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ABSTRACT

Despite their ability to understand chemical knowledge, large language models
(LLMs) remain limited in their capacity to propose novel molecules with desired
functions (e.g., drug-like properties). In addition, the molecules that LLMs propose
can often be challenging to make, and are almost never compatible with automated
synthesis approaches. To better enable the discovery of functional small molecules,
LLMs need to learn a new molecular language that is more effective in predicting
properties and inherently synced with automated synthesis technology. Current
molecule LLMs are limited by representing molecules based on atoms. In this pa-
per, we argue that just like tokenizing texts into meaning-bearing (sub-)word tokens
instead of characters, molecules should be tokenized at the level of functional build-
ing blocks, i.e., parts of molecules that bring unique functions and serve as effective
building blocks for real-world automated laboratory synthesis. This motivates us to
propose mCLM, a modular Chemical-Language Model that comprises a bilingual
language model that understands both natural language descriptions of functions
and molecular blocks. mCLM front-loads synthesizability considerations while
improving the predicted functions of molecules in a principled manner. Experi-
ments on 430 FDA-approved drugs showed that mCLM is capable of significantly
improving chemical functions critical to determining drug potentials. mCLM, with
only 3B parameters, also achieves improvements in synthetic accessibility relative
to 7 other leading generative AI methods including GPT-5. When tested on 122
out-of-distribution medicines using only building blocks/tokens that are compatible
with automated modular synthesis, mCLM outperforms all baselines in property
scores and synthetic accessibility. mCLM can also reason on multiple functions
and iteratively self-improve to rescue drug candidates that failed late in clinical
trials (“fallen angels”). *

1 INTRODUCTION

Small molecules—the class of chemical matter primarily built from carbon atoms bonded together—
can perform a wide range of important functions in human society (Zhang et al., 2025). These
include essentials like promoting health by acting as medicines (Zheng et al., 2024; Edwards et al.,
2024b; Singhal et al., 2023; Thirunavukarasu et al., 2023; Xiao et al., 2024a), converting energy by
functioning as key components in solar cells (Nguyen et al., 2024b; Lv et al., 2021; Li et al., 2023b;
2024b; Si et al., 2024), and achieving sustainability by serving as inherently recyclable products.
These functions also include many nice-to-haves that drive substantial economic growth, including
colorants, flavorings, perfumes, cosmetics, coatings, quantum dots and insect repellants.

The traditional approach for small molecule synthesis is highly artisanal, and thus slow and expensive:
(1) It is unfriendly to automation: machines are not good at performing thousands of reaction types,
with each run under thousands of possible conditions and using millions of possible starting materials.
(2) It leads to an undemocratized landscape in drug discovery. With development costs averaging
around $1.3 billion per drug, only economically advanced countries can afford to invest in such high-
risk research (Kneller, 2010). It also excludes potential breakthroughs from the developing world and
inhibits research that could prevent diseases prevalent there. Moreover, participation in the process of

*All codes, data, and models will be released publicly upon publication.
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Figure 1: mCLM adopts a modular chemical vocabulary, which uses synthesis robot-friendly molecu-
lar building blocks as tokens together with natural language tokens. Compared with using natural
language names, SMILES strings, or holistic embeddings for whole molecules, this building block
level of tokenization better enables the prediction of compounds with improved properties, and
guarantees automated synthesizability a priori, thus building a direct link between the digital and
physical worlds. This approach stands to substantially enable AI-guided discovery of new small
molecules with targeted functions.

molecular innovation currently requires access to highly trained experts in chemical synthesis. As a
result, there are no effective drugs for many diseases such as Parkinson and Amyotrophic Lateral
Sclerosis. (3) Most importantly, there are many instances of known commercial drugs or materials
that have well-documented limitations that have remained unaddressed. For example, Imatinib is an
important anticancer drug that works well in most parts of the body, but it only poorly penetrates
the blood-brain barrier (Takayama et al., 2002; Senior, 2003; Coutre et al., 2004; Isobe et al., 2009).
This means it may effectively treat cancer at its primary site, yet fail to prevent fatal brain metastasis.
In such cases, more blood-brain-barrier penetrant molecules that retain all of the other favorable
properties of the current drug are desired, but making such selective modifications in functional
properties can be very challenging. As another example in the materials domain, 350+ million
people in Asia and the Pacific have only limited access to electricity, and 150 million people still
have no access at all. Organic photovoltaic (OPV) molecules are expected to be more economical
and environment-friendly alternatives to current solar cells. However, current commercialized OPV
devices either achieve less than 10% energy conversion efficiency—significantly lower than traditional
silicon solar cells—or have stability far short of 10 years (Solak and Irmak, 2023).

An alternative block chemistry approach for small molecule synthesis has recently emerged (Gillis
and Burke, 2007; Woerly et al., 2014; Li et al., 2015a; Lehmann et al., 2018; Trobe and Burke, 2018;
Blair et al., 2022a; Angello et al., 2022; Wang et al., 2024; Strieth-Kalthoff et al., 2024a). Block
chemistry is iterative carbon-carbon bond-forming chemistry that machines can do. It iteratively
assembles small molecules from prefabricated building blocks using chemistry that is simple and
general and thus readily automated. Akin to automated DNA, RNA, and peptide synthesis platforms,
a major strength of this block-based approach is that it can access billions of novel small molecules
with high degrees of functional potential using only a few automation-friendly reactions and a
bounded set of pre-fabricated function-infused building blocks. We specifically recognized that this
block-based approach provided an opportunity to create a new modular language for chemistry. The
idea that molecules and their synthesis may be best understood from the perspective of a “chemical
language” dates back to 2014 (Cadeddu et al., 2014), where structural fragments and functional
groups play the roles of “chemical words”. This view is supported by multiple observations aligned
with natural language: (1) they can be decomposed and reassembled, (2) they exhibit ambiguity—the
same building block can perform vastly different functions depending on the chemical context, and
(3) they possess significant diversity, as many different structures can lead to the same function. This
linguistic parallel suggests the potential to train a large language model specifically for molecules by
linearizing their structures into modular sequences.

A common representation for such an approach is the Simplified Molecular Input Line Entry System
(SMILES; Weininger, 1988), where atoms are denoted by one- or two-character symbols (e.g., C
for carbon, Br for bromine, and F for fluorine), rings are represented with numbers, and branches
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are indicated using parentheses. However, such atom-level tokenization strategies (e.g., SMILES
(Weininger, 1988) or SELFIES (Krenn et al., 2020)) resemble character-level natural language
models, which struggle to generalize effectively. Unlike proteins, which have a fixed vocabulary of
20 amino acids, small molecules exhibit an open vocabulary when each atom is treated as a token,
as illustrated in Figure 1. It also causes severe restrictions in practicality because many of the new
structures proposed by LLMs based on atom-level tokenization are not practically synthesizable in
the laboratory. This approach has created a major gap between what is now possible in silico and
what is possible in the physical world.

Furthermore, the SMILES representation can obscure critical structure information: two atoms that
are direct neighbors in the molecular graph may be distantly separated in the SMILES string. Even
with recent efforts to align SMILES and natural language description (Edwards et al., 2022a; Pei et al.,
2024; Ahmad et al., 2022), integrate chemical properties and functional groups (Nguyen et al., 2025)
into SMILES, incorporate 3D geometric information (Fu et al., 2025; Li et al., 2025a), and employ
graph neural networks to capture molecular graphs and chemical reaction contexts (Wang et al.,
2022a), these representations still fail to encapsulate functional knowledge that is often described
only in natural language literature because the inherent properties and functions of molecules are
hidden in their structure, composition, and interaction.

Therefore, our goal is not to make all drug-like molecules, rather, our goal is to figure out how to make
the right ones, better, faster, stronger. Unlike machines, human scientists are inherently “multilingual,”
seamlessly navigating diverse modalities—from natural language and scientific figures in literature to
complex scientific data such as molecular structures in knowledge bases. In contrast, most prior work
on molecule discovery trains large language models on a single modality. Moreover, Human scientists
“think before they talk,” grounding their reasoning in deeply reflective and deliberate reflection and
critical evaluation to generate new hypotheses. Current models lack this critical thinking capacity,
limiting their ability to contribute meaningfully to discovery. In particular, the human body is a highly
complex, interconnected system, and drug discovery is essentially a multi-objective optimization
problem. It involves balancing factors such as drug absorption, first-pass metabolism, bioavailability,
distribution, protein binding, and clearance. However, improving one property often comes at the
expense of another. Many promising drug candidates have failed in the final stages of FDA approval
due to an unacceptably high risk of drug-induced liver injury.

