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Abstract

Recent machine learning advances have proposed
black-box estimation of unknown continuous-time
system dynamics directly from data. However, ear-
lier works are based on approximative solutions
or point estimates. We propose a novel Bayesian
nonparametric model that uses Gaussian processes
to infer posteriors of unknown ODE systems di-
rectly from data. We derive sparse variational in-
ference with decoupled functional sampling to rep-
resent vector field posteriors. We also introduce a
probabilistic shooting augmentation to enable ef-
ficient inference from arbitrarily long trajectories.
The method demonstrates the benefit of computing
vector field posteriors, with predictive uncertainty
scores outperforming alternative methods on mul-
tiple ODE learning tasks.

1 INTRODUCTION

Ordinary differential equations (ODEs) are powerful mod-
els for continuous-time non-stochastic systems, which are
ubiquitous from physical and life sciences to engineering
(Hirsch et al., 2012). In this work, we consider non-linear
ODE systems

x(t) = x0 +

∫ t

0

f(x(τ))dτ (1)

ẋ(t) :=
dx(t)

dt
= f(x(t)), (2)

where the state vector x(t) ∈ RD evolves over time t ∈ R+

from an initial state x0 following its time derivative ẋ(t),
and τ is an auxiliary time variable. Our goal is to learn the
differential function f : RD 7→ RD from state observations,
when the functional form of f is unknown.

The conventional mechanistic approach involves manu-
ally defining the equations of dynamics and optimizing

their parameters (Butcher and Goodwin, 2008), or infer-
ring their posteriors (Girolami, 2008) from data. However,
the equations are unknown or ambiguous for many sys-
tems, such as human motion (Wang et al., 2008). Some
early works explored fitting unknown ODEs with splines
(Henderson and Michailidis, 2014), Gaussian processes
(Äijö and Lähdesmäki, 2009) or kernel methods (Heinonen
and d’Alché-Buc, 2014) by resorting to less accurate gra-
dient matching approximations (Varah, 1982). Recently,
Heinonen et al. (2018) proposed estimation of free-form
non-linear dynamics using Gaussian processes without gra-
dient matching. However, the approach is restricted to learn-
ing point estimates of the dynamics, limiting the uncertainty
characterization and generalization. Chen et al. (2018) pro-
posed modeling ODEs with neural networks and adjoints,
which was later extended to the Bayesian setting by Dan-
dekar et al. (2020). However, the gradient descent training
in such approaches can be ill-suited for complex or long-
horizon ODEs with typically highly non-linear integration
maps (Diehl and Gros, 2017).

In this work, we introduce efficient Bayesian learning of
unknown, non-linear ODEs. Our contributions are:

• We introduce a way of learning posteriors of vec-
torfields using Gaussian processes as flexible priors
over differentials f , and thereby build on the work by
Heinonen et al. (2018). We adapt decoupled functional
sampling to simulate ODEs from vector field posteri-
ors.

• For the difficult problem of gradient optimizations of
ODEs, we introduce a novel probabilistic shooting
method. It is motivated by the canonical shooting meth-
ods from optimal control and makes inference stable
and efficient on long trajectories.

• We empirically show the effectiveness of the proposed
method even while learning from a limited number
of observations. We demonstrate the ability to infer
arbitrarily long trajectories efficiently with the shooting
extension.
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Figure 1: Illustration of GPODE: The model learns a GP posterior (a) of a vector field. Valid ODE trajectories are sampled
from the posterior process as shown in (b) and (c).

2 RELATED WORKS

Mechanistic ODE models. In mechanistic modelling the
equation fθ is predefined with a set of coefficients θ to be
fitted (Butcher and Goodwin, 2008). Several works have
proposed embedding mechanistic models within Bayesian
or Gaussian process models (Calderhead et al., 2008; Don-
delinger et al., 2013; Wenk et al., 2020). Recently both Julia
and Stan have introduced support for Bayesian analysis of
parametric ODEs (Rackauckas and Nie, 2017; Stan, 2021).
Since this line of work assumes a known dynamics model,
we do not consider these methods in the experiments.

