D space comprehension (depth estimation and
robot manipulation), and long video understanding (natural language query and moment query).
These evaluations cover seven benchmarks across five datasets. In the following sections, we detail
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Method Scale-Aware Metrics Scale-Invariant Metrics
δ1↑ δ2↑ δ3↑ RMSE↓ δ1↑ δ2↑ δ3↑ RMSE↓

ConvNext [40] 0.721 0.965 0.991 0.644 0.727 0.969 0.996 0.593
CLIP [52] 0.795 0.966 0.988 0.624 0.811 0.976 0.994 0.559
EgoVLP [36] 0.778 0.954 0.989 0.610 0.853 0.977 0.996 0.497
LaViLa [87] 0.801 0.954 0.987 0.598 0.811 0.964 0.993 0.552
AVION [86] 0.786 0.960 0.991 0.606 0.812 0.969 0.996 0.543

EgoDTM (ours) 0.826 0.964 0.993 0.539 0.848 0.977 0.998 0.481

Table 2: Comparisons of depth estimation task on H2O dataset.

the experimental setups (Section 4.1), main results (Section 4.2), ablation studies (Section 4.3), and
further analyses (Section 4.4).

4.1 Benchmarks and Settings

Zero-shot video-text retrieval (ZS-VTR). To assess video-text alignment, we conduct zero-shot
retrieval evaluations on text-to-video multi-choice retrieval on Ego4D [22] (EgoMCQ) and multi-
instance video-text retrieval on Epic-Kitchens-100 [11] (EK100MIR). Following [36, 11], we use
mean Average Precision (mAP) and the normalized Discounted Cumulative Gain (nDCG) as metrics
for EK100MIR and accuracy for EgoMCQ.

Zero-shot action recognition (ZS-AR). Action recognition is conducted in a video-to-text retrieval
manner. We experiment on the EGTEA [34] and Epic-Kitchens-100 [11] (EK100CLS). The task on
EGTEA requires models to recognize 106 classes of cooking activities, and the EK100CLS includes
evaluation on 97 verbs and 300 nouns in kitchens. The metrics include mean accuracy, top-1 and
top-5 accuracy across test splits.

Depth estimation (DE). To assess the model’s 3D awareness, we conduct depth estimation by fine-
tuning our model on the H2O [29] dataset. Following [18], we add a prediction head composed
of a linear layer and an upsampling convolution layer on top of the frozen video encoder. Sim-
ilar to [18, 17], the metrics are threshold accuracy (δi): percentage of pixels D̃j in ground-truth

depth maps that satisfy max(Dgtj

D̃j
,

D̃j

Dgt j
) = δi < thri for thr = 1.25, i ∈ {1, 2, 3}, and RMSE:

∥D̃ −Dgt∥2. The scale-invariant metrics are shifted and normalized from scale-aware metrics.

Robot Manipulation (RM). The robot must learn to accurately perceive and interact in 3D spaces
to accomplish daily tasks. Following previous works [45, 26], we evaluate the visual representations
as frozen perception modules for downstream policy learning within the Franka Kitchens simulation
environment [23]. Five tasks are adopted: turn knob (TK), open door (OD), flip switch (FS), open
microwave (OM), and slide door (SD). We use success rate as the metric.

Natural language queries (NLQ). The NLQ task localizes time intervals in a long video given a
language query. We experiment on the EgoNLQ task on Ego4D [22]. To fairly evaluate different
pretrained visual representations, we extract the visual features by video encoders and text features
by the same pretrained BERT [15], then train a VSLNet [81] to solve this task. The evaluation
metrics are “Rn@m”, where n ∈ {1, 5} and m ∈ {0.3, 0.5}, presenting the percentage of at least
one of the top-n predicted intervals having IoU greater than m.

Moment Queries (MQ). The MQ task is a video-only problem that aims to detect all temporal
activity intervals in a long video given a specified activity category. We conduct experiments on the
EgoMQ benchmark from Ego4D [22]. Following the setup in [36], we extract visual features using
video encoders and then train a VSGN model [85] to perform this task. The evaluation metrics are
“R@n, m”, consistent with those used in the NLQ task.