Against this backdrop, we argue that there is a correctable fundamental mismatch between the way
LLMs work and the way chemists traditionally synthesize and study small molecules. Reducing
tokenization granularity to the level of individual letters is counterproductive, as it complicates
meaning extraction and increases the likelihood of generative AI hallucinate words that don’t exist.
Analogous limitations are inherently linked to atom-based tokenization. And as a result, unfortunately,
much of the generative AI research for scientific discovery within the computer science community
does not extend to hypothesis verification in the physical world. To bridge this gap, in this paper,
we propose a novel LLM by drawing inspiration from the scientific discovery process itself. We
aim to develop a science-inspired large language model that follow three principles: (1) “Observe”
- acquire, represent and integrate knowledge from multiple data modalities; (2) “Think” – think
critically to generate hypotheses; and (3) “Propose” – verify hypotheses through the Physical World.
We aim to teach computers to speak two complementary languages: one that represents molecular
building blocks (i.e., subgraph structures) indicative of specific functions and compatible with
automated modular assembly, and another that describes these functions in natural language (Figure 2).
Unlike existing approaches that add such knowledge as a post hoc step, we develop a function- and
synthesis-aware modular chemical language model (mCLM). Inspired by bilingual speakers who
frequently “code-switch” (naturally and often switch between their two languages within the same
message; Poplack, 2013), we propose a novel neural encoder that integrates molecular structure
and natural language. mCLM incorporates both function- and synthesis-related knowledge into the
small molecule tokenization process a priori. First, we tokenize small molecules at the level of
building blocks (graph substructures) that are able to predict function and are, by design, flexible,
multi-scale, fully compatible with automated modular small molecule synthesis. We use graph
neural networks to encode each building block. We then extract natural language sentences from the
literature that describe the molecule’s functions and chemical reactions and synthesis constraints of
various molecules, and seamlessly insert the encoded building blocks alongside the corresponding
entity names to form the training data, as illustrated in Figure 2. By reasoning on such functional
building blocks, mCLM guarantees to generate efficiently synthesizable molecules thanks to recent
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Figure 2: An overview of the mCLM. It is a multimodal chemical-language model that tokenizes
molecules into synthesis robot-friendly building blocks, thus creating a direct link between the digital
and physical worlds. After being trained on datasets consisting of properties, functions and synthesis
data, the mCLM can conduct critical chemical reasoning through an iterative refinement process.
progress in block-based chemistry, while also improving the functions of molecules in a principled
manner. During model inference, mCLM enables these functional modules to be predictably and
automatically assembled into molecules with desired functions.

Compared to previous work, mCLM has multiple potential advantages of encoding and generating
molecules at a modular level:
1. Synthesis efficiency: proposed molecules can be faster and more broadly makeable because the

process is, by design, simple, iterative, general, and machine-friendly. This can enable rapid
iterative drug and material development via seamless integration with automated lab experiments.

2. Multimodal understanding: resembling the mechanism of natural language tokenization, molec-
ular modularization provides a more natural interface to align with word representations to form a
more powerful multimodal representation.

3. Deliberate reasoning: leveraging LLMs’ instruction following capability and wide-scale pretrain-
ing, mCLM is able to iteratively refine molecules based on knowledge of molecular functions.

2 THE MODULAR CHEMICAL LANGUAGE MODEL

In natural language modeling, tokenization identifies common substrings (such as words and sub-
words), which carry richer semantic information than sequences of characters. Similarly in nature,
most small molecules are composed primarily of connected building blocks (Lehmann et al., 2018;
Trobe and Burke, 2018). There is likewise a high degree of inherent modularity in many medicines
and materials (Ertl and Schuhmann, 2019; Arkan et al., 2020; Andrews et al., 1984; Vitaku et al.,
2014).To leverage the phenomena in chemistry and borrow the spirit from natural language modeling,
we propose mCLM, a multimodal model that jointly encodes and understands natural language
and molecules based on synthesis-friendly building blocks instead of atoms. In Section 2.1, we
introduce the concept of molecular building blocks as a chemical “vocabulary” and describe the
tokenization process to obtain the library of building blocks. Then in Section 2.2 we describe the
mCLM architecture and its training. Finally, we introduce the reasoning mechanism of mCLM which
refines molecule design over multiple iterations in Section 2.3.

2.1 A FUNCTION-INFUSED AND SYNTHESIS-FRIENDLY VOCABULARY

In this work, we propose to leverage a chemical vocabulary V of synthesis-friendly building blocks.
This approach guarantees capacity for automated iterative assembly first reported in 2015 (Li et al.,

4
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2015b) and, since then, demonstrated in multiple experimental campaigns including Strieth-Kalthoff
et al. (2024b) and Angello et al. (2024). The blocks can be chemically connected using predefined
synthesis rules in a short period. Briefly, akin to language models developed for peptides/proteins,
small molecules can be assembled automatically from makeable building blocks. These building
blocks are often highly associated with chemical functions, such as binding to protein targets,
modulating enzyme activity, or affecting involved metabolic processes. This will enable rapid
and iterative proposal of new small molecules, automated synthesis of those small molecules, and
generation of the corresponding functional data on demand. In contrast to SMILES strings which
break molecule structure during graph linearization (e.g., separating physically adjacent subgraphs
such as the two carbons in molecule C(N)C), our representation is linear in the physical world.

Tokenization Rules

Buchwald-Hartwig
Coupling

Suzuki-Miyaura
Coupling

Amide
Coupling

Used for pretraining

Fail

Synthesis-Guaranteed
Tokenizer

Tokenization rules 
+ Chemical constraints to
guarantee synthesizability

Coverage Check

Check structural coverage
of target using generated tokens

Rule-based Tokenizer

Tokenization rules only
ensures full coverage

Pass

Figure 3: An overview of the tokenization process. A functional molecule is first processed by
the synthesis-guaranteed tokenizer to produce a set of building blocks compatible with automated
modular synthesis. These blocks are then evaluated via a structure coverage check to determine
whether they fully reconstruct the original molecule. If coverage is complete, the blocks are used
directly for pretraining. Otherwise, the molecule is reprocessed using a rule-based tokenizer to ensure
full representation for training purposes.

During dataset construction, we combine two tokenization strategies to balance coverage and synthetic
feasibility: a synthesis-guaranteed tokenizer and a rule-based tokenizer (Figure 3). The synthesis-
guaranteed tokenizer disconnects the molecule only at bonds that can be formed by a predetermined
small set of reactions that can be performed in an automated manner. Specifically, it only permits
bond disconnections that correspond to reactions compatible with state-of-the-art automated synthesis
platforms. These three bonds are: amide coupling, Suzuki-Miyaura coupling, and Buchwald-Hartwig
coupling (see Figure 3 tokenization rules; Tyrikos-Ergas et al., 2025). The disconnection rules are
adapted from well-established principles in block-based and automated chemistry (Blair et al., 2022b;
Li et al., 2015b). Qualitative examples of tokenization are included in the appendix F, and the full
rules and tokenizer code will be released with documentation. Importantly, the tokenizer is modular:
as new automated reactions are validated in practice, their corresponding disconnection rules can
be readily incorporated, expanding the makeable chemical space without requiring fundamental
architectural changes. Unlike traditional retrosynthesis tools that prioritize maximum coverage or
human-designed heuristics, this tokenizer is guided by the operational constraints of block chemistry.
It also ensures that resulting blocks are free from functional group conflicts that would interfere
with downstream synthesis. This conservative approach leads to a set of molecular tokens that are
guaranteed to work under defined synthesis protocols, enabling seamless transition from model-
generated output to real-world synthesis. When the synthesis-guaranteed tokenizer cannot fully cover
a molecule—due to chemical incompatibilities or reaction constraints—we fall back on a rule-based
tokenizer to ensure coverage of a larger variety of molecules. The rule-based tokenizer also breaks
molecules along the same automated machine-friendly bonds as the above tokenizer. However, no
other rules are applied beyond specifying a minimum size for blocks. This rule-based tokenizer
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is used only during training to support learning on diverse molecular structures while maintaining
consistency with synthesis logic. We note that the vocabulary growth is analogous to the shift from
character- level to subword-level tokenization in natural language, where larger but semantically
meaningful tokens significantly improved performance.