Free-form ODE models. Multiple works have proposed
fitting unknown, non-linear and free-form ODE differentials
with gradient matching using splines (Ramsay et al., 2007),
Gaussian processes (Äijö and Lähdesmäki, 2009) or ker-
nel methods (Heinonen and d’Alché-Buc, 2014). Recently,
Heinonen et al. (2018) proposed accurate maximum a pos-
teriori(MAP) optimisation of vector fields with sensitivity
equation gradients (Kokotovic and Heller, 1967). Neural
ODEs (Chen et al., 2018) introduced adjoint gradients (Pon-
tryagin et al., 1962) along with flexible black-box neural
network vector fields. Several extensions to learning latent
ODEs have been proposed (Yildiz et al., 2019; Rubanova
et al., 2019).

Discrete-time state-space models. There is a large liter-
ature on Markovian state-space models that operate over
discrete time increments (Wang et al., 2005; Turner et al.,
2010; Frigola et al., 2014). Typically nonlinear state tran-
sition functions are modeled with Gaussian processes and
applied to latent state estimation or system identification
problems with dynamical systems (Eleftheriadis et al., 2017;
Doerr et al., 2018; Ialongo et al., 2019). In this paper, we
focus strictly on continuous-time models and leave the study
of discrete vs. continuous formulations for future work.

Stochastic differential equations. As an alternative for-
mulation of inferring unknown dynamics from observational
data, one can assume stochastic transitions and learn models

of stochastic differential equations (SDEs). Existing works
have utilized Gaussian processes (Archambeau et al., 2007;
Duncker et al., 2019; Jørgensen et al., 2020) and neural
networks (Tzen and Raginsky, 2019; Li et al., 2020) to
model non-linear SDEs. However, since they assume a dif-
ferent model (i.e. deterministic transitions vs stochastic tran-
sitions), we will restrict the experimental comparisons to
other ODE-based approaches.

3 METHODS

We consider the problem of learning ODEs (2) with GPs
and propose a Bayesian model to infer posteriors over the
differential f(·).

3.1 BAYESIAN MODELING OF ODES USING GPS

We assume a sequence of N observations Y =
(y1,y2, . . .yN )T ∈ RN×D along a trajectory, with yi ∈
RD representing the noisy observation of the unknown state
x(ti) ∈ RD at time ti. Similar to Heinonen et al. (2018), we
assume a zero mean vector-valued Gaussian process prior
over f ,

f(x) ∼ GP(0,K(x,x′)), (3)

which defines a distribution of differentials f(x) with co-
variance cov[f(x), f(x′)] = K(x,x′), where K(x,x′) ∈
RD×D is a stationary matrix-valued kernel. We follow the
commonly used sparse inference framework for GPs us-
ing inducing variables (Titsias, 2009), and augment the full
model with inducing values U = (u1, . . . ,uM )T ∈ RM×D
and inducing locations Z = (z1, . . . , zM )T ∈ RM×D such
that um = f(zm). The inducing variables are trainable
‘landmark’ state-differential pairs, from which the rest of
the differential field is interpolated (See Figure 1, where ar-
row locations are the zm and arrow end-points are the um).
The inducing augmentation leads to the following prior and



conditionals (Hensman et al., 2013):

p(U) = N (U|0,KZZ), (4)

p(f |U; Z) = N (f |Avec(U),KXX −AKZZAT ), (5)

where X = (x1,x2, . . .xN ′)
T ∈ RN ′×D collects all the

intermediate state evaluations x(ti) encountered along a
numerical approximation of the true continuous ODE inte-
gral (1), f = (f(x1)T , . . . , f(xN ′)

T )T ∈ RN ′D×1, KXX

is a block-partitioned matrix of size N ′D × N ′D with
D ×D blocks, so that block (KXX)i,j = K(xi,xj), and
A = KXZK−1ZZ. For notational simplicity, we assume that
the measurement time points are among the time points
of the intermediate state evaluations of a numerical ODE
solver.

The joint probability distribution follows

p(Y, f ,U,x0) = p(Y|f ,x0)p(f ,U)p(x0) (6)

=

N∏
i=1

p(yi|f ,x0)p(f |U)p(U)p(x0), (7)

where the conditional distribution p(yi|f ,x0) = p(yi|xi)
computes the likelihood over ODE state solutions xi =

x0 +
∫ ti
0

f(x(τ))dτ .

3.2 VARIATIONAL INFERENCE FOR GP-ODES

In contrast to earlier approach that estimates MAP solutions
(Heinonen et al., 2018), our goal is to infer the posterior
distribution p(f ,x0|Y) of the vector field f and initial value
x0 from observations Y. The posterior is intractable due to
the non-linear integration map x0

f7→ x(t).