Pretraining details. The dual-encoders are initialized by the checkpoint pretrained on the original
four million video-text pairs [36] from Ego4D. EgoDTM is then trained for two epochs on 8*A800
GPUs, which requires approximately 10 hours and a learning rate of 3e-5. The depth-aware trans-
former decoder comprises six layers. The hidden dimension of the dual encoders is 768, while the
3D-aware decoder uses a dimension of 256 for efficient design. We use frames with 224p as input
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Method R1@0.3 R5@0.3 R1@0.5 R5@0.5

EgoVLP [36] 6.32 13.84 3.41 8.80
LaViLa [87] 7.12 14.82 3.87 9.55
AVION [86] 7.33 14.89 4.31 9.53

EgoDTM (ours) 8.13 16.11 4.83 10.30

Table 3: Comparisons of NLQ task.

Method R1@0.3 R5@0.3 R1@0.5 R5@0.5

EgoVLP [36] 30.44 46.66 22.41 35.75
LaViLa [87] 32.9 48.68 24.12 37.59
AVION [86] 32.17 47.3 23.11 36.3

EgoDTM (ours) 32.92 50.08 23.94 39.15

Table 4: Comparisons of MQ task.

and 56p as output of the depth maps. Consequently, our 3D-aware decoder only has 9M parameters,
and the batch size is set to 4096.

4.2 Main Results

Zero-shot video-text retrieval. In Table 1, EgoDTM outperforms models like LaViLa [87] and
AVION [86]. For example, on EK100-MIR, EgoDTM outperforms the state-of-the-art AVION by
+0.9% in mAP and +0.3% in nDCG, while also achieving a +1.5% improvement in intra accuracy on
EgoMCQ. This indicates that captions generated based on visual cues from our data curation pipeline
are more accurate and informative than captions generated from visual-conditioned LLMs or simply
text rewriting. Besides, our model surpasses HelpingHands [80] and HENASY [47], which rely on
noisy HOI detection supervision with extra parameters in the visual encoder, indicating that depth
modality can potentially offer larger merits for video-language models.

Zero-shot action recognition Table 1 illustrates the superior performance of EgoDTM on EGTEA.
While previous works have demonstrated that depth modality enhances traditional action recognition
tasks [82, 38], their applicability has been largely constrained to specific scenarios and closed-set
datasets. Our results extend this understanding, showing that video-language models can effectively
leverage depth modality to learn more generalizable video representations.

Depth estimation. We evaluate the ability of visual-language models to infer depth from images
in Table 2. Our model surpasses previous video-language models across most metrics by a large
margin. In particular, our method improves the scale-aware RMSE by approximately 9.8% over the
second-best result achieved by LaViLa. Interestingly, EgoVLP performs better in scale-invariant δ1
metric, suggesting that it latently captures finer-grained pixel-level details. We hypothesize that this
advantage stems from EgoVLP’s scene-aware negative sampling strategy, which samples video-text
pairs captured from the same environments into the same batch, thereby learning relevant details.

Method TK OD OM FS SD Average

R3M [45] 53.3% 50.7% 59.3% 86.3% 97.7% 69.4%
MPI [26] 83.3% 54% 44.5% 93.5% 100% 75%

ResNet [24] 28% 18% 26.7% 50% 75.5% 39.7%
CLIP [52] 26.3% 13% 24.7% 41.7% 86.3% 38.4%
LaViLa [87] 48% 26% 22.5% 69% 94.5% 52%

EgoDTM (ours) 56% 28% 35.5% 81% 92.5% 58.6%

Table 5: Comparison of robot manipulation tasks
in Franka Kitchen simulation to assess model’s
3D-awareness.

Robot manipulation. As shown in Table 5,
EgoDTM consistently outperforms pretrained
visual-language models such as CLIP [52] and
LaViLa [87] by +20.2% and +6.6%, respec-
tively, demonstrating stronger spatial percep-
tion in visual representations. Additionally,
EgoDTM performs competitively with special-
ized robot learning methods on certain tasks,
such as “turn knob” but underperforms on oth-
ers, like “open microwave”. A possible reason
is that our model, pretained on depth and text,
may overfit to real-worold scenarios, whereas
methods like R3M [45] leverage self-supervised pretraining, which could provide better generaliza-
tion to diverse manipulation tasks.

Natural language queries. As shown in Table 3, EgoDTM outperforms other egocentric video-
language models, e.g., +1.22 on R5@0.3 over AVION. In long video localization tasks, depth aware-
ness enhances spatial understanding, enabling EgoDTM to better comprehend visual content.

