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ABSTRACT

Lightweight image super-resolution (SR) methods have obtained promising re-
sults with moderate model complexity. These approaches primarily focus on a
lightweight architecture design, but neglect to further reduce network redundancy.
While some model compression techniques try to achieve more lightweight SR
models with neural architecture search, knowledge distillation, or channel prun-
ing, they typically require considerable extra computational resources or neglect to
prune weights. To address these issues, we propose a flexible meta pruning (FMP)
for lightweight image SR, where the network channels and weights are pruned si-
multaneously. Specifically, we control the network sparsity via channel vectors
and weight indicators. We feed them into a hypernetwork, whose parameters act
as meta-data for the parameters of the SR backbone. Consequently, for each net-
work layer, we conduct structured pruning with channel vectors, which control the
output and input channels. Besides, we conduct unstructured pruning with weight
indicators to influence the sparsity of kernel weights, resulting in flexible pruning.
During pruning, the sparsity of both channel vectors and weight indicators are
regularized. We optimize the channel vectors and weight indicators with proximal
gradient and SGD. We conduct extensive experiments to investigate critical fac-
tors in the flexible channel and weight pruning for image SR, demonstrating the
superiority of our FMP when applied to baseline image SR architectures. Code
and pretrained models will be released.

1 INTRODUCTION

As one of the fundamental image processing tasks, single image super-resolution (SR) aims to up-
scale a low-resolution (LR) input to the desired size by restoring more details. Recently, the task
has received increasing attention, with much exploration of deep neural network architectures for
improved performance and efficiency (Dong et al., 2014; Kim et al., 2016a; Lim et al., 2017; Zhang
et al., 2018b; Liang et al., 2021). Image SR first witnessed the application of deep convolutional
neural networks (CNN) in SRCNN (Dong et al., 2014), with three convolutional layers. Kim et
al. successfully trained a deeper network with residual learning (Kim et al., 2016a). Lim et al. fur-
ther built a much deeper network EDSR (Lim et al., 2017) by simplifying the residual blocks (He
et al., 2016). Zhang et al. achieved even deeper in RCAN (Zhang et al., 2018a) with the residual in
residual (RIR) structure. Such an RIR structure was further utilized in SwinIR (Liang et al., 2021),
where Swin Transformer (Liu et al., 2021) was introduced as the basic block. Most of these CNN
and Transformer based methods have obtained increasing SR performance with large model size
and run-time, making them hard to deploy in practice. Therefore, lightweight models are heavily
desired in real-world applications, where the computational resources are limited (Lee et al., 2020).

To achieve lightweight image SR models, increasing effort has been devoted to design lightweight
architectures and incorporation of model compression techniques. Many well-designed lightweight
SR models have been proposed, such as CARN (Ahn et al., 2018), IMDN (Hui et al., 2019),
RLFN (Kong et al., 2022), and ELAN (Zhang et al., 2022a). However, the required architectural ex-
ploration is costly in both time and energy. Meanwhile, knowledge distillation (KD) (Hinton et al.,
2014) was introduced to distill knowledge from a teacher SR network to the student (He et al., 2020;
Lee et al., 2020). Meanwhile, neural architecture search (NAS) (Zoph & Le, 2017; Elsken et al.,
2019) was also utilized to explore lightweight SR structures, including MoreMNAS (Chu et al.,
2019b) and FALSR (Chu et al., 2019a). However, they also have several drawbacks. KD-based
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methods usually require a large teacher network, consuming considerable computational resources.
NAS-based methods often need a large computational budget for searching. Most manually de-
signed, distilled, or searched lightweight networks further neglect to deeply consider inference time
by also removing redundant network channels and weights. This could be suitably conducted by
network pruning techniques (i.e., structured and unstructured pruning).

Urban100: img 062
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IMDN ASSLN FMP (ours)

Figure 1: Visual samples of image SR (×4) by lightweight
methods. Our FMP achieves better visual reconstruction.

To explore the network redundancy
and reduce complexity, researchers
usually turn to network pruning tech-
niques (Reed, 1993; Sze et al., 2017),
mainly consisting of structured prun-
ing (i.e., channel pruning) (Li et al.,
2017) and unstructured pruning (i.e.,
weight pruning) (Han et al., 2015;
2016). Aligned structured sparsity
was investigated and jointly opti-
mized in image SR network ASSLN (Zhang et al., 2021; 2022b). They paid much attention to
aligning pruned channel locations across different layers. On the other hand, MetaPruning (Liu
et al., 2019) learned the parameters of the backbone network via hypernetworks (Ha et al., 2017),
which can only obtain fixed-size weights. However, such outputs can hardly be used for layer-wise
configuration searching. To control the output size, Li et al. proposed a differentiable meta prun-
ing method via hypernetworks (DHP) (Li et al., 2020a). However, DHP only prunes the network
channels for image SR and neglects to remove redundant kernel weights.