2.2 CHEMICAL-LANGUAGE MODELING

Figure 2 illustrates the architecture of mCLM. The model is a sequential generative model that
processes molecule and text sequences in a unified manner. It adopts a Transformer architecture,
which is well-suited for handling sequential data and allows for using pre-trained language models
as a backbone. After tokenizing the molecules as mentioned in the last section, we encode each
building block using graph neural networks (GNNs; Edwards et al., 2024a; Sprueill et al., 2024;
Gasteiger et al., 2021) before passing them through an adaptor module. These representations are then
concatenated with natural language embeddings at positions where molecule entity names appear.
This results in a form of “code-switched” language which blends molecular structures with natural
language descriptions. The feature sequence is then fed into a Transformer decoder-only architecture,
which predicts the next token based on previous tokens. This allows for pre-training the model on a
large corpus of multi-modal data, enabling it to learn and “talk about” the relationships between the
different modalities and their respective representations.

We train mCLM on top of open-source pretrained large language models (we adopt Qwen2.5 Yang
et al. (2024) as the starting point), allowing us to leverage their natural language understanding and
reasoning capabilities without incurring the computational cost of training from scratch. As the
training objective, we adopt a unified categorical cross-entropy (CCE) loss applied to both natural
language and molecular tokens:

L = H(P (x), Pθ(x)), logit
(
Pθ(v | x1···i−1)

)
=

{
c⊤i ev, v ∈ Vnatural language

c⊤i fψ
(
GNNϕ(v)

)
, v ∈ Vmolecular building block

Specifically, the cross-entropy loss is computed between the ground truth distribution P (x) and the
model distribution Pθ(x) over the combined vocabulary of natural language and molecular building
blocks. The model generates logits for the next token v by computing the dot product between
the contextual representation ci with token embeddings. ci is produced by the Transformer given
the previous tokens x1···i−1 = [X1, · · · , Xi−1]). For natural language tokens, the embedding ev is
directly taken from the pretrained natural language model. The embedding for molecular building
blocks is computed by passing the building block’s graph through a GNN, followed by a linear
adapter function fψ to project it into the same embedding space. This formulation enables joint
training over both modalities using a single loss function. We train on approximately 1 million
examples consisting of the 1,000 most frequent molecular building blocks, sampled from a new
dataset we constructed. This dataset contains over 36 million molecular instructions, 1,000 tasks, and
8 million molecules. More details on the training procedure are described in Appendix E. Notably,
the architecture of mCLM is compatible with larger vocabularies, and we anticipate future scaling
studies as computational resources permit.

2.3 CRITICAL CHEMICAL REASONING

Chemical reasoning over molecules often involves optimizing multiple functions, such as toxicity,
bioactivity, and binding affinity. Therefore, it is not a straightforward task to propose an ideal
molecule structure, especially with only a single attempt. Optimizing one function may lead to
trade-offs in others. For example, many drugs with higher potency were rejected due to increased
toxicity to patients. To address this, we propose a reasoning process that allows the model to refine
its own generated molecules and iteratively improve their desired functions. At each iteration, we
evaluate the properties and identify one that still requires improvement, and mCLM proposes a
modification of the molecule targeting this property. This process is repeated until a maximum
number of iterations is reached. This process is summarized in Appendix Algorithm 1.

3 EXPERIMENTAL EVALUATION

3.1 CREATING ORACLE MODELS FOR EVALUATION

To evaluate the performance of our generated molecules, we construct oracle models focused on
Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) property prediction. We select
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6 tasks from the Therapeutics Data Commons (TDC) benchmark (Huang et al., 2021): AMES
(mutagenicity), BBBP (blood-brain barrier permeability), CYP3A4 inhibition (metabolism), DILI
(drug-induced liver injury), HIA (human intestinal absorption), and PGP (P-glycoprotein substrate
classification). The detailed training procedure is described in Appendix D.2.3.

3.2 IMPROVING FDA-APPROVED DRUGS WITH OUT-OF-VOCABULARY BLOCKS

In practice, real-world drug discovery is often driven by the optimization of known molecules, as
existing approved drugs offer a more direct and promising path to safe and effective new drugs.
Therefore, we evaluate mCLM’s drug proposal capability in improving FDA-approved drugs. Specif-
ically, we apply the mCLM to improve the 6 properties for all FDA-approved drugs consisting of
synthesis-guaranteed blocks. This amounts to 122 molecular structures and 153 unseen blocks. We
confine the output vocabulary of mCLM to 582 synthesis-guaranteed blocks. Most of these drugs
(120/122) contain blocks that were not present in the 1,000-block training vocabulary, presenting an
opportunity to examine how the mCLM works on out-of-distribution molecules. Results in Table 1
show that improvements are achieved for all properties†. This shows that mCLM is not limited to
a fixed vocabulary but can generalize beyond its training coverage. We also compare our approach
against a wide range of strong text-based molecule editing baselines, including MoleculeSTM (Liu
et al., 2022), FineMolTex (Li et al., 2025b), GPT-4o, GPT-5, Gemini-2.5-Flash (Gemini-2.5-F),
LDMol (Chang and Ye, 2024), and Claude 3.5 Haiku (Claude-3.5-H). Despite the fact that all of the
baseline models are allowed to generate without synthesis guarantees, their average improvements
fall behind mCLM.

Table 1: Average pharmacokinetic and toxicity properties of FDA drugs composed of synthesis-
guaranteed blocks, as well as their proposed modifications. (↓: lower is better, ↑: higher is better).
Green = better than FDA, Red = worse, Light green bold = best overall per column.

Model AMES (↓) BBBP (↑) CYP3A4 (↓) DILI (↓) HIA (↑) PGP (↓) Avg. Improv.
FDA Drug 47.8 61.4 2.1 60.1 98.96 64.6 0.00 %
MoleculeSTM 47.1 63.4 2.2 59.3 98.76 64.1 0.31 %
FineMolTex 47.5 66.0 2.4 59.5 98.84 64.0 -1.43 %
LDMol 49.0 63.5 2.5 57.5 99.0 67.6 -3.07 %
GPT-4o 46.0 72.1 2.2 60.8 99.3 65.2 2.45 %
GPT-5 49.1 70.2 2.4 61.2 99.2 65.0 -0.82 %
Claude-3.5-Haiku 49.3 72.2 2.2 58.6 98.3 65.7 1.64 %
Gemini-2.5-Flash 45.0 72.5 1.8 58.1 99.1 64.5 6.98 %

mCLM (Ours) 44.4 85.2 1.4 53.7 98.99 64.4 15.0 %

The key to expediting the drug creation process is to discover potent molecular candidates that are
simultaneously synthesis-friendly. While mCLM shows strong property editing results, its key benefit
lies in its synthesis-friendly nature. We assessed the synthesizability of generated molecules by
computing synthetic accessibility (SA scores) (Ertl and Schuffenhauer, 2009) as a quick heuristic
(see Table 3). Then, as a more rigorous assessment, we consider Allchemy, which is the state-
of-the-art retrosynthesis software (Wołos et al., 2022; Strieth-Kalthoff et al., 2024c). Allchemy is
computationally expensive, but it evaluates synthesizability to the best of publicly available human
chemical knowledge. For example, it finds synthetic routes for 98.1% of the FDA-approved molecules.
We select the top 3 models by SA score (mCLM, MolSTM, and FineMolTex) and randomly sample
200 generated molecules from each to be assessed by Allchemy on a supercomputing cluster.

Table 2: Synthetic accessibility (SA), validity, and retrosynthetic results across baselines. Synth
indicates a retrosynthetic route was found. Makeability =Valid × Synth.