Moment queries. As shown in Table 4, EgoDTM achieves competitive performance among all
methods. Specifically, it surpasses AVION by +2.78 on R5@0.3 and +2.85 on R5@0.5, and slightly
improves over LaViLa by +1.4 on R5@0.3 and +1.56 on R5@0.5. These results demonstrate that
depth-aware representation learning in EgoDTM effectively enhances spatial reasoning and temporal
localization in long egocentric videos, leading to more accurate moment predictions.
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EK100MIR EgoMCQ
mAP nDCG Inter Intra

Lvtc 29.7 30.7 94.2 60.2
Lvtc + Ldepth 31.3 31.2 94.2 62.6
Laugvtc 31.3 32.2 94.0 61.6
Laugvtc + Ldepth 33.1 33.1 94.6 62.6

(a) EgoDTM’s components. Both the
3D-aware video pretraining and textual
enhancement enhance video-language
representations.

EK100MIR EgoMCQ
mAP nDCG Inter Intra

4 32.6 32.5 94.61 62.61
8 33.1 33.1 94.6 62.64
16 32.3 32.4 94.72 62.46

(b) Depth query numbers. We
set 8 queries as the default, which
empirically generalizes best on
EK100MIR.

Reso Mem EK100MIR EgoMCQ
mAP nDCG Inter Intra

28p 10G 30.4 31.2 94.54 60.65
56p 17G 30.9 31.9 94.28 61.05

112p 59G 31.2 31.9 94.37 60.38

(c) Resolution of depth. The
batch size is set to 512 to accom-
modate the high GPU memory
demands of large depth maps.

EK100MIR EgoMCQ
mAP nDCG Inter Intra

Base 33.1 33.1 94.6 62.64
Large 36.4 34.2 95.13 66.04

(d) Model size. Large model
brings more performance gain on
intra accuracy of EgoMCQ.

EK100MIR EgoMCQ
mAP nDCG Inter Intra

All 32.8 32.7 94.46 61.92
Rand 33.1 33.1 94.6 62.64

(e) Text Sampling Strategy.
Random substitution is better
than thorough replacement.

EK100MIR EgoMCQ
mAP nDCG Inter Intra

1024 32.4 32.5 94.55 61.48
2048 33.1 33.1 94.6 62.64
4096 33.5 33.4 94.54 63.55

(f) Batch Size. Increasing the
batch size steadily yields larger
improvements.

Table 6: Zero-shot ablation studies. Models are pretrained on 4M video-text pairs from Ego4D and
evaluated with zero-shot video-text retrieval on Epic-Kitchens-100-MIR [11] and EgoMCQ [36].
Unless specified, the default setting includes: ViT-B/16 backbone, batch size of 2048, random sub-
stitution of enriched texts, both Ldepth and Laugvtc as losses, 8 depth queries, and 56p depth maps.

Metrics EK100MIR EgoMCQ EK100CLS EgoNLQ EgoMQ DE
mAP / nDCG ↑ inter / intra acc ↑ top-1 / top-5 acc ↑ mIoU ↑ mAP ↑ scale-aware RMSE / scale-invariant RMSE ↓

Lvtc 29.7 / 30.7 94.2 / 60.2 12.847 / 30.037 6.14 6.97 0.572 / 0.495
Lvtc + Ldepth 31.3 / 31.2 94.2 / 62.6 15.412 / 32.995 5.98 7.52 0.5637 / 0.464
Laugvtc 31.3 / 32.2 94 / 61.6 16.508 / 32.851 6.53 6.14 0.550 / 0.489
Laugvtc + Ldepth 33.1 / 33.1 94.6 / 62.6 15.898 / 33.895 6.17 8.87 0.539 / 0.481

Table 7: Ablation studies on downstream tasks.

4.3 Ablation Study

EgoDTM’s components. Combining video-text matching with depth estimation enhances each
learning objective. EgoDTM leverages depth maps to capture object relations, while textual de-
scriptions enriched with shape and movement details can benefit more from depth information. As
shown in the table Table 7, progressively adding our modules leads to consistent improvements
across the majority of tasks, and our model outperforms all baselines in the main experiments. One
potential limitation is that depth pretraining may negatively impact the performance on EgoNLQ to
some extent. Nevertheless, our proposed AugVTC module is able to mitigate this effect and yields
improvements that surpass those achieved by Avion, LaViLa, and the EgoVLP encoder as shown in
Table4 of our main paper. Besides, comparing row 2 and row 4 when adding Laugvtc, we observe an
increase in the scale-invariant RMSE and a decrease in the scale-aware RMSE. We hypothesize that
this may result from the proxy task bias introduced by multi-task pretraining.