We use the stochastic variational inference (SVI) formula-
tion for sparse GPs (Hensman et al., 2013) in this work.
We introduce a factorized Gaussian posterior approxima-
tion for the inducing variables across state dimensions
q(U) =

∏D
d=1N (ud|md,Qd),ud ∈ RM where md ∈

RM ,Qd ∈ RM×M are the mean and covariance parameters
of the variational Gaussian posterior approximation for the
inducing variables. We treat the inducing locations Z as
optimized hyperparameters. The posterior distribution for
the variational approximation can be written as

q(f) =

∫
p(f |U)q(U)dU (8)

=

∫
N
(
f |Avec(U),KXX −AKZZAT

)
q(U)dU. (9)

The posterior inference goal then translates to estimating the
posterior p(f ,U,x0|Y) of the inducing points U and initial
state x0. Under variational inference this learning objective

arg min
q

KL
[
q(f ,U,x0) || p(f ,U,x0|Y)

]
(10)

translates into maximizing the evidence lowerbound
(ELBO),

log p(Y) ≥
N∑
i=1

variational likelihood︷ ︸︸ ︷
Eq(f ,x0) log p(yi|f ,x0)−

inducing KL︷ ︸︸ ︷
KL[q(U)||p(U)]

−KL[q(x0)||p(x0)]︸ ︷︷ ︸
initial state KL

, (11)

where we also assume variational approximation q(x0) =
N (a0,Σ0) for the initial state x0. See supplementary sec-
tion 1.1 for detailed derivations of the above equations.

3.3 SAMPLING ODES FROM GAUSSIAN
PROCESSES

The Picard-Lindelöf theorem (Lindelöf, 1894) ensures valid
ODE systems define unique solutions to the initial value
problem (IVP) (1). In order to sample valid state trajecto-
ries for the IVP, we need to efficiently sample GP functions
f(·) ∼ q(f) (9). This way, we can evaluate the sample
function f(x(t)) at arbitrary states x(t) encountered dur-
ing ODE forward integration, while accounting for both
the inducing and interpolation distributions of Equation (9).
Unfortunately, function-space sampling of such GPs has pro-
hibitive cubic complexity (Rasmussen and Williams, 2006;
Ustyuzhaninov et al., 2020), while the more efficient weight-
space sampling with Fouriers cannot accurately express the
posterior (9) (Wilson et al., 2020).

We use the decoupled sampling that decomposes the poste-
rior into two parts (Wilson et al., 2020),

posterior︷ ︸︸ ︷
f(x)|U =

prior︷︸︸︷
f(x) +

update︷ ︸︸ ︷
K(x,Z)K(Z,Z)−1(U− fZ)) . (12)

≈
F∑
i=1

wiφi(x) +

M∑
j=1

νjK(x, zj), (13)

where we use F Fourier bases φi(·) with wi ∼ N (0, I)
(Rahimi and Recht, 2007) to represent the stationary prior,
and function basis K(·, zj) for the posterior update with
ν = K(Z,Z)−1(U −ΦW), Φ = φ(Z) ∈ RM×F ,W ∈
RF×D. By combining these two steps, we can accurately
evaluate functions from the posterior (9) in linear time at
arbitrary locations. We refer the reader to the supplementary
section 1.2 for more details. We note that concurrent works
by Mikheeva et al. (2021) and Ensinger et al. (2021) also
utilize the decoupled-sampling to infer ODE posteriors with
GPs.

3.4 AUGMENTING THE ODE MODEL WITH
SHOOTING SYSTEM

A key bottleneck in ODE modeling is the poor gradient de-
scent performance over long integration times x0:T , which
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Figure 2: Illustrations of GPODE formulations: the full model formulation (a) follows the long trajectory integration,
whereas the shooting version (b) splits the long trajectory into multiple short subintervals.

can exhibit vanishing or exploding gradients (Haber and
Ruthotto, 2017; Choromanski et al., 2020). Earlier ap-
proaches tackled this issue mainly with more accurate nu-
merical solvers (Zhuang et al., 2020, 2021). The nonlinearity
of the integration map x0

f7→ xt motivates us to instead seg-
ment the full integration x0:T into short segments, which are
easier to optimize and can be trivially parallelized. This is
called the multiple shooting method in optimal control litera-
ture (Osborne, 1969; Bock and Plitt, 1984), in the context of
parameter estimation of ODEs (vanDomselaar and Hemker,
1975; Bock, 1983). Recently, Massaroli et al. (2021); Tu-
ran and Jäschke (2021) also introduced a multiple-shooting
framework within the context of deterministic neural ODEs.
We introduce probabilistic shooting for the Gaussian process
posterior inference of ODEs.