Model SA Valid (%) Synth. (%) Make. (%)
FDA 2.70 100.0 98.11 98.11
MoleculeSTM 2.64 93.85 90.34 84.78
FineMolTex 2.59 94.26 90.15 84.98
mCLM (Ours) 2.41 100.0 98.23 98.23

†We also test a different distribution of 430 non-synthesis-guaranteed FDA drugs in Appendix A.2.
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As shown in Table 2, molecules proposed by mCLM are 100% valid (syntactically correct) and
98.2% synthesizable, which is superior even to the FDA drugs. In contrast, MoleculeSTM outputs
are valid only 93.9% of the time, and among those, only 90.3% are predicted to be synthesizable
using exhaustive retrosynthesis search. Out of MoleculeSTM-generated molecules, only 84.8% can
be made (93.9× 0.903 = 84.8).

3.3 LIBRARY DESIGN: IDENTIFYING FUNCTIONALLY-IMPORTANT BLOCKS

As a by-product, mCLM is also able to identify blocks which are preferred for certain functions.
This can help inform virtual screening campaign design (e.g., which 10 blocks should we use to
get the best chemical space for BBBP?), and it can also be useful for stimulating scientific inquiry.

mCLM

mCLM

mCLM

mCLM

Figure 4: Four of the most frequent
mCLM-proposed modifications to im-
prove DILI in FDA-approved drugs.

As an example, we calculated the most frequent modifi-
cations preferred by the mCLM to improve DILI in FDA
drugs (Figure 4). Notably, modification 3 resembles a
newly discovered modification for reducing amphotericin
B toxicity by human scientists in Maji et al. (2023).

3.4 CASE STUDY: MULTI-STEP
REASONING TO RESURRECT THE “FALLEN ANGELS”

There are many new drug candidates that almost reach
FDA approval but fall short for various reasons when
tested in clinical trials. For example, Evobrutinib is
a Bruton’s tyrosine kinsase (BTK) inhibitor that went
through clinical trial as a drug for relapsing Multiple
Sclerosis. However, the FDA placed a partial clinical
hold on Phase III trials in April 2023 after two patients
showed signs of drug-induced liver injury (Montalban
et al., 2024). TNG348 is a USP1 inhibitor designed for
treating BRCA1/2-mutant and HRD cancers, but it failed
in phase 1/2 clinical trials due to liver abnormalities (Inc,
2024; Simoneau et al., 2025). These “fallen angels” repre-
sent tremendous opportunities for impactful engagement
of the AI/chemistry interface, because much is known about the strengths of each of these small
molecules, and it is also known why they fell short. Fixing such fallen angels is a high leverage
opportunity for the function-infused mCLM to contribute.

DILI:     75.8
PGP:    59.2
AMES: 63.6

Drug name: 
Evobrutinib
Target: BTK
Reason for
failure:
Liver toxicity

Drug name: 
TNG348
Target:
USP1 enzyme
Reason for
failure:
Liver toxicity

DILI:     82.7
PGP:    59.3
AMES: 77.2

DILI:     75.4
PGP:    58.4
AMES: 52.2

84.8DILI:
100BBBP:
0.35CYP3a4:

73.3
2.31
2.48

DILI:
BBBP:
CYP3a4:

69.3DILI:
100BBBP:
2.06CYP3a4:

64.7DILI:
100BBBP:
1.30CYP3a4:

Decrease DILI

Decrease PGP Decrease AMESDecrease DILI

Increase BBBP Decrease CYP3a4

DILI:     50.0
PGP:    67.6
AMES: 40.2

Figure 5: Examples of fallen angel property modification.
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Figure 5 shows an application of the mCLM, without synthesis restrictions on the vocabulary, to these
two molecules. For both, the initial step is to optimize DILI, the reason the drugs failed in clinical
trials. Following that, the mCLM fixes other properties which were made worse in the previous
attempt (PGP for Evobrutinib and BBBP for TNG248). For good measure, another property of each
molecule is then improved. Notably, at each step, the mCLM only makes minor modifications to
each drug of roughly 1 building block. While the mCLM shows promising results for repairing these
drugs, it is worth noting that drug discovery is a many-objective optimization problem. While we are
able to generate molecules with improved toxicity relative to Evobrutinib and TNG348, as well as
other properties, yet other important properties may still have been compromised. Future work may
want to investigate longer reasoning chains across a wider variety of properties. For comparison, we
show a (less-successful) version of this experiment using MoleculeSTM A.3.

4 RELATED WORK

Protein language models (Lin et al., 2023; Hayes et al., 2025; Wang et al., 2025b; Madani et al., 2023;
Xiao et al., 2024b; Su et al., 2024; Buehler and Buehler, 2024; Wang et al., 2025a; Zhu et al., 2024;
Ferruz et al., 2022) have been highly successful because proteins/peptides are tokenized at the level
of amino acid building blocks (which are akin to the words in a sentence). This makes it possible to
associate the sequences of these building blocks with the fold and function of proteins, and then the
corresponding building blocks can be assembled into targeted sequences.

Inspired from the successes of protein LLMs, LLMs have been increasingly applied in computational
chemistry (Zhang et al., 2024a;b; Fang et al., 2023; Livne et al., 2024; Pei et al., 2023; Zhao et al.,
2024; 2023; Yu et al., 2024; Ye et al., 2025; Liu et al., 2023b; Li et al., 2024c; Liu et al., 2024a;
Taylor et al., 2022). Recent work has further explored cross-modal modeling of molecule and
language (Edwards et al., 2022b; Liu et al., 2022; Li et al., 2025b; Chang and Ye, 2024). General-
purpose LLMs such as GPT-4o (OpenAI, 2025a), GPT-5 (OpenAI, 2025b), Gemini-2.5-Flash (Google
DeepMind, 2025), and Claude-3.5-H (Anthropic, 2025) show multimodal reasoning capabilities.
However, most molecular language models still rely on atom-level (Wang et al., 2019; Ahmad
et al., 2022; Zhou et al., 2023; Xia et al., 2023) or Byte-Pair Encoding on SMILES (Chang and Ye,
2024), and thus they often produce invalid tokens, misalign with chemical structures, and generate
unsynthesizable molecules. To address these limitations, other approaches incorporate functional
groups and fragments into molecular representations (Li et al., 2023a; Nguyen et al., 2024c; Han
et al., 2023; Jin et al., 2024; Nguyen et al., 2024a; Wang et al., 2023; Zhang et al., 2020; 2021),
capturing both atomic- and group-level information. However, these methods tend to break molecules
at bonds that are difficult or even impossible to form through chemical reactions. In contrast, our
mCLM decomposes small molecules into function-infused and synthesis-friendly building blocks
and integrates synthesis constraints early in training, akin to the way peptide/protein LLMs tokenize
at the amino acid level.

5 CONCLUSIONS AND FUTURE WORK

We have developed a function- and synthesis-aware modular Chemical-Language Model (mCLM),
as the first attempt to jointly model natural language sequences with modular chemical language.
By design, the mCLM only generates chemical building blocks that can be iteratively assembled
on robotic small molecule synthesis platforms, enabling the rapid creation of novel molecules with
desired functions, all accessible by non-specialists. In the future we aim to incorporate richer
multimodal knowledge related to physical and chemical properties from 2D/3D molecular structures,
protein, cell lines and nucleic acid sequences to further enable the mCLM to reason on biological
activity, protein docking knowledge, and individuals’ genetic profiles. We plan to extend chemical
reasoning to additional aspects such as filling in unspoken knowledge gaps, thinking outside of
the box, System 2 thinking for counterfactual reasoning and plausibility prediction, and resolving
conflicting claims. We also plan to leverage more physical constraints from simulation tools and
chemical and reaction knowledge bases. In the long term, we envision the mCLM as part of a
comprehensive, multi-agent, human-in-the-loop autonomous laboratory, structured around iterative
cycles of reasoning, proposal, synthesis, physical testing, feedback, and reasoning to enable never-
ending self-improvement and co-evolvement with human scientists.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In section 3.1 and D.2.3, we describe the process and resources of developing oracle models for
evaluation. The synthesis-guaranteed tokenizer is described in further detail in Section F. Sections C
and D explain the data collection process and the statistics of the training dataset. Section G lists
all source datasets. Model training details are described in Section E. Evaluation data from FDA-
approved drugs are described in Section 3.2, which also lists the baselines we used for comparison.
The full data and resources will be released upon publication.
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A ADDITIONAL RESULTS

A.1 SYNTHESIZABILITY

For the mCLM, all starting materials are the core building blocks, and the same collection of building blocks is
used redundantly to make all the proposed structures. For this analysis, we assume that all the building blocks
required for the mCLM approach are available. Given a sequence of blocks A - B - C - D in our methodology,
we can assemble them with the following steps:

• Coupling reaction (A and B)

• Deprotect reaction (AB)

• Coupling reaction (AB and C)

• Deprotect reaction (ABC)

• Coupling reaction (ABC and D)

Scaling this formula to n building blocks gives a requirement of 2n− 3 reactions (synthetic steps).