Method mAP
@(0.5:0.95)

map
@0.50

hand-AP
@(0.5:0.95)

object-AP
@(0.5:0.95)

Upperbound [13] 60.70 73.31 90.87 30.53
Our Pipeline 43.02 54.88 61.01 25.03

Table 8: Evaluation of our HOI mask gener-
ation pipeline on HOI segmentation bench-
mark VISOR [13] in kitchen environment.

Depth query numbers. The number of depth
queries affects depth granularity. We find that setting
the query number to 8 is optimal, with each query
covering a moderate depth range within [0, 1].

Resolution of the predicted depth map. The reso-
lution of depth maps greatly impacts GPU memory
usage. We find that higher-resolution depth maps
slightly improve the video-text alignment, but this
comes at the cost of reducing the maximum batch
size. Therefore, we choose a resolution to 56p as a
balanced trade-off between high resolution and the ability to maintain a large batch size.

Model size. A larger model size enhances performance, especially on the EgoMCQ intra task, which
requires selecting the correct video from visually similar alternatives.

9



Figure 4: Comparisons of the noisy HOI bound-
ing boxes (left) and the spatial-temporal consis-
tent HOI masks (right).

Original Captions:
#C C adjusts a mug on a weighing plate

Spatial-Aware Captions:
 #C C adjusts a small mug on a weighing 
plate with the left hand,  it slightly to the 
right and downward, while the right hand 
maintains contact with the stationary 
object

Original Video Inconsistent HOI Boxes

Temporal Consistent HOI Masks Spatial-Aware Captions

Figure 5: Example of generalizable data con-
struction. For better visualizations, we blur the
background to highlight HOI regions.

Text sampling strategy. We examine the impact of text sampling strategy on model performance. A
mixed sampling strategy that includes both enriched and original texts for pretraining yields stronger
results by leveraging both detailed and simplified textual information.

Batch size. The experiment results show that increasing batch size steadily improves performance.

4.4 More Analysis

Quantitative analyses of the HOI mask generation pipeline. To evaluate the reliability of the HOI
detector and SAM2 model in the egocentric domain, particularly for hand-object interactions, we
evaluate the image-based HOI segmentation on the VISOR dataset [13]. The results are presented
in Table 8. The supervised training model on VISOR serves as the upper bound for performance
comparison. While our generation pipeline does not fully reach the upper bound, it demonstrates
high-quality segmentation results. Notably, hand segmentation is significantly lower than the upper
bound, likely due to inaccuracies in HOI detection prompts and challenges in segmenting hand-
object interactions with SAM2 in cluttered egocentric backgrounds.

Qualitative analyses of the HOI mask generation pipeline. We firstly compare inconsistent HOI
bounding boxes from HOID [63] (frame-by-frame detection) with spatial-temporal HOI masks gen-
erated by combining HOID [63] and SAM2 [59] in Figure 4. The HOI boxes detected by HOI
detector often lose tracks, since they are detected by an image-based model. Our pipeline achieves
consistent HOI tracking across frames, offering more precise HOI labels. Figure 5 presents that our
data construction pipeline is useful even when HOI regions are small and the background is noisy.

5 Conclusion

In this work, we present EgoDTM, a novel egocentric 3D-aware video-language model. EgoDTM
integrates dual transformer encoders with a lightweight 3D-aware depth decoder, trained using
video-text contrastive learning and depth estimation objectives. To enable large-scale pretraining,
we generate millions of depth maps and spatially enriched captions by leveraging foundation mod-
els. The captions are enhanced through a detect-track-generate pipeline specifically tailored for
egocentric videos. EgoDTM demonstrates intuitive generalization in estimating depths in unseen
environments. Extensive experiments across diverse benchmarks, spanning short video understand-
ing, 3D understanding, and long video understanding, validate the effectiveness of our approach.