To address the aforementioned problems, we first design a lightweight SR baseline (LSRB) and
then propose a flexible meta pruning (FMP) technique. Specifically, following the NTIRE 2022
Challenge on Efficient Super-Resolution (ESR) (Li et al., 2022), we primarily focus on actual in-
ference time. We design LSRB based on residual blocks (Lim et al., 2017) and enhanced spatial
attention (ESA) (Liu et al., 2020). We then propose a hypernetwork, whose parameters serve as
meta-data for those of the backbone network. The hypernetwork takes channel vectors and weight
indicators as inputs and obtains network parameters for the SR backbone LSRB without pretraining.
The channel vectors control the output and input channels of each network layer for structured prun-
ing. While, weight indicators influence the sparsity of kernel weights for unstructured pruning. We
adopt a sparsity regularizer to channel vectors and weight indicators, resulting in automatic network
pruning. In the pruning stage, we optimize the channel vectors and weight indicators with prox-
imal gradient and SGD, respectively. This stage is then halted when the target compression ratio
is reached. After the pruning stage, the channel vectors and weight indicators are sparsified. The
corresponding channels and kernel weights of the backbone network are also pruned flexibly.

The main contributions are summarized as follows:
• We propose a flexible meta pruning (FMP) technique for lightweight image super-

resolution (SR). We jointly conduct flexible structured and unstructured network pruning
during the image SR training.

• We propose channel vectors and weight indicators to control backbone channel and weight
sparsity. We optimize them with proximal gradient and SGD, respectively, enabling differ-
entiable and flexible pruning.

• We design a simple yet effective SR baseline (LSRB), achieving better performance than
the champion solution in ESR challenge. We apply our FMP to LSRB and other baselines,
obtaining more efficient backbones and showing the effectiveness of FMP (see Fig. 1).

2 RELATED WORKS

Lightweight Image SR Networks. Recently, lightweight image SR networks have been attracting
consistent attention and achieved promising performance. Dong et al. proposed FSRCNN (Dong
et al., 2016) to accelerate image SR by placing the upscale module at the tail network position.
Ahn et al. proposed CARN (Ahn et al., 2018) with a cascading mechanism in a residual net-
work. Hui et al. constructed the cascaded information multi-distillation for a lightweight network
(IMDN) (Hui et al., 2019). Kong et al. proposed a residual local feature network (RLFN) (Kong
et al., 2022) with enhanced spatial attention (ESA) (Liu et al., 2020). Zhang et al. proposed an
efficient long-range attention network (ELAN) (Zhang et al., 2022a). Also, model compression
techniques have been utilized for lightweight image SR. He et al. (He et al., 2020) and Lee et
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al. introduced knowledge distillation (Hinton et al., 2014) and proposed to learn with privileged
information (Lee et al., 2020). In the meantime, Chu et al.introduced neural architecture search
(NAS) (Zoph & Le, 2017; Elsken et al., 2019) for image SR in FALSR (Chu et al., 2019a) and
MoreMNAS (Chu et al., 2019b). Although those works have achieved notable progress, they still
need to carefully design the architectures or consume extra resources.

Network Pruning. In the deep networks, there is considerable number of redundant parameters,
which could be pruned without hurting performance too much (Reed, 1993; Sze et al., 2017; Cheng
et al., 2018a;b). Network pruning techniques could be roughly divided into structured pruning (i.e.,
channel pruning) (Li et al., 2017; Wen et al., 2016; He et al., 2017; Wang et al., 2021) and unstruc-
tured pruning (i.e., weight pruning) (Han et al., 2015; 2016). With a pretrained large model, Zhang
et al. integrated channel pruning into image SR with aligned structured sparsity in ASSL (Zhang
et al., 2021) or structure-regularized pruning in SRP (Zhang et al., 2022b), which utilized pretrained
models. Structured pruning usually leads to regular sparsity after pruning. While, unstructured
pruning produces irregular sparsity (Wen et al., 2016; Wang et al., 2019). Very few image SR works
investigate such things. In this work, we focus on a flexible pruning technique, which considers both
channel and weight pruning simultaneously without any pretrained networks via a hypernetwork.