On the other hand, each molecule generated by MoleculeSTM is a unique problem for synthesis, and thus cannot
leverage the strengths of the block-based approach. Each generated target requires a customized synthesis
solution.

However, it is important to consider an external metric for verifying the synthesis capabilities of the mCLM. In
table 3, we compute validity and synthetic accessibility scores for all baselines, both overall and in terms of
specific property modifications. We find that mCLM outperforms all baselines (lower SA is better).

Table 3: Synthetic Accessibility (SA) scores with RDKit validity percentages across datasets.

Dataset FDA mCLM MoleculeSTM FineMolTex GPT-4o GPT-5 Gemini-2.5-F LDMol Claude-3.5-H
SA Valid (%) SA Valid (%) SA Valid (%) SA Valid (%) SA Valid (%) SA Valid (%) SA Valid (%) SA Valid (%) SA Valid (%)

AMES 2.70 100.0 2.39 100.0 2.64 94.26 2.52 94.26 3.06 90.98 2.98 72.13 2.92 89.34 2.85 90.16 3.12 93.44
BBBP 2.70 100.0 2.44 100.0 2.67 93.44 2.61 95.90 2.67 88.52 2.87 78.69 2.69 90.16 2.89 94.26 2.90 93.44
CYP3A4 2.70 100.0 2.40 100.0 2.60 95.90 2.63 94.26 2.70 89.34 2.83 85.25 2.75 93.44 2.74 93.44 2.69 88.52
DILI 2.70 100.0 2.38 100.0 2.62 94.26 2.59 93.44 2.73 93.44 2.75 81.15 2.70 90.16 2.80 87.70 2.79 88.52
HIA 2.70 100.0 2.42 100.0 2.73 91.80 2.59 93.44 2.68 87.70 2.82 73.77 2.77 94.26 2.80 90.16 2.86 91.80
PGP 2.70 100.0 2.45 100.0 2.63 93.44 2.59 94.26 2.81 90.16 2.85 86.07 2.79 82.79 2.87 93.44 2.75 90.16

Mean 2.70 100.0 2.41 100.0 2.64 93.85 2.59 94.26 2.78 90.02 2.85 79.51 2.77 90.03 2.83 91.53 2.85 90.98

A.1.1 MORE INFORMATION ON RETROSYNTHESIS EXPERIMENTS

Next, we select the best 3 models and consider a computationally expensive but rigorous approach. We leverage
Allchemy, which is the state-of-the-art retrosynthesis software, to quantitatively measure this. We randomly
sampled a representative set of 200 molecules generated by each baseline (and the original FDA molecules).
We gave each molecule 30 minutes on a supercomputing cluster (which is quite exhaustive) and didn’t apply a
price limit for substrates (so this is really quite generous for starting materials). Scores, as reported in Table 2,
show much stronger overall performance of the mCLM. Here, validity is the percent of syntactically correct
molecules as measured by RDKit, synthesizability is the percent of valid molecules where Allchemy could find
a synthetic path, and Makeability is the product of those two metrics. Makeability represents the percent of
generated molecules which could be made in the lab.

A.2 EXPANDED TESTING WITHOUT SYNTHESIS GUARANTEES

As a large-scale test, we apply the mCLM to improve all FDA-approved drugs consisting of at least 3 blocks
(without synthesis guarantees). Note: this is just a confirmatory test, since the mCLM is intended to be used on
the distribution of synthesis-guaranteed molecules (as shown in the main paper). This amounts to 430 molecular
structures and 796 unseen blocks. Since most of these molecules (426/430) contain blocks that were not present
in the 1,000 blocks used for training, this presents an opportunity to find how the mCLM performs out-of-
distribution. Results in Table 4 show that improvement is achieved for 5/6 properties, even though the model has
not seen almost half of the blocks in its vocabulary during training. Specifically, the strictest synthesis-guaranteed
tokenizer covers 26.7% of compounds in our corpus. For the remainder, a rule-based tokenizer is used. Despite
this fallback, mCLM demonstrates strong generalization, as it successfully incorporated GNN-derived features
for the unseen modules.
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Table 4: Average pharmacokinetic and toxicity properties of FDA drugs with 3 or more blocks and
their proposed modifications. Note, these molecules do not have synthesis-guarantees. (↓: lower is
better, ↑: higher is better.

Property AMES Mut. (↓) BBBP (↑) CYP3A4 Inhib. (↓) DILI (↓) HIA (↑) PGP (↓) Mean Improv.

FDA Drug 59.5 37.6 2.0 66.2 93.2 66.0 0.00 %
mCLM 54.0 41.4 1.2 55.5 97.6 68.0 12.87 %

A.3 APPLYING MOLECULESTM TO THE “FALLEN ANGELS”

As a baseline comparison, we repeat the fallen angels reasoning experiment using MoleculeSTM (Figure 6).
Even though the steps 1 and 2 of MoleculeSTM’s modification of TNG348 showed comparable property changes
to mCLM, MoleculeSTM encounters molecule validity problems: it generates a syntactically incorrect molecule
on step 1 of Evobrutinib and on step 3 of TNG348.

Drug: 
• TNG348
Target: 
• USP1
Reason for 
Failure: 
• Liver 

Toxicity

DILI: 84.8
BBBP: 100.
CYP3a4: 0.35

DILI: 71.5
BBBP: 100.
CYP3a4: 4.28

Decrease DILI Increase BBBP

DILI: 67.3
BBBP: 100.
CYP3a4: 3.22

Decrease CYP3a4

Drug: 
•Evobrutinib
Target: 
• BTK
Reason for 
Failure: 
• Liver 

Toxicity

DILI: 82.7
PGP: 59.3
AMES: 77.2

Decrease DILI Decrease PGP Decrease AMES

INVALID INVALID INVALID

INVALID

Figure 6: Examples of fallen angel property modification using MoleculeSTM.

B CRITICAL CHEMICAL REASONING ALGORITHM

Algorithm 1 Critical Chemical Reasoning for Molecule Design in mCLM

1: Input: Initial molecule M0

2: Output: Refined molecule M∗

3: Initialize M ←M0

4: while True do
5: Enumerate over functions to improve in M (e.g., metabolism, drug-induced organ injury,

blood-brain barrier penetration)
6: if No clear objective remains for improvement then
7: return M
8: elseSelect property which requires most improvement.
9: end if

10: mCLM generates a candidate modification M ′ by replacing, adding, or removing building
blocks in M

11: Evaluate M ′ with respect to desired functions
12: end while
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Training Corpus

> is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein ...Imatinib <
Molecule property/
function description

Molecule proposal To enhance selectivity and potency against resistant cancer cell lines, we can use this molecule: <                              > 

Synthesis prediction A last-step synthesis reaction of imatinib is: < >

Molecule
optimization

M
olecule Tokenization

Synthesis-Aware Tokenizer Flexible Tokenizer

Fully Synthesizable Vocab Large-scale Pretraining Vocab

Retrieval-based molecule
generation for flexible

inference-time vocabulary
Function-aware Vocabulary Selection

Low toxicity

High efficacy

Text Tokenization

Modify Torcetrapib ( ethyl
... quinoline -1- carboxylate )
to minimize blood pressure

side effects .

Text Tokens
...

Text + Molecular Graph Tokens

Active Learning

...

Generate a molecule that has higher blood brain barrier permeability than [MOL] [/MOL]

Answer: [MOL] [/MOL]

Synthesis-Guaranteed 
Generation

Figure 7: Overview of Data Creation.