Discussions. While EgoDTM demonstrates strong performance in egocentric hand-object interac-
tion scenarios, its generalization to broader indoor scenarios remains limited. Further exploration
may include integrating 3D-aware visual encoders into multimodal large language models to en-
hance spatial awareness. Moreover, pretraining large-scale spatial-aware egocentric models with
richer 3D signals, as explored in VGGT [71], remains a promising yet challenging direction.
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[5] Alexey Bochkovskiy, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan Richter,
and Vladlen Koltun. Depth pro: Sharp monocular metric depth in less than a second. In The Thirteenth
International Conference on Learning Representations, 2025. 2

[6] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A large-
scale video benchmark for human activity understanding. In Proceedings of the ieee conference on com-
puter vision and pattern recognition, pages 961–970, 2015. 25

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer vision,
pages 213–229. Springer, 2020. 4

[8] Dibyadip Chatterjee, Fadime Sener, Shugao Ma, and Angela Yao. Opening the vocabulary of egocentric
actions. Advances in Neural Information Processing Systems, 36, 2024. 2

[9] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia. Spa-
tialvlm: Endowing vision-language models with spatial reasoning capabilities. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14455–14465, 2024. 3

[10] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 1290–1299, 2022. 4

[11] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kaza-
kos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. The epic-kitchens
dataset: Collection, challenges and baselines. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), 43(11):4125–4141, 2021. 1, 2, 5, 7, 9, 25

[12] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No]
” provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction explains contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are discussed in Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theory is included in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain all details in experimental setups.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the data and code, with sufficient instructions to
reproduce our main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details in experimental setups and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: To ensure fairness, all settings are kept the same.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explain the computational resources we use in experimental setups.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research aims to promote the development of related fields. We are
unable to predict the impact this research will have on society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]
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Justification: We employed open-source models and open-source datasets. They are rea-
sonably safe.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are credited, and
the license and terms of use are mentioned.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: The documentation will be provided alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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We provide additional details, extended experimental results, and further discussion in this supple-
mentary material, including:

• Implementation details: background of foundation models (Appendix A.1), dataset details (Ap-
pendix A.2), and experimental details (Appendix A.3).
• Additional quantitative results: analyses and evaluations (Appendix B).
• Additional qualitative results: Examples and visualizations to complement the main results (Ap-
pendix C).
• Discussion on related works: Insights and comparisons with prior research (Appendix D).

A Implementation Details

A.1 Background of Foundation Models

HOI Detector [63]. HOID is a robust system for detecting human hands and their interacting objects
in images. It is built upon Faster-RCNN [60], pretrained on 100K image dataset with hand-object
interaction annotations, including hand bounding box, interacting object bounding box, hand side
(left or right), hand contact state (e.g., no contact, self-contact, other person contact, contact with
portable object, or contact with a non-portable object). To enhance its capabilities, HOID is further
trained with an additional 42K egocentric data samples, enabling improved understanding of HOI
from egocentric view. We leverage HOID to generate spatial HOI boxes, hand side, hand contact
state for each video, from 12 uniformly sampled frames per video. However, HOID often produces
temporally inconsistent box predictions across adjacent frames. To address this, we apply a robust
image and video segmentation model to refine the detection results, ensuring greater consistency
and accuracy.

Segment Anything 2 [59]. SAM2 is a versatile segmentation model capable of segmenting ob-
jects in both images and videos according to a given prompt, such as a point, box or mask, with
remarkable efficiency. It is trained on a large-scale SA-V dataset, comprising 50.9K videos and
35.5M high-quality masks. SAM2 employs a hierarchical image encoder and a memory mechanism
to handle streaming frame input. In our approach, SAM2 is utilized to generate the spatial-temporal
consistent HOI masks by leveraging prompts derived from HOID outputs.

Depth Anything 2 [77]. DAv2 excels in monocular depth estimation, offering fine-grained details,
strong generalization and efficient inference. It is built upon the pretrained visual foundation model
DINOv2 [46] and a depth decoder DPT [58]. Pretrained on 595K synthetic images and 62M pseudo-
labeled real images, DAv2 exhibits strong out-of-domain generalization. In our work, we use DAv2
to generate depth maps for eight frames sampled from egocentric videos, serving as supervision sig-
nals. Following the recommendations of DAv2, we employ the DAv2-Large variant, which produces
more spatial-temporal consistent depth maps.