Meta Learning. As a concept of learning to learn, meta learning is a wide collection of machine
learning methods. It was also introduced in image SR (Hu et al., 2019), where the meta-upscale
module was proposed to dynamically predict the weights of the upscale filters for the arbitrary
scaling factor. Recently, one hot meta learning topic has been about using a hypernetwork (Ha et al.,
2017) to predict the weight parameters of the backbone network. Such ideas about hypernetwork
have been widely investigated in NAS (Brock et al., 2018), network channel pruning (Liu et al.,
2019; Li et al., 2020b), and image super-resolution (e.g., DHP (Li et al., 2020a)). However, most
of them focus on channel pruning and neglect to prune the weights. In this work, we design a more
general hypernetwork, which deals with channel pruning and weight pruning for each network layer
simultaneously and obtains more efficient image SR networks.

3 PROPOSED METHOD

3.1 MOTIVATION

Why Flexible Pruning? The general idea of this work is first introduced before elaborating on
details of our flexible network pruning method. Structured pruning and unstructured pruning are
two important network compression methods that can cut down the model complexity of deep neu-
ral networks significantly. They have different strengths. On one hand, structured pruning leaves
regular kernels after pruning, which is beneficial for the actual acceleration of the network. On the
other hand, unstructured pruning removes single weights in a kernel and can compress the network
without sacrificing too much accuracy of the network. However, the unstructured pruning leads to
irregular kernels, which can hardly reduce time. They need specific hardware designs to achieve
actual acceleration. Thus, coupling structured pruning and unstructured pruning brings together the
merits of both techniques, squeeze out the redundancy from deep network, and take full advantage
of the capacity of the network under a fixed budget.

How to do Flexible Pruning? We design a flexible network pruning method that shrinks the model
by the specified compression ratio, using structured and unstructured pruning. An important problem
that follows is how to couple the two techniques during the design of the algorithm, while at the same
time decouple them during the optimization of the pruning process. To achieve that, we propose
to utilize hypernetworks that, in short, predict the parameters of the backbone network. The key
components of the proposed method are the channel vectors and the weight indicator, which serve
as tools to handle structured pruning and unstructured pruning. Each convolutional layer of the
backbone network is assigned a channel vector and a weight indicator. The channel vectors control
the number of output channels of the convolutional layer, while the weight indicators reflect the
influence of single weight parameters of the network. By manipulating the channel vectors and the
weight indicator during the optimization of the pruning process, we achieve joint structured and
unstructured pruning (see Fig. 2).

3.2 LIGHTWEIGHT SR BASELINE

Deep image SR networks learn a mapping from a low-resolution (LR) image ILR to its high-
resolution (HR) counterpart IHR. Here, we focus on lightweight SR networks, which have fewer
parameters and computation operations, but achieve comparable or higher performance.
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Figure 2: Illustration of our flexible meta pruning (FMP) for image SR. Each backbone layer is as-
sociated to layer controller, which provides channel vectors and weight indicators to hypernetwork.
Its output ΘB can actually serve as the weights of SR backbone. We optimize the whole pipeline by
utilizing reconstruction loss, weight decay, and sparsity regularization.

Most of the previous lightweight image SR networks (Ahn et al., 2018; Hui et al., 2019) focus on
reducing parameters and FLOPs. Although they have achieved high performance, their inference
speed is usually not very fast, hindering their practical usage. Pursuing faster inference speed is at-
tracting increasing attention. Recently, NTIRE 2022 Efficient Super-Resolution (ESR) workshop (Li
et al., 2022) targets to investigate efficient SR models in terms of inference time and lightweight net-
works. Its latest champion solution is RLFN (Kong et al., 2022), which utilizes residual blocks (Lim
et al., 2017) and enhanced spatial attention (ESA) (Liu et al., 2020) as building blocks (i.e., RLFB).
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Figure 3: Framework of our designed LSRB based on
RLFN (Kong et al., 2022). Left: There are N basic blocks
in LSRB. Right: Each basic block consists of residual
block (Lim et al., 2017) (two Conv layers and one ReLU),
Conv 1×1, and ESA (Liu et al., 2020).

In RLFN (Kong et al., 2022), its
residual block consists of 3 convolu-
tional (Conv) layers, each of which is
followed by ReLU (Nair & Hinton,
2010). This can introduce too much
non-linearities, which may hamper
pixel-wise reconstruction tasks, such
as image SR. On the other hand,
we find that ESA performs better in
lightweight networks than in large
ones. It motivates us to use more
ESA and fewer ReLU modules with
limited model size. Consequently, we modify RLFB (Kong et al., 2022) by replacing its residual
block with the simplified residual block (Lim et al., 2017), which has 2 Conv layers and a ReLU
between them. We name this version as an lightweight SR baseline (LSRB) and show its details in
Fig. 3. As investigated in our experiments, this simple LSRB can further reduce inference time with
comparable performance. LSRB can also be used as backbone network and be further pruned by
our proposed flexible meta pruning (see Fig. 2).