We begin by introducing shooting state variables S =
(s0, s1, . . . , sN−1), si ∈ RD, and segment the con-
tinuous state function x(t; x0) (1) into N segments
{(si−1,x(ti; si−1))}Ni=1 that branch from the shooting vari-
ables si−1 (See Figure 2);

x(ti; si−1) = si−1 +

∫ ti

ti−1

f(x(τ))dτ. (14)

In addition, every shooting variable is approximately
matched with the ODE state evolution from the previous
shooting state,

si = x(ti; si−1) + ξ, (15)

where ξ ∈ RD represents the tolerance parameter control-
ling the shooting approximation. The augmented system
is equivalent to the original ODE system in case the con-
straints si = x(ti; si−1) are satisfied exactly at the limit
ξ → 0. We place a Gaussian prior over the tolerance pa-
rameter ξ ∼ N (0, σ2

ξ I), which translates into the following
prior over shooting variables

p(si|si−1) = N (si|x(ti; si−1), σ2
ξ I). (16)

Further, the joint probability of the augmented model after

placing a GP prior over the vectorfield f can be written as

p(Y,S, f) =

N∏
i=1

p(yi|si−1, f)

N−1∏
i=1

p(si|si−1, f)p(s0)p(f).

(17)

3.5 VARIATIONAL INFERENCE FOR THE
AUGMENTED MODEL

To infer the augmented posterior p(f ,U,S|Y) we intro-
duce variational approximation for the shooting variables
q(S) = q(s0) · · · q(sN−1), where each distribution q(si) =
N (si|ai,Σi) is a Gaussian. This results in the joint varia-
tional approximation

q(S, f ,U) =

N−1∏
i=0

q(si)p(f |U)q(U), (18)

and the following evidence lower bound for the shooting
model,

Lshooting =

N∑
i=1

Eq(si−1,f)

[
log p(yi|si−1, f)

]
+

N−1∑
i=1

Eq(si,si−1,f)

[
log p (si|si−1, f)

]
− Eq(si)

[
log q(si)

]
−KL[q(s0) || p(s0)]−KL[q(U) || p(U)]. (19)

The ELBO consists of an expected log-likelihood term,
which matches the state evolution (14) from every shooting
variable to the corresponding observation. In addition, the
posterior approximation for every shooting variable is also
matched with the ODE evolution of the approximated poste-
rior of the previous shooting state, leading to corresponding
cross-entropy and entropy terms.

The ELBO for the augmented shooting model requires
solving only the short segments (14) with simpler integra-
tion maps, thus great at mitigating problems with vanish-
ing/exploring gradients. Since the involved numerical ODE
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Figure 3: Learning the 2D Van der Pol dynamics (a) with alternative methods (b-d). Column 1 shows the vector fields while
columns 2 and 3 show the state trajectories x1(t) and x2(t). GPODE learns the posterior accurately.

integration can be done in parallel, the shooting model is
also computationally faster than the full model in practice.
See supplementary section 1.3 for a plate diagram and de-
tailed derivation of the approach.

4 EXPERIMENTS

We validate the proposed method on Van der Pol (VDP)
and FitzHugh–Nagumo (FHN) systems and on the task of
learning human motion dynamics (MoCap). The predictive
performance of the proposed GPODE is compared against
npODE (Heinonen et al., 2018), NeuralODE (Chen et al.,
2018) and Bayesian version of NeuralODE (Dandekar et al.,
2020). We use 16 inducing points in VDP and FHN experi-
ments and 100 inducing points for the MoCap experiments.

Except for the NeuralODE model, we assume Gaussian
observation likelihood, and infer the unknown noise scale
parameter from the training data. All the experiments use
squared exponential kernel with automatic relevance deter-
mination (ARD) along with 256 Fourier basis functions for
decoupled GP sampling. Along with the variational param-
eters, kernel lengthscales, signal variance, noise scale, and
inducing locations are jointly optimized against the model
ELBO while training. In addition, for the shooting model,
we fix the constraint tolerance parameter to a small value
σ2
ξ = 1e−6 consistently across all the experiments. In all the

shooting experiments, we considered the number of shoot-
ing segments to be the same as the number of observation
segments in the dataset. A codebase for implementing the
proposed methods is provided https://github.com/
hegdepashupati/gaussian-process-odes.