DeepSeek-LLM [14]. We employ the LLM to interpret HOI information and enrich textual descrip-
tions with shape and movement details. DeepSeek-LLM demonstrates exceptional ability to follow
instructions and comprehend HOI mask prompts. Specifically, we use the DeepSeek API to access
their 200B-parameter LLM to facilitate these tasks.

A.2 Dataset Details

Ego4D [22]. Ego4D contains 3,670 hours of egocentric videos with dense narrations, covering
diverse scenarios and activities from worldwide. Each narration is timestamped and paired with a
free-form sentence. Following the approach in Zhao [87], we construct 4M video-text clip pairs
for pre-training, with an average clip length of 1 second (±0.9). In our text enrichment process,
we only keep those hand-object interaction clips performed by the camera wearer, where the text
begins with ‘#C‘ (denoting the wearer) and then follows HOI-related verbs and nouns. This strategy
excludes clips that record other people’s activities, such as multi-person interactions [61] where the
text begins with ‘#O‘, and the videos like ‘#C C walks away‘. For the natural language query task,
it comprises 1,659 untrimmed videos, each averaging 500 seconds in duration. On average, each
video contains 12 clip-query pairs. Following the official split from [22], we use 11,291 queries for
training and 3,874 for validation.

24



Epic-Kitchens [11]. Epic-Kitchens-100 (EK-100) consists of 100 hours of egocentric cooking
videos divided into training (67,217 clips), validation (9,668 clips), and testing (13,092 clips) splits.
Each clip includes start and end timestamps, a short textual narration, and a verb and noun class that
correspond to the narration. There are 3805 action classes, 97 verb classes, and 300 noun classes.
We evaluate our pre-trained model on the validation split.

EGTEA [34]. EGTEA comprises 28 hours of egocentric cooking videos, annotated with 10,321
instances of fine-grained actions across 106 classes. The average action duration is 3.2 seconds. For
our experiments, we use only the visual frames as input. We follow prior works [27, 87] and report
top-1 accuracy and mean class accuracy on all three test splits, including 2,022 testing instances for
each split.

H2O [29]. H2O is a dataset capturing egocentric hand-object interactions in a laboratory, including
36 action classes. The egocentric data is captured from an Azure Kinect camera mounted egocentri-
cally for recordings. Since our primary target is to evaluate the transfer learning capability of visual
representation, the train/val splits have 7862/11638 frames.

A.3 Experimental Details

Zero-Shot Video-Text Retrieval in EK100MIR and EgoMCQ. We perform video-text matching
with 16 frames as input for EK100MIR and 4 frames for EgoMCQ, following [86].

Zero-Shot Action Recognition in EGTEA. We follow the evaluation protocol proposed by [34]
to compute the mean performance across all evaluation splits. This involves performing video-text
retrieval between video clips and the action text labels, which are prompted by prepending ”#C C
...”. During inference, we apply three spatial crops of size 224× 224 from each 256× 256 frame of
10 video clip, averaging predictions across these crops to produce the final results.

Depth Estimation in H2O. The frozen visual encoder produces feature maps of dimension 768,
which are passed to a linear decoder to estimate depths with a resolution of 720×720. The model is
trained for 10 epochs with a batch size of 64 and a learning rate of 0.0005, where the first 1.5 epochs
serve as a warm-up phase. Our evaluation code is built upon Probing3D [18].

Robot Manipulation in Franka Kitchen. In Franka Kitchen environment, all baselines apply imi-
tation learning for visuomotor control. A policy network is trained for each task using observations
from the environment and video representation from EgoDTM. To adapt EgoDTM and LaViLa, we
repeat the image observation 4 times as video input. For each task, the experiment is conducted from
two different camera viewpoints for two random seeds using 50 randomly sampled trajectories. The
final result is the average of the success rate. Our codebase is built upon MPI [26].

Natural Language Queries on Ego4D. The task typically operates on a 6-minute video. Using the
video compression technique from [6], we compress the original video frames by 6 times to save
storage. Then we extract the features with the fps of 1.87 and sampling frame number 4. We takes
256 dimension global video features and 768 dimension BERT features as input. Our codebase is
built upon EgoVLP [36].

B Additional Quantitative Results

Modality mean-acc top1-acc top5-acc

RGB 61.6 68.2 87.4
RGB+Depth 62.5 69.5 89.2

Table 9: Multi-modal action recognition on
EGTEA using our predicted depths. We apply a
simple MLP to encode depth maps and perform
multi-modal feature fusion via late fusion.