3.3 GENERAL HYPERNETWORK

Notation. Before delving deep into the details of the hypernetwork design, we first introduce the
notation that is used throughout this paper. Let cout×cin×k1×k2 denote the original kernel size
and cpout×cpin×k1×k2 denote the target kernel size in general. The corresponding original and
target kernel sizes in l-th layer of the backbone network are denoted as clout×clin×k1×k2 and
cp,lout×cp,lin×k1×k2. By compressing the weight parameters W l

B in the original network, we aim
at to derive a compact representation of those weights, i.e., WP,l

B . To control the pruning of the
network, we introduce another two tools, namely, the channel vectors zlC ∈ Rclout and the weight
indicators Zl

W ∈ Rclout×clin×kl
1×kl

2 . The size of the channel vector is equal to the number of output
channels of the backbone layer and controls the pruning of the single channels. The weight indicator
is initialized as a tensor with all ones and acts as a continuous mask that reflects the single weight
strength. The design of the hypernetwork is inspired by (Li et al., 2020a) and tailored to the joint
optimization of structured pruning and unstructured pruning in this work.

Hypernetwork. Following the design in DHP, the hypernetwork has three inputs including the chan-
nel vector of the previous layer, the channel vectors of the current layer, and the weight indicators
of the current layer. The computation in the hypernetwork is conducted in three steps.
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Step 1 A matrix, i.e., M l = zlC · (zl−1
C )T , forms a grid used for structured purning.

Step 2 Every element of the computed matrix is transformed to a vector by two linear operations

Ol
i,j = W l

2 · (M l
i,j ·W l

1) , (1)

where W l
1 ∈ Rm×1 and W l

2 ∈ Rk2×m, the scalar M l
i,j is the i, j-th element of the matrix M l, and

Ol
i,j ∈ Rk2

, Ol ∈ Rclout×clin×k2

. Note that for each element M l
i,j , W l

1 and W l
2 are different and for

the simplicity of notation the subscript i, j is omitted.

Step 3 The output Ol from the second stage is reshaped into Zl
C ∈ Rclout×clin×k×k and masked by

the weight indicators. This results in the modified tensor
Zl = Zl

C ⊙ Zl
W , (2)

where ⊙ denotes element-wise multiplication, Zl is the final output of the hypernetwork. The tensor
Zl could be used as the weight parameters of the convolutional (Conv) layers of the SR backbone.

As a summary, we denote the parameters of the hypernetwork as ΘH = {W l
1,W

l
2}. And the

functionality of the hypernetwork can be simplified as
ΘB = FH(zC , ZW ; ΘH), (3)

where FH(·) denotes the hypernetwork function, ΘB denotes the weights of the backbone network.

Pruned Weight Hypernetwork
Channel Vectors

Weight Indicators

Figure 4: Illustration of hypernetwork in flexible meta pruning.
Channel vectors and weight indicators are inputs.

By optimizing channel vectors
and weight indicators, it is pos-
sible to achieve structured prun-
ing and unstructured pruning si-
multaneously (Fig. 4). Specifi-
cally, the network weights could
be flexibly pruned along the
channel (i.e., output and in chan-
nels) and spatial dimensions. By
the above formulation, we have
already coupled structured prun-
ing and unstructured pruning
within the same framework. In
next section, we deal with the problem of decoupling their optimization.

3.4 FLEXIBLE META PRUNING FOR IMAGE SR
We show how to apply FMP for image SR in Fig. 2 and give more details about layer controller
sparsity regularization and joint optimization during pruning in SR.

Sparsity Regularization. For the joint optimization of the network pruning and image SR problem,
we use the following loss function, that contains four terms

L = Lrec(IHR, ISR) + αD(ΘH) + λCR(zC) + λWR(ZW ), (4)
where α, λC , and λW are regularization factors.

Our pruning algorithms is jointly optimized with image SR by considering the image reconstruction
loss Lrec in the loss function. We use L1 loss between the ground-truth HR image IHR and the
reconstructed SR image ISR. And the super-resolved output could be obtained via

ISR = FFMP (ILR;FH(zC , ZW ; ΘH)). (5)
The term D(ΘH) in Eq. 4 denotes the weight decay regularization applied to the parameters of the
hypernetwork and α is the weight decay factor.

The network pruning is achieved by applying sparsity regularization on the channel vectors and the
weight indicators which correspond to the terms R(zC) and R(ZW )

R(zC) =

L∑
l=1

∥∥zlC∥∥1 , (6)

R(ZW ) =

L∑
l=1

∥∥Zl
W

∥∥
p
. (7)

5



Under review as a conference paper at ICLR 2024

In Eq. 7, the Lp norm is applied as a regularization on the weight indicator. In the experiments, we
ablate different choices of the norm (e.g., L1, L2, and weight decay).