https://github.com/hegdepashupati/gaussian-process-odes
https://github.com/hegdepashupati/gaussian-process-odes


Table 1: VDP system learning performance on extrapolation task with observations on regular (task 1) and irregular time
intervals (task 2). We report mean ± standard error over 5 runs from different random initialization, the best values bolded.
(↑): higher is better, (↓) lower is better

Task 1: Regular time-grid Task 2: Irregular time-grid

MNLL (↓) MSE (↓) MNLL (↓) MSE (↓)

Bayesian NeuralODE (HMC) 0.82± 0.01 1.45± 0.04 0.88± 0.01 1.68± 0.04
NeuralODE - 0.29± 0.11 - 0.55± 0.07
npODE 1.47± 0.59 0.16± 0.05 8.89± 3.06 2.08± 0.78
GPODE 0.60± 0.03 0.13± 0.01 0.41± 0.18 0.21± 0.07

We use the dopri5 solver with tolerance parameters
rtol= 1e−5 and atol= 1e−5, and use the adjoint
method for computing loss gradients with torchdiffeq1

package (Chen et al., 2018). All the experiments are re-
peated 5 times with random initialization, and means and
standard errors are reported over multiple runs. The pre-
dictive performance of different models are measured with
mean squared error (MSE) and mean negative log likelihood
(MNLL) metrics.

4.1 LEARNING VAN DER POL DYNAMICS

We first illustrate the effectiveness of the proposed method
by inferring the vector field posterior on a two-dimensional
VDP (see Figure 3),

ẋ1 = x2, (20)

ẋ2 = −x1 + 0.5x2(1− x21).

We simulate a trajectory of 50 states following the true
system dynamics from the initial state (x1(0), x2(0)) =
(−1.5, 2.5), and add Gaussian noise with σ2 = 0.05 to
generate the training data. We explore two scenarios with
training time interval t ∈ [0, 7] and forecasting interval
t ∈ [7, 14]: (1) over a regularly sampled time grid, (2) over
an irregular grid using uniform random sampling of time
points. Task (2) demonstrates one of the key advantages of
continuous-time models with the ability to handle irregular
data.

Figure 3(b) shows that both GPODE and Bayesian Neu-
ralODE learn a vector field posterior whose posterior mean
closely matches the ground truth, with low variance (blue
regions) near the observed data. The posterior variance in-
creases away from the observed data (orange regions), indi-
cating a good uncertainty characterization, while the npODE
with MAP estimation seems to overfit. NeuralODE learns
an appropriate vector field, but requires careful tuning of
regularization and hyperparameters for a good fit with a
limited number of observations. A quantitative evaluation
of the model fits in Table 1 indicates the better performance

1https://github.com/rtqichen/torchdiffeq

Table 2: Imputation results on the FHN system.

MNLL (↓) MSE (↓)

Bayesian NeuralODE (HMC) 0.77± 0.12 0.24± 0.03
NeuralODE - 0.18± 0.00
npODE 6.49± 1.49 0.08± 0.01
GPODE 0.09± 0.05 0.07± 0.02
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Figure 4: Optimization efficiency with GPODE models.

of GPODE as compared to the other methods under compar-
ison.

4.2 LEARNING WITH MISSING OBSERVATIONS

We illustrate the usefulness of learning Bayesian ODE pos-
teriors under missing data with the FHN oscillator

ẋ1 = 3(x1 − x31/3 + x2), (21)
ẋ2 = (0.2− 3x1 − 0.2x2)/3.

We generate a training sequence by simulating 25 regularly-
sampled time points from t ∈ [0, 5.0] with added Gaussian
noise with σ2 = 0.025. We remove all observations at the
quadrant x1 > 0, x2 < 0 and evaluate model accuracy
in this region. The interpolation performance for different
models is shown in Table 2. The point estimates of npODE
and NeuralODE have biases, while the Bayesian variants
of GPODE and NeuralODE provide good uncertainty esti-
mates corresponding to their better predictive performance.

https://github.com/rtqichen/torchdiffeq
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4.3 LEARNING LONG TRAJECTORIES WITH
THE SHOOTING FORMULATION

We demonstrate the necessity of the shooting formulation
for working with long training trajectories. We use the
VDP system with four observations per unit of time for
T = (25, 40, 55) corresponding to N = (100, 160, 220)
observed states. We also vary the observation variance as
σ2 = (0.01, 0.05, 0.1) and test the model for forecasting
additional 50 time points.