C PRETRAINING DATA MIXTURE

To train the model, our goal is to cover a wide variety of different molecular functions and classes of molecules.
To do so, we consider a wide variety of data sources. We use three existing instruction datasets: SMolInstruct
(Yu et al., 2024), Tulu-3 (Lambert et al., 2024), and the Biomolecular text portion of Mol-Instructions (Fang
et al., 2023). SMolInstruct is used to cover the standard set of chemistry LLM tasks. We supplement this with the
non-overlapping portion of Mol-Instructions. Finally, we include Tulu-3 to preserve general reasoning capability.

C.1 PROPERTY-BASED SYNTHETIC INSTRUCTION DATA GENERATION FOR CONTRASTIVE
LEARNING

Additionally, we augment this data mixture with a significant amount of synthetic data created using real-
world property datasets. Given our datasets, we create additional question datapoints for both regression and
classification tasks, such as “Is this molecule <SMILES> ... </SMILES> blood brain barrier permeable?
Yes”. We also consider the opposite direction: property to molecule and multiple properties to molecule, and
unconditional molecule generation. The templates used for constructing this data were created using GPT-4o; 50
were originally generated and then bad templates were removed by hand. Further, we augmented each data point
with a description of the property, also written by GPT-4o.

In addition to these tasks, we also consider the molecule optimization task as described in DrugAssist (Ye et al.,
2025) (e.g., given molecule A, improve property X). However, their approach has fundamental limitations due to
the reliance on oracle models. These models may be out-of-distribution for molecules within our dataset, and
low-quality models may propagate errors into our training data. To address this issue, we consider “activity
cliffs” (Stumpfe et al., 2019; Zhang et al., 2023) within existing property datasets to train the model for molecule
optimization. Activity cliffs are two molecules which are structurally similar but have large differences in a
given property. We opt to base our definition of activity cliff on Murcko scaffolds (Bemis and Murcko, 1996).
This methodology, which is widely used in medicinal chemistry, extracts the core subgraph, or scaffold, of a
molecule. We found that this approach was much more computationally feasible on large-scale molecule datasets
than approaches like fingerprint similarity (Bajusz et al., 2015).
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Given nominal data (e.g., toxic, kinase inhibitor, banana smell), we look for a pair of molecules that have the
same scaffold but only one molecule has the desired property. Given numerical data (e.g., solubility, power
conversion efficiency, HOMO-LUMO gap), we instead look for molecules which have a property difference of 1
standard deviation. This forms the positive-negative same-scaffold portion of our data. We also consider pairs of
molecules that have different scaffolds but the same property. Here, our goal is to teach the model to consider
function over structure. As an example, we may ask “Propose a molecule with a different structure than [MOL]
... [/MOL] that still demonstrates anticoagulant properties. [MOL] ... [/MOL]”. For a select number of property
types, we use oracle models instead of ground truth data. Please see Appendix D.2.3 for more information.

C.2 DATA FILTERING

Due to the large size of our dataset, we filter our data to only keep the most frequent 100k (50k end blocks and
50k mid blocks), 10k (5k and 5k), and 1000 blocks (500 and 500) for experiments. This is because there are far
fewer molecule tokens compared to text (each training sample only has up to about 10). Due to Zipf’s law (Zipf,
1936), in the full dataset, a single molecule token may only appear in one example in the entire training corpus.
Without considerably scaling the compute budget, understanding this additional block is difficult. Overall, this
filtering enables us to learn more efficiently and requires less memory resources for training the model, and
allows us to better test the model architecture. Please see the section on training details for more information
in Appendix E and see Appendix G for source property datasets. Table 5 gives a breakdown data quantity by
instruction type for each subset of the data. Table 6 gives a breakdown of the molecule data for each subset of
the data. Note that not all molecules in the “Full Data” can be represented with blocks, so we have a subset for
“Only Blocks” molecules, and then molecules consisting of the most frequent “Top 100k” blocks, “Top 10k”
blocks, and “Top 1000” blocks. Scaffolds are the number of unique Murcko scaffolds (Bemis and Murcko, 1996).
“Caps” are end blocks, while “Mid” are middle blocks. “Synthesis-aware” is the number of synthesis-guaranteed
blocks out of “Total”. Data splits are subdivided into their original source: our constructed instruction data or
molecule instructions from SMolInstruct.

Table 5: Dataset categories and their respective sample counts.

Data Type Full Data Only Blocks Top 100k Top 10k Top 1000
All 36,641,170 20,910,431 14,823,280 6,195,903 1,054,124
Existing Data Sources 3,117,841 1,208,365 1,049,473 537,674 149,994
SMolInstruct 2,124,738 215,262 56,370 14,242 2,300
Tulu-3 939,343 939,343 939,343 469,672 93,934
Mol-Instructions Biomol. Text 53,760 53,760 53,760 53,760 53,760
Synthetic Real Data (Ours) 21,290,353 9,294,434 7,711,548 3,960,633 705,210
Classification 5,612,215 3,771,038 3,192,583 1,337,619 223,341
Molecule Generation 535,317 316,630 245,034 150,001 27,393
Positive Negative Same Scaffold 3,795,820 113,390 65,566 16,286 2,007
Positive Positive Different Scaffold 660,925 477,976 256,435 191,720 33,579
Property to Molecule 6,676,957 3,125,097 2,878,012 1,639,322 307,780
Multi-Property to Molecule 572,505 556,107 533,647 423,089 78,793
Scaffold+Property to Molecule 705,833 405,497 226,696 80,448 13,078
Regression 2,730,781 528,699 313,575 122,148 19,239
Synthetic Oracle Data (Ours) 12,232,976 10,407,632 6,062,259 1,697,596 198,920
Classification 2,077,327 1,778,874 1,058,754 299,444 35,168
Positive Negative Same Scaffold 72,763 58,645 25,035 4,935 469
Scaffold+Property to Molecule 1,169,407 925,055 453,087 113,049 13,642
Property to Molecule 13,257 13,254 8,841 906 2
Regression 8,900,222 7,631,804 4,516,542 1,279,262 149,639

D SYNTHETIC DATA GENERATION

D.1 TASK FORMULATION FOR MOLECULAR DESIGN

To train our modular chemical language model (mCLM), we generate synthetic data that reflect realistic scenarios
encountered in molecular design. These include tasks relevant to drug discovery and organic photovoltaic (OPV)
materials design. Our goal is to equip the model with the ability to understand and reason over molecular
representations and natural language prompts across a diverse set of tasks.

Drug Discovery Tasks: In the context of drug discovery, chemists often engage in iterative and multi-objective
optimization processes, where molecules are evaluated, modified, or generated based on various physicochemical
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Table 6: Breakdown of molecule data by dataset category.

Molecules Molecule Tokens
Subset Source Total Tokenized Untokenized Scaffolds Cap Mid Total Synthesis-Aware

Full Data
SMolInstruct 1,951,205 1,566,030 385,175 510,464
Our data 6,160,565 5,270,982 864,212 1,109,562
Total 7,994,305 6,787,879 1,178,957 1,537,424

Only Blocks
SMolInstruct 459,910 459,910 0 145,614 157,204 59,681 216,885 50,788
Ours 3,830,543 3,830,543 0 705,641 531,472 175,903 707,375 189,770
Total 4,220,604 4,220,604 0 799,267 598,470 203,810 802,280 214,431

Top 100k
SMolInstruct 146,079 146,079 0 49,743 22,871 14,809 37,680 10,930
Ours 2,345,519 2,345,519 0 429,960 49,941 49,780 99,721 27,823
Total 2,458,034 2,458,034 0 457,032 50,000 50,000 100,000 28,220

Top 10k
SMolInstruct 37,686 37,686 0 12,373 4,130 2,534 6,664 2,618
Ours 821,238 821,238 0 147,524 5,000 4,998 9,998 3,468
Total 848,674 848,674 0 153,144 5,000 5,000 10,000 3,487

Top 1000
SMolInstruct 4,867 4,867 0 1391 477 359 836 420
Ours 109,554 109,554 0 19,639 500 500 1,000 432
Total 112,657 112,657 0 20,101 500 500 1,000 432

and pharmacological properties. These tasks typically involve querying for specific properties, modifying
structures to meet certain design criteria, or generating novel candidates that satisfy given constraints. We
consider the following tasks that a chemist may perform:

• Text-to-Molecule Generation: Generate a molecule from a textual description of its structure or
properties.