Differentiable Optimization. Since the channel vectors and the weight indicator are not intertwined
by non-linear operations, we can decouple their optimization for network pruning by different meth-
ods. First, the parameters ΘH in the hypernetwork is optimized by SGD,

ΘH [t+ 1] = ΘH [t]− η∇H(ΘH [t]), (8)
where H = Lrec + αD, and η denotes the learning rate.

Second, for the optimization of the channel vectors, we apply proximal gradient descent method
which contains a gradient descent step and a proximal step.

zC [t+∆] = zC [t]− η∇G(zC [t]), (9)

zC [t+ 1] = proxλµR

(
zC [t+∆]− λµ∇L

(
zC [t+∆]

))
, (10)

where G = Lrec+λCR. µ is the step size of proximal gradient and is set as the learning rate of SGD
update. The proximal operator of L1 sparsity regularization on the channel vectors have closed-form
solutions as the soft-thresholding function. Finally, the weight indicators are also optimized by the
standard SGD, i.e., ZW [t+ 1] = ZW [t]− η∇E(ZW [t]), where E = Lrec + λWR.

During the optimization, we set compression ratio targets γC=0.1 and γW =0.02 for both structured
pruning and unstructured pruning. If the compression ratio of one pruning method is achieved, the
optimization method for either the channel vectors or the weight indicators is stopped while the
other one continues. The whole algorithm converges if both of the compression targets are achieved.

4 EXPERIMENTAL RESULTS

4.1 SETTINGS

Data and Evaluation. Following most recent works (Timofte et al., 2017; Lim et al., 2017; Haris
et al., 2018), we use DIV2K dataset (Timofte et al., 2017) and Flickr2K (Lim et al., 2017) as training
data. We use five standard benchmark datasets: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2010), B100 (Martin et al., 2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al.,
2017). We evaluate the SR results with PSNR and SSIM (Wang et al., 2004) on Y channel of trans-
formed YCbCr space. It should be noted that to obtain our results we do not use self-ensemble. We
also provide model size and FLOPs comparisons. If not specifically stated, in the main comparison,
we set the output size as 3×1280×720 to calculate FLOPs.

Training Settings. Following (Lim et al., 2017; Zhang et al., 2018a), we perform data augmentation
on the training images, which are randomly rotated by 90◦, 180◦, 270◦ and flipped horizontally.
Each training batch consists of 16 LR color patches, whose size is 64×64. Our FMP model is trained
by ADAM optimizer (Kingma & Ba, 2015) with β1=0.9, β2=0.999, and ϵ=10−8. We set the initial
learning rate as 10−4 and then decrease it to half every 2×105 iterations. We use PyTorch (Paszke
et al., 2017) to implement our models with RTX 3090 GPUs.

4.2 MAIN COMPARISONS

We apply FMP to LSRB and compare with representative lightweight SR networks: SRCNN (Dong
et al., 2014), FSRCNN (Dong et al., 2016), VDSR (Kim et al., 2016a), DRCN (Kim et al., 2016b),
LapSRN (Lai et al., 2017), DRRN (Tai et al., 2017a), MemNet (Tai et al., 2017b), CARN (Ahn et al.,
2018), IMDN (Hui et al., 2019), LatticeNet (Luo et al., 2022), and ASSLN (Zhang et al., 2021). We
configure LSRB to keep similar model size and FLOPs as recent leading ones (e.g., IMDN).

Quantitative Results. In Tab. 1, we provide our quantitative results without self-ensemble.
ASSLN (Zhang et al., 2021) ranks the second best place, while our FMP performs the best on
all datasets across all scales. Specifically, let us take the high-quality Urban100 as an example.
Our FMP obtains about 0.0051, 0.0035, and 0.0047 SSIM gains on Urban100 (×2, ×3, ×4) over
the second-best method, respectively. These comparisons show the effectiveness of FMP, which
conducts flexible network pruning and increases the efficiency of the network parameters from hy-
pernetwork. We make better use of the channel and weight sparsity of the backbone and increase
efficiency of the network parameters from hypernetwork.
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Set5 Set14 B100 Urban100 Manga109Method Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN (Dong et al., 2014) ×2 36.66 0.9542 32.42 0.9063 31.36 0.8879 29.50 0.8946 35.60 0.9663
FSRCNN (Dong et al., 2016) ×2 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020 36.67 0.9710
VDSR (Kim et al., 2016a) ×2 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
DRCN (Kim et al., 2016b) ×2 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133 37.63 0.9740
LapSRN (Lai et al., 2017) ×2 37.52 0.9590 33.08 0.9130 31.80 0.8950 30.41 0.9100 37.27 0.9740
DRRN (Tai et al., 2017a) ×2 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 37.92 0.9760
MemNet (Tai et al., 2017b) ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740
CARN (Ahn et al., 2018) ×2 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9764
IMDN (Hui et al., 2019) ×2 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.87 0.9773
LatticeNet (Luo et al., 2022) ×2 38.06 0.9607 33.70 0.9187 32.20 0.8999 32.25 0.9288 N/A N/A
ASSLN (Zhang et al., 2021) ×2 38.12 0.9608 33.77 0.9194 32.27 0.9007 32.41 0.9309 39.12 0.9781
FMP (ours) ×2 38.17 0.9615 33.81 0.9215 32.32 0.9022 32.71 0.9360 39.17 0.9783