Predicted depth contains valuable informa-
tion for action recognition. Since ground-
truth data is unavailable for directly evaluating
the depth decoder, we demonstrate the utility of
our predicted depth maps for multimodal action
recognition, as shown in Table 9. We simply
encode the depth map using an MLP at a 56p
resolution. The action recognition accuracy im-
proved by +1.4%, confirming that our predicted
depths contain meaningful information for un-
seen egocentric data.
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EgoDTM LaViLaTask: Turn Knob

Figure 6: Qualitative results of robot manipulations.

C Additional Qualitative Results

LLM Prompts. We use the LLM prompts in Figure 7 to enrich the texts with HOI shape and
movement information. Specifically, the shape information is provided by the HOI mask areas,
where the large, medium, small object occupies [0.1,1], [0.01, 0.1] and [0, 0.01] areas, respectively.

Generated Data. Examples of generated HOI boxes, HOI masks, depths, and enriched texts are
illustrated in Figure 8.

Case Study on Robot Manipulation. In Figure 6, the learned policy based on EgoDTM visual
representation enables the robot to approach the switch and turn it, while LaViLa successfully ap-
proaches but misses the switch.

D Discussions

Comparison with Related Works that Pretrained with Depth. ImageBind [21] and Language-
Bind [88] are the most relevant depth-based vision-language pretraining works. These methods em-
ploy multiple encoders to align various modalities within a unified feature space through contrastive
learning. While both methods utilize depth for pretraining, their application may be less impactful
when applied to conventional third-person datasets. In contrast, depth is essential for egocentric
perception, where spatial awareness is critical for understanding human indoor activities. Further-
more, their pretraining processes treat depth as an input rather than a prediction target, resulting in
depth features that lack pixel-level 3D information and video representations that remain unaware
of 3D structure. In our work, we aim to enable video representations to predict depth maps, thereby
embedding 3D awareness directly into the representations.

Potential for Real-World Applications. While our model demonstrates improvements over text-
pretrained models in both video understanding and robotic manipulation tasks, it falls short of state-
of-the-art performance of manipulation models. However, our model predicts more meaningful
depth maps in real-world settings than in simulations, offering promising potential for real-world
deployment.

26



Egocentric Video with HOI Masks

Input Prompt
Given the HOI-related information below, respond me with a new sentence following the above requirements.
Original text: #C C Cuts a cucumber on a chopping board with a knife. 
Possible left hand: []. 
Possible right hand: [[0.59, 0.92, 0.01, 'portable object contact'], [0.96, 0.96, 0.0, 'portable object contact'], [0.98, 0.88, 0.0, 'portable 
object contact'], [0.59, 0.92, 0.01, 'portable object contact'], [0.96, 0.96, 0.0, 'portable object contact'], [0.98, 0.87, 0.0, 'portable object 
contact'], [0.59, 0.93, 0.01, 'portable object contact'], [0.97, 0.95, 0.0, 'portable object contact'], [0.98, 0.86, 0.0, 'portable object 
contact'], [0.59, 0.93, 0.01, 'portable object contact'], [0.97, 0.94, 0.0, 'portable object contact'], [0.98, 0.84, 0.0, 'portable object 
contact'], [0.58, 0.93, 0.01, 'portable object contact'], [0.98, 0.93, 0.0, 'portable object contact'], [0.98, 0.82, 0.0, 'portable object 
contact'], [0.58, 0.93, 0.01, 'portable object contact'], [0.98, 0.92, 0.01, 'portable object contact'], [0.98, 0.81, 0.0, 'portable object 
contact'], [0.58, 0.93, 0.01, 'portable object contact'], [0.98, 0.91, 0.01, 'portable object contact'], [0.98, 0.8, 0.0, 'portable object 
contact'], [0.58, 0.93, 0.01, 'portable object contact'], [0.98, 0.91, 0.01, 'portable object contact'], [0.98, 0.8, 0.0, 'portable object 
contact'], [0.58, 0.93, 0.01, 'portable object contact'], [0.98, 0.9, 0.01, 'portable object contact'], [0.98, 0.78, 0.0, 'portable object 
contact'], [0.59, 0.93, 0.01, 'portable object contact'], [0.98, 0.89, 0.01, 'portable object contact'], [0.98, 0.78, 0.0, 'portable object 
contact'], [0.59, 0.93, 0.01, 'portable object contact'], [0.98, 0.88, 0.01, 'portable object contact'], [0.98, 0.77, 0.0, 'portable object 
contact'], [0.59, 0.93, 0.01, 'portable object contact'], [0.99, 0.88, 0.01, 'portable object contact'], [0.97, 0.76, 0.0, 'portable object 
contact']]. 
Hand (not sure which hand): []. 
Object1: [[0.45, 0.77, 0.0], [0.46, 0.78, 0.0], [0.46, 0.78, 0.0], [0.46, 0.78, 0.0], [0.46, 0.79, 0.0], [0.47, 0.79, 0.0], [0.48, 0.8, 0.0], [0.48, 0.8, 
0.0], [0.49, 0.8, 0.0], [0.49, 0.8, 0.0], [0.5, 0.8, 0.0], [0.51, 0.79, 0.0]]. 
Object2: []. 
Your response:

LLM Response
#C C holds a knife with the right hand, moving it downward to cut a small cucumber on a chopping board.

System Prompt
## Background
1. The user will provide information about a short egocentric video (12 frames) captured by one person using VR/AR, approximately one 
second long, with continuous frame box annotations. The annotations represent the center point and size of objects using the format: 
<length x, width y, area s, contact state (optional)>, where values range from [0, 1] indicating percentages of the length or width. The 
area is the product of length and width. The annotations may include up to four elements: the left hand, the right hand, an object 
related to the left hand, and objects being manipulated by the hands.
2. About the directions, smaller x means more left, larger x means more right, smaller y means more higher, larger y means more lower.
3. If the area is larger than 0.1, then the object is large object; if the area is larger than 0.01 but smaller than 0.1, then the object is 
medium size; if the area is smaller than 0.01, then the object is small object.
4. There are five possible contact states: no contact, self-contact (between the user's hands), contact with another person, contact with 
a portable object (e.g., an apple), or contact with a stationary object (e.g., furniture). 
5. Note that I can only assure the hands, but the types of left/right can not be guaranteed. Typically, if there exists two hands, the hand 
with lower x is the left hand, the hand with larger x is the right hand. Another you should notice is that, if there are mostly left hand but 
exists few right hand data, you should ignore the right hand data, vice versa.
## Response Requirements
1. You should interpret the hand-object interaction (HOI) in the video: Use the given text information to describe the interaction 
process, such as relevant relations, human actions and objects. Describe the hand positions, movement directions, and speed, as well as 
the sizes and positions of any objects.
2. Remember that the information in original text must be contained in your response. 
3. Your response should be a precise, fluent and unified natural language summary, restrictly using less than two sentences. I denote C 
as the user, please start your response with '#C C ...' .
4. Avoid using pronouns like 'their', 'his', 'her'. Never mention 'in the video', just express what happens.
5. Don't express the same thing twice. Never use parentheses i.e., (), to explain your meaning.
I will provide you the above mentioned information. The infomation will keep empty if the video does not have that type of object. 

Figure 7: LLM prompt strategy for generating enriched text from HOI masks and the original text.
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Original Text: #C C puts some glue on the wooden piece from the bottle of glue in his right hand.
Enriched Text: #C C applies glue to a wooden piece using a bottle held in the right hand, while the left hand remains stationary.

Original Text: #C C picks the dough
Enriched Text: #C C uses the left hand to pick up a small dough from a stationary surface while the right hand remains in contact 
with a small object

Original Text:#C C adjusts a mug on a weighing plate
Enriched Text: #C C adjusts a mug on a weighing plate with the left hand,  it slightly to the right and downward, while the right 
hand maintains contact with the stationary object

Original Text: #C C picks the bowl on the countertop
Enriched Text: #C C uses the right hand to steadily pick up a small bowl from the countertop.

Original Text: #C C holds the egg crate with his right hand,
Enriched Text: #C C holds a small egg crate with the right hand, moving it slightly to the right and downward.

Figure 8: Illustration of data generated by our data generation pipelines, including intermediate HOI
boxes, masks, and the enriched texts and depth maps used as supervision signals. The text that
includes HOI movements is marked blue, while the contents that include HOI spatial information
are marked red.
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