• Property Prediction: Given a molecule and a property of interest, predict whether the molecule
possesses the property (binary classification) or the quantitative value of the property (regression).

• Molecular Optimization: Modify a given molecule to satisfy or improve a specific property.

• Scaffold-Constrained Generation: Given a scaffold and a target property, generate a molecule that
satisfies both the structural constraint and the property constraint.

OPV Material Design Tasks: To support broader applications of mCLM beyond drug discovery, we also
incorporate tasks relevant to organic photovoltaic (OPV) material design. OPVs are an emerging class of
lightweight, flexible materials used for solar energy harvesting, where the power conversion efficiency (PCE)
is the primary performance metric. A typical OPV device is composed of a donor molecule and an acceptor
molecule. The donor is responsible for absorbing sunlight and generating excitons (electron-hole pairs), while
the acceptor facilitates charge separation and electron transport. The chemical compatibility and electronic
alignment between the donor and acceptor molecules critically influence the resulting PCE. To enable learning
in this domain, we define the following OPV-specific tasks

• PCE Prediction: Predict the PCE of a given donor–acceptor pair.

• Donor/Acceptor Completion: Given a donor (or acceptor) and a target PCE, generate the comple-
mentary component (acceptor or donor) that achieves the desired performance.

• Constrained Completion with Scaffold: Generate donor or acceptor molecules that match a given
scaffold and achieve a target PCE.

D.2 INSTRUCTION TUNING DATA GENERATION

D.2.1 PROMPT-ANSWER TEMPLATES

To generate instructional data, we construct a pool of question and answer templates for each task. These
templates include multiple paraphrased variants to introduce linguistic diversity and improve the model’s
generalization capability. During data generation, a question template is randomly sampled from the question set
and populated with sample-specific content. Likewise, a corresponding answer template is sampled from the
answer set to form a complete prompt–response pair. For example:

• Question Template: “Given [a molecule] and [a property of interest], modify the molecule to achieve
[desired property value].”

• Answer Template: “The [property] of [molecule] is [value].”

This templating strategy allows us to produce a large number of diverse, semantically equivalent training
instances that support instruction tuning across multiple molecular design tasks.
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D.2.2 LABEL SOURCES FOR INSTRUCTION TUNING DATA

To enable diverse and meaningful pretraining for mCLM, we incorporate both experimentally derived and
model-generated labels, covering a broad spectrum of molecular properties critical to chemistry, pharmacology,
and materials science. This dual-labeling strategy allows the model to learn from abundant low-level molecular
descriptors while also reasoning over high-level functional and biological endpoints.

Low-Level Molecular Properties from ChEMBL: For foundational chemical descriptors, we leverage the
ChEMBL25 database—a comprehensive bioactivity resource containing approximately 2 million compounds
with rich structural and physicochemical annotations. ChEMBL25 serves as an abundant and reliable source of
labels for low-level properties that are widely used in cheminformatics pipelines. From this corpus, we select
a core set of descriptors that are most informative for molecular design: Hydrogen bond acceptors (HBA),
Hydrogen bond donors (HBD), LogP (octanol–water partition coefficient), Molecular weight (MolWt), Number
of aromatic rings, Number of rotatable bonds, Topological polar surface area (TPSA). These descriptors are
inexpensive to compute and provide critical insights into molecular solubility, permeability, and synthetic
feasibility—making them essential for early-stage screening and property-based filtering.

High-Level Molecular Properties via Oracle Labeling: In addition to low-level properties, we aim to expose the
model to high-level functional endpoints that capture complex biological phenomena. Such endpoints are central
to pharmacokinetics, drug safety, and efficacy, but they are rarely available in large quantities due to the high
cost of experimental validation. Consequently, labeled datasets for these tasks are limited in size and diversity.
To address this challenge, we employ the oracle ensemble models to generate synthetic labels for a curated set of
ADMET tasks.

D.2.3 ENSEMBLE ORACLE MODEL:

To generate high-quality synthetic labels for downstream tasks, we construct oracle models focused on ADMET
property prediction. We select tasks from the Therapeutics Data Commons (TDC) benchmark ‡ using the
following criteria:

• Relevance to Drug Discovery: The task must reflect a critical aspect of drug efficacy or toxicity.

• Predictability: The task must be reliably predictable using existing models. Specifically, we evaluate
all 22 ADMET-related classification tasks in TDC and retain only those where standard models achieve
an area under the ROC curve (AUC) greater than 0.80. This ensures the synthetic labels are sufficiently
accurate for training purposes.

Based on these criteria, we select six tasks:

• AMES (mutagenicity),

• BBBP (blood-brain barrier permeability),

• CYP3A4 inhibition (metabolism),

• DILI (drug-induced liver injury),

• HIA (human intestinal absorption),

• PGP (P-glycoprotein substrate classification).

TDC provides predefined scaffold-based data splits with an 8:1:1 ratio for train, validation, and test sets. This
splitting strategy ensures that structurally dissimilar compounds are separated across subsets, encouraging
generalization to novel scaffolds.

Although TDC provides leaderboards for these tasks, many top-performing entries lack reproducible code
or working implementations. For instance, the authors of one of the top submissions explicitly acknowledge
on GitHub that their code is not runnable.§ Therefore, we opt to use robust foundation models—FARM,
ChemBERTA-2, and a GNN—for ensemble learning.

• FARM (Nguyen et al., 2024a): A SMILES-based BERT model trained with functional group-aware
tokenization.

• ChemBERTA-2 (Ahmad et al., 2022): A large-scale transformer model trained on millions of
canonical SMILES sequences.

• GNN (Edwards et al., 2024a): A graph neural network trained on molecular graphs with atom- and
bond-level features.

‡https://tdcommons.ai/benchmark/admet_group/overview/
§https://github.com/maplightrx/MapLight-TDC
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To build the ensemble, we use each model as a feature extractor. The extracted features are concatenated and
passed through a fully connected layer for final prediction. This ensemble approach is stacking, where multiple
base learners feed into a meta-learner. For each task, we select a threshold that maximizes the F1 score on the
validation set. This threshold is then used to binarize the predicted logits into class labels. The performance of
our ensemble model across the selected tasks is summarized in Table 7.

Table 7: Performance (AUC) of individual models and the ensemble across six selected ADMET
tasks.

Model AMES Pgp DILI BBBP CYP3A4 HIA
FARM (Nguyen et al., 2024a) 0.88 0.89 0.79 0.94 0.88 0.92
GNN (Edwards et al., 2024a) 0.75 0.78 0.86 0.79 0.80 0.81
ChemBERTa-2 (Ahmad et al., 2022) 0.86 0.89 0.81 0.93 0.86 0.99
Ensemble 0.89 0.91 0.84 0.93 0.89 0.99

E TRAINING PROCEDURE

We employed Qwen2.5-3B (Yang et al., 2024) as the starting LLM for building the mCLM. Generally, we
followed the training procedure from LLaVa (Liu et al., 2023a; 2024b; Li et al., 2024a). We used a two-layer
MLP with PReLU activation (He et al., 2015) as an adapter into the LLM input/output from the GNN. We
selected an initial learning rate of 1e-5 for the full model and 1e-6 for the adaptor and LM heads. Further, we
used a cosine annealing schedule with a minimum of 1e-6 and 2000 linear warmup steps; AdamW (Loshchilov
and Hutter, 2017) optimizer was employed. The model was trained on 4 A100 80GB GPUs in bfloat16 precision.

We found that the model learned the molecule tokens much slower than the text (there is usually a 10x difference
in loss value). Molecule tokens are rarer and show up less in the training data. Because of this, we decided
to separate the molecule classifier head and the language classifier head. We used a standard autoregressive
language modeling loss for both, and we averaged these two losses for the final loss value. The main part of
our training experiments focused on minimizing the molecule loss, since the text loss was easy to optimize.
Further, we found PEFT (Hu et al., 2021) was not sufficient to adapt to molecules, so full finetuning was required.
Roughly 10-50 examples from each synthetic (data source, task) pair were put into a validation set.