SRCNN(Dong et al., 2014) ×3 32.75 0.9090 29.28 0.8209 28.41 0.7863 26.24 0.7989 30.48 0.9117
FSRCNN (Dong et al., 2016) ×3 33.16 0.9140 29.43 0.8242 28.53 0.7910 26.43 0.8080 31.10 0.9210
VDSR (Kim et al., 2016a) ×3 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9340
DRCN (Kim et al., 2016b) ×3 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.31 0.9360
DRRN (Tai et al., 2017a) ×3 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378 32.74 0.9390
MemNet (Tai et al., 2017b) ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369
CARN (Ahn et al., 2018) ×3 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9539
IMDN (Hui et al., 2019) ×3 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9444
LatticeNet (Luo et al., 2022) ×3 34.40 0.9272 30.32 0.8416 29.10 0.8049 28.19 0.8513 N/A N/A
ASSLN (Zhang et al., 2021) ×3 34.51 0.9280 30.45 0.8439 29.19 0.8069 28.35 0.8562 34.00 0.9468
FMP (ours) ×3 34.55 0.9291 30.48 0.8456 29.20 0.8101 28.40 0.8597 34.06 0.9473

SRCNN(Dong et al., 2014) ×4 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN (Dong et al., 2016) ×4 30.71 0.8657 27.59 0.7535 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR (Kim et al., 2016a) ×4 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8870
DRCN (Kim et al., 2016b) ×4 31.53 0.8854 28.02 0.7670 27.23 0.7233 25.14 0.7510 28.98 0.8870
LapSRN (Lai et al., 2017) ×4 31.54 0.8850 28.19 0.7720 27.32 0.7280 25.21 0.7560 29.09 0.8900
DRRN (Tai et al., 2017a) ×4 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638 29.46 0.8960
MemNet (Tai et al., 2017b) ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942
CARN (Ahn et al., 2018) ×4 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.46 0.9083
IMDN (Hui et al., 2019) ×4 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LatticeNet (Luo et al., 2022) ×4 32.18 0.8943 28.61 0.7812 27.57 0.7355 26.14 0.7844 N/A N/A
ASSLN (Zhang et al., 2021) ×4 32.29 0.8964 28.69 0.7844 27.66 0.7384 26.27 0.7907 30.84 0.9119
FMP (ours) ×4 32.34 0.8979 28.71 0.7878 27.67 0.7425 26.35 0.7954 30.90 0.9132

Table 1: PSNR/SSIM comparisons. Best and second best results are colored with red and blue.

×2 ×3 ×4Method Params FLOPs Params FLOPs Params FLOPs

SRCNN 57K 52.7G 57K 52.7G 57K 52.7G
FSRCNN 12K 6.0G 12K 5.0G 12K 4.6G
VDSR 665K 612.6G 665K 612.6G 665K 612.6G
DRCN 1,774K 17,974.3G 1,774K 17,974.3G 1,774K 17,974.3G
LapSRN 813K 29.9G N/A N/A 813K 149.4G
DRRN 297K 6,796.9G 297K 6,796.9G 297K 6,796.9G
MemNet 677K 2,662.4G 677K 2,662.4G 677K 2,662.4G
CARN 1,592K 222.8G 1,592K 118.8G 1,592K 90.9G
IMDN 694K 158.8G 703K 71.5G 715K 40.9G
LatticeNet 756K 169.5G 765K 76.3G 777K 43.6G
ASSLN 692K 159.1G 698K 71.2G 708K 40.6G
FMP (ours) 694K 153.7G 684K 67.3G 704K 39.0G

Table 2: Model size and FLOPs comparisons.

Model Complexity. In Tab. 2, we pro-
vide model complexity comparison. Several
lightweight SR models (e.g., SRCNN and FS-
RCNN) achieve a very small number of pa-
rameters and FLOPs, yet have limited perfor-
mance. Compared with recent leading works
(e.g., IMDN, LatticeNet, and ASSLN), our
FMP has comparable parameter numbers and
FLOPs. FMP operates fewer FLOPs than most
compared methods. When considering Tabs. 1
and 2 together, our FMP achieves a good trade-off between performance and model complexity.

Visual Results. We further provide visual results (×4) in Fig. 5. In img 083, we can observe that
most compared methods either hardly reconstruct structural details with proper directions or suffer
from blurring artifacts. In contrast, our FMP can recover more structural details and better alleviate
the blurring artifacts. Other similar observations can also be easily found. These visual comparisons
are consistent with the trend in quantitative results, indicating the superiority of our method.

4.3 ABLATION STUDY

We train all models from scratch for ablation study. The input size is 3×64×64 for FLOPs calcula-
tion. Training process will stop if meets convergence or reach the maximum iterations 300K.

Inference Time (ms) Urban100Method Params FLOPs Urban100 DIV2K PSNR SSIM

RLFN 0.32 M 1.23G 19 34 25.54 0.7675
LSRB-6-48 0.35 M 1.31G 12 23 25.62 0.7700

Table 3: Quantitative results (×4) of different lightweight
SR models. Inference time is tested with an RTX 3090 GPU.

Effectiveness of LSRB. To show
the effectiveness of the newly de-
signed LSRB, we first compare it
with RLFN (Kong et al., 2022). To
keep similar model complexity, we
configure LSRB-6-48, which consists
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Urban100: img 078 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 083 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 095 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 098 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Figure 5: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.

of 6 basic blocks (RBs) with 48 channels for each Conv layer. We report inference time on Urban100
and DIV2K validation and test data. In Tab. 3, our LSRB achieves much faster better performance
than RLFN at the cost of slightly more parameters and FLOPs. This observation indicates that LSRB
achieves a good trade-off among inference time, model complexity (i.e., parameters and FLOPs),
and performance. It is promising to further reduce its redundant parameters with our proposed FMP.

Prune Ratio (%) Method Set5 Set14 B100 Urban100

60 DHP 31.99 28.52 27.53 25.92
FMP (ours) 32.16 28.60 27.55 25.96

40 DHP 32.01 28.49 27.52 25.86
FMP (ours) 32.08 28.58 27.53 25.91

20 DHP 31.94 28.42 27.47 25.69
FMP (ours) 31.97 28.51 27.47 25.78

Table 4: Flexible vs. channel pruning in EDSR-8-128.

Flexible vs. Channel Pruning.
We then compare with channel
pruning methods in image SR.
In the pruning stage, we do not
use pretrained models, which
are needed in ASSL (Zhang
et al., 2021) and SRP (Zhang
et al., 2022b). Consequently, we
compare with DHP (Li et al.,
2020a), which only conducts channel pruning without pretraining. In Tab. 4, we use EDSR-8-128 as
the image SR backbone, which has been used in DHP (Li et al., 2020a) and consists of 8 RBs with
128 channels for each convolutional (Conv) layer. By additionally pruning kernel weights, FMP
performs better than DHP across different cases. It indicates that flexibly pruning both network
channels and weights achieves further improvements.

Pruning Method. As mentioned in Sec. 3.4, sparsity regularization can be applied to the channel
vectors and weight indicators. The optimization of channel vectors has been sufficiently studied in
DHP (Li et al., 2020a). Thus, we just use the default L1 norm regularization for channel vector
optimization. By contrast, we study the sparsity regularization on the weight indicators thoroughly
in this paper. Specifically, we study three regularization terms in Eq. 7 including L1 norm, L2 norm,
and weight decay regularization in Tab. 5. We find that L1 norm and weight decay could perform
better than L2 norm. Meanwhile, the L1 norm performs faster convergence than weight decay.
Therefore, we choose L1 norm for weight indicator optimization.

8



Under review as a conference paper at ICLR 2024

Total Ratio (%) Channel Prune Ratio (%) Weight Prune Ratio (%) PSNR (dB) of EDSR-8-128 + FMPMethod FLOPs Params FLOPs Params FLOPs Params Set5 Set14 B100 Urban100 Manga109

L1 norm 61.98 57.32 24.89 25.51 13.12 17.17 32.01 28.52 27.51 25.90 30.10
L2 norm 61.87 58.05 8.90 10.16 29.24 31.78 31.97 28.49 27.49 25.81 30.01
Weight Decay 61.95 59.98 31.11 31.49 6.94 8.53 32.03 28.53 27.52 25.90 30.10