To initialize the GNN weights, we employed the MolCLR (Wang et al., 2022b) unsupervised contrastive learning
technique. We used AugliChem (Magar et al., 2022) for the augmentations: random atom masking, random
bond deletion, and motif removal. One of these augmentation was selected uniformly at random for each data
point. The GNN was initialized using a batch size of 128 and lr of 1e-4 with a cosine schedule. The model was
trained on all 800k blocks in the full data until convergence on a validation set. We tested embedding dimensions
between 16 and 4,096 and found 128 dimensions to be sufficient while minimizing total memory cost. This
was necessary because we stored the entire embedding matrix in GPU memory, which was much faster, but
consumed about 20GB VRAM. Doing so allowed us to train without the GNN during our pretraining process,
which is considerably more efficient. We note the GNN can then be finetuned along with the rest of the mCLM
during finetuning to new types of molecules or specific tasks. While we did consider a sampled softmax to train
the mCLM, we found this to limit the learning of the model.

For training the mCLM, we used two stages for pretraining. First, we trained for 1 epoch with everything frozen
except the adaptor, to allow the adaptor to adjust to the LLM representation space. For the second stage, we
trained for 5 epochs with only the GNN embeddings frozen. As discussed in the training data mixture section C,
we used the most frequent 1000 building blocks as our vocabulary.

After pretraining, we finetune the mCLM to standardize it’s outputs for our experiments. During pretraining,
we train for robustness by using a wide variety of responses (e.g., for BBBP prediction we might respond “It is
restricted from entering the central nervous system” instead of ‘No’). For finetuning, we train with standardized
responses for our desired tasks (e.g., “Generate a molecule that has higher blood brain barrier permeability
than [MOL] ... [/MOL].”, “[MOL] ... [/MOL]”. Due to our downstream tasks, we finetuned exclusively on
the molecule optimization task for 5 epochs over 100k examples for each property. We trained using the same
procedure as the pretraining stage, but we selected the best model using validation loss.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F TOKENIZER DETAILS

F.1 SYNTHESIS-GUARANTEED TOKENIZER DETAILS

The synthesis-guaranteed tokenizer disconnects the molecule only at bonds that can be formed by a pre-
determined small set of reactions, preferably only those that can be performed in an automated manner. For
instance, if amide bond formation is defined as available, the tokenizer will be able to disconnect amide bonds in
the molecule of interest. Up to this point, the protocol is synonymous with classical computational retrosynthesis,
but there is a fundamental difference. Namely, the sets of reactions suitable for automated synthesis is very
limited – in fact, state-of-the-art synthesis machines utilize only three types of disconnections (amide bond
formation, as well as Suzuki and Buchwald-Hartwig couplings). This places very stringent requirements on the
groups that can be present in the disconnected blocks – for instance, when the disconnection (say, Buchwald-
Hartwig coupling) yields an amine functionality on one of the blocks, this block cannot contain any groups that
during the anticipated uses of this block would present a synthetic incompatibility. In the most trivial case, the
block cannot contain another unprotected amine because after the Buchwald-Hartwig disconnection, the block
would feature two amines which, in turn, would present competing reactive sites (in the Buchwald-Hartwig
synthesis but also in the formation of amide bonds). Therefore, the tokenizer performs retrosynthetic operations
while simultaneously checking if they do not lead to blocks with functional groups presenting competing
reactivities. Only disconnections avoiding such problems are allowed. This then guarantees that when the
corresponding blocks are used to make other molecules, they give only the selective synthesis outcomes.

F.2 MOLECULE TOKEN EXAMPLES

As discussed in E, we pretrained our GNN encoder using MolCLR (Wang et al., 2022b) on all 8̃00k blocks in
our full pretraining dataset. Figures 8-13 shows six examples of random blocks and their 5 nearest neighbors in
our dataset. The similarity of the blocks and their neighbors shows the high quality representations which were
obtained.

Figure 8: Example token from pretraining dataset. Similarity above each molecule is ECFP4
Fingerprint Tanimoto similarity from the ground truth molecule.
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Figure 9: Example token from pretraining dataset. Similarity above each molecule is ECFP4
Fingerprint Tanimoto similarity from the ground truth molecule.

Figure 10: Example token from pretraining dataset. Similarity above each molecule is ECFP4
Fingerprint Tanimoto similarity from the ground truth molecule.
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Figure 11: Example token from pretraining dataset. Similarity above each molecule is ECFP4
Fingerprint Tanimoto similarity from the ground truth molecule.

Figure 12: Example token from pretraining dataset. Similarity above each molecule is ECFP4
Fingerprint Tanimoto similarity from the ground truth molecule.
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Figure 13: Example token from pretraining dataset. Similarity above each molecule is ECFP4
Fingerprint Tanimoto similarity from the ground truth molecule.
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G SOURCE DATASETS AND DATABASES

• Leffingwell odors (Sanchez-Lengeling et al., 2019)

• BACE (Wu et al., 2018)

• Flashpoint (Sun et al., 2020)

• MUV (Wu et al., 2018)

• Tox21 (Wu et al., 2018)

• AMES (Huang et al., 2021)

• Bioavailability (Huang et al., 2021)

• Caco2 (Huang et al., 2021)

• Carcinogens (Huang et al., 2021)

• cav3_t (Huang et al., 2021)

• choline_transporter (Huang et al., 2021)

• clearance hepatocyte (Huang et al., 2021)

• CYP1A2 (Huang et al., 2021)

• CYP2C9 (Huang et al., 2021)

• CYP2D6 (Huang et al., 2021)

• CYP3A4 (Huang et al., 2021)

• DILI (drug induced liver toxicity) (Huang et al., 2021)

• Half_life (Huang et al., 2021)

• hERG (Huang et al., 2021)

• HIA (human intestinal absorption) (Huang et al., 2021)

• Hydration free energy (Huang et al., 2021)

• kcnq2 (Huang et al., 2021)

• LD50 (Huang et al., 2021)

• Lipophilicity (Wu et al., 2018)

• m1_muscarinic (Huang et al., 2021)

• OPV data (Nguyen et al., 2024b; Lopez et al., 2016)

• orexin_receptor (Huang et al., 2021)

• PAMPA_NCATS (Huang et al., 2021)

• Broccatelli (Broccatelli et al., 2022)

• potassium_ion_channel (Huang et al., 2021)

• PPBR (Plasma Protein Binding Rate) (Huang et al., 2021)

• Pubchem logP (Kim et al., 2023)

• SARSCoV2_3CL (Huang et al., 2021)

• SARSCoV2_vitro (Huang et al., 2021)

• serine_threonine_kinase_33 (Huang et al., 2021)

• Skin Reaction (Huang et al., 2021)

• Solubility_AqSolDB (Huang et al., 2021)

• tyrosyl-dna_phosphodiesterase (Huang et al., 2021)

• VDss (volume of distribution at steady state) (Huang et al., 2021)

• Molecule Property Cliff Datasets (30+ datasets) (Van Tilborg et al., 2022)

• Chemical Function (CheF) (Kosonocky et al., 2023)

• ChemFOnt: the chemical functional ontology resource (Wishart et al., 2023)

• Pubchem properties (Kim et al., 2023)

• FreeSolv (Wu et al., 2018)

• QM8 (Wu et al., 2018)
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• QM9 (Wu et al., 2018)

• Thermosol (Wu et al., 2018)

• ESOL (Estimated SOLubility) (Wu et al., 2018)

• Lipo (Wu et al., 2018)

• BBBP (Gaulton et al., 2012)

• ClinTox (Wu et al., 2018)

• HIV (Wu et al., 2018)

• SIDER (Wu et al., 2018)

• Forward synthesis (USPTO) (Yu et al., 2024)

• Retrosynthesis (Yu et al., 2024)

• CheBI-20 (Edwards et al., 2021)

• L+M-24 (Edwards et al., 2024c)

• HBA (Gaulton et al., 2012)

• HBD (Gaulton et al., 2012)

• MolWt (Gaulton et al., 2012)

• NumAromaticRings (Gaulton et al., 2012)

• rotatable_bonds (Gaulton et al., 2012)

• TPSA (topological polar surface area) (Gaulton et al., 2012)
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