Table 5: Weight pruning methods in FMP for image SR (×4). We apply FMP to EDSR-8-128.
Total Ratio (%) Channel Prune Ratio (%) Weight Prune Ratio (%) PSNR (dB) of EDSR-8-128 + FMPMetric Criteria FLOPs Params FLOPs Params FLOPs Params Set5 Set14 B100 Urban100 Manga109

Params

Channel 72.88 70.61 18.34 18.51 8.78 10.88 32.00 28.51 28.51 25.94 30.05
Weight 48.55 41.49 33.24 33.39 18.21 25.12 31.90 28.45 27.46 25.76 29.87

Total Fixed 62.23 55.59 19.65 19.78 18.11 24.63 31.98 28.50 27.51 25.85 30.04
Total 61.95 59.98 31.11 31.49 6.94 8.53 32.03 28.53 27.52 25.90 30.10

FLOPs

Channel 72.93 70.70 18.34 18.51 8.73 10.78 32.04 28.56 27.53 25.96 30.15
Weight 59.19 54.39 27.19 27.60 13.63 18.01 31.97 28.49 27.50 25.90 30.02

Total Fixed 67.46 62.70 18.64 18.95 13.90 18.35 31.97 28.54 27.53 25.91 30.07
Total 65.39 61.57 23.15 23.60 11.45 14.83 32.04 28.55 27.53 25.94 30.11

Table 6: Convergence criteria in FMP for image SR (×4). We apply FMP to EDSR-8-128.

4.4 CONVERGENCE CRITERIA

As shown in Sec. 3.4, the convergence criteria needs to be defined during the optimization of the
pruning algorithm. In the paper, we define the pruning ratio γC and γW in terms of either the number
of parameters or FLOPs, depending on which metric we want to optimize for. Both structured
pruning and unstructured pruning are conducted during the optimization. In addition, we defined
four convergence criteria: (1) Channel: the pruning algorithm converges if the channel pruning ratio
γC is achieved. (2) Weight: the pruning algorithm converges if the channel pruning ratio γW is
achieved. (3) Total Fixed: both the pruning ratio γC and γW should be met individually. (4) Total:
the joint pruning ratio γC + γW is achieved. The percentage of weight pruning and channel pruning
is determined automatically. We provide results in Tab. 6. We can learn that pruning channel and
weight jointly (i.e., Total Fixed and Total cases) reduces more parameters and obtains comparable
performance as channel pruning alone.

4.5 DIFFERENT MODEL COMPRESSION METHODS

Method Type Params FLOPs Set5 B100
MoreMNAS-A NAS 1,039K 238.6G 37.63 31.95
FALSR-A NAS 1,021K 234.7G 37.82 32.12
CARN+KD KD 1,592K 222.8G 37.82 32.08
ASSLN C Prune 692K 159.1G 38.12 32.27
FMP (ours) C+W Prune 694K 153.7G 38.17 32.32

Table 7: Parameters, FLOPs, and PSNR comparisons (×2). ‘C’
and ‘W’ denote channel and weight.

To further show effectiveness
of flexible network pruning
method, we compare FMP
with representative model com-
pression techniques for image
SR. Specifically, we com-
pare with neural architecture
search (NAS) based methods
(i.e., MoreMNAS-A (Chu
et al., 2019b) and FALSR-A (Chu et al., 2019a)), knowledge distillation (KD) based methods
(i.e., CARN+KD (Lee et al., 2020)), and channel pruning based method (i.e., ASSLN (Zhang
et al., 2021)). We provide quantitative results in Tab. 7. Our FMP obtains the best performance
(see Tab. 1) with comparable parameters and FLOPs as others. We do not have to search lots
of architectures or train a teacher network as NAS and KD based methods do. ASSLN prunes
channels from a pretrained model. With our proposed flexible network pruning strategy, we can
prune channels and weights jointly without pretrained models, being more flexible than ASSLN.

5 CONCLUSION
In this work, we design a lightweight SR baseline (LSRB), which runs fast yet obtains comparable
performance as other lightweight models. We then propose a flexible meta pruning (FMP) technique
to prune network channels and weights simultaneously. Specifically, we introduce a hypernetwork,
taking channel vectors and weight indicators as inputs. The hypernetwork outputs serve as the net-
work parameters for the SR backbone. Consequently, for each network layer, we conduct structured
pruning with channel vectors, controlling the output and input channels. Besides, we conduct un-
structured pruning with weight indicators to influence the sparsity of kernel weights, resulting in
flexible pruning. During pruning, both channel vectors and weight indicators are regularized by
sparsity and are optimized with proximal gradient and SGD respectively. We conduct extensive ex-
periments to investigate effect of key factors in our FMP, such as convergence criteria and pruning
method. Our FMP also achieves superior performance gains over recent leading methods.
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