Figure 5 demonstrates that vanilla-GPODE and NeuralODE,
and Bayesian NeuralODE fail to fit the data with long se-
quences on all noise levels. In contrast, inference for the
shooting model is successful in all settings. The npODE
is remarkably robust to long trajectories. We believe the
robustness of npODE mainly stems from the excellent pa-
rameter initialization strategy (see supplementary section
2.2) coupled with the fully deterministic optimization setup
(no reparametrization gradients).

Figure 4 shows a runtime trace comparison between vanilla
GPODE and the shooting variant in wall-clock time for a
fixed budget of 15000 optimization steps on the VDP system
withN = 100, T = 25 and σ2 = 0.01. The shooting model
converges approximately 10 times faster. The speedup stems
from the parallelization of the shooting ODE solver, since
the shooting method splits the full IVP problem into numer-
ous short and less non-linear IVPs. In addition, the shooting
method relaxes the inference problem with its auxiliary aug-
mentation. This experiment was conducted on a system with
AMD Ryzen 5 3600 processor and Nvidia GeForce GTX
1660S GPUs.

4.4 LEARNING HUMAN MOTION DYNAMICS

We learn the dynamics of human motion from noisy experi-
mental data from CMU MoCap database for three subjects,
09, 35 and 39. The dataset consists of 50 sensor readings
from different parts of the body while walking or running.
We follow the preprocessing of Wang et al. (2008) and cen-
ter the data. The dataset was further split into train, test, and
validation sequences. We observed that the NeuralODE, the
Bayesian NeuralODE version with VI, and npODE models
suffer from over-fitting, and we remedy this by applying
early stopping by monitoring the validation loss during opti-
mization.

We project the original 50-dimensional data into a 5-
dimensional latent space using PCA and learn the dynam-
ics in the latent space. To compute the data likelihood, we
project the latent dynamics back to the original data space by
inverting the PCA. We divide the experiment into sub-tasks
MoCap-short and MoCap-long, based on the length of the
sequence considered for model training (see the supplemen-
tary section for more details on the dataset and experimental
setup). The model predictive performance is measured on
unseen test sequences in both tasks.

Table 3 indicates that GPODE outperforms the competing
npODE and NeuralODE model variants. Figure 6 visualizes
the predicted dynamics for a test sequence. The GPODE
variants have reasonable posterior uncertainties, while Neu-
ralODE variants and npODE tend to be overconfident and
make more mistakes (see Figure 6 (b), sensors 05, 41 and
47) . We note that some variations in the data space cannot
be accurately estimated due to the low-dimensional PCA
projection.
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Figure 6: Learning the walking dynamics of subject 39: The true dynamics and predicted dynamics (mean) for the first
three components in PCA space are shown in (a). Corresponding trajectories in the observation space for 6 different sensors
are shown in (b) (We do not plot the observation noise variance)

Table 3: Test MNLL and MSE metrics for dynamics prediction task on CMU MoCap dataset.

Metric Method Subject 09 Subject 35 Subject 39

short long short long short long

MNLL(↓)
Bayesian NeuralODE (VI) 2.03± 0.10 1.50± 0.05 1.42± 0.05 1.37± 0.06 1.61± 0.07 1.45± 0.03
npODE 2.09± 0.01 1.78± 0.08 1.67± 0.02 1.66± 0.04 2.06± 0.05 1.78± 0.04
GPODE-vanilla 1.30± 0.02 1.26± 0.02 1.27± 0.04 1.39± 0.04 1.29± 0.01 1.13± 0.01
GPODE-shooting 1.19± 0.02 1.14± 0.02 1.25± 0.06 1.08± 0.02 1.25± 0.01 1.36± 0.02

MSE(↓)
Bayesian NeuralODE (VI) 25.50± 1.70 21.32± 2.58 23.09± 3.95 20.86± 2.95 53.34± 5.31 39.66± 6.82
NeuralODE 27.53± 2.87 33.83± 2.46 36.50± 3.86 23.54± 0.56 115.38± 10.96 53.51± 2.98
npODE 17.91± 1.62 19.76± 4.29 26.24± 2.88 22.83± 3.91 92.80± 15.74 55.94± 4.63
GPODE-vanilla 15.78± 0.67 12.62± 1.14 16.14± 0.99 15.53± 0.76 20.71± 1.25 23.64± 1.94
GPODE-shooting 9.11± 0.37 8.38± 1.23 10.11± 0.79 11.66± 0.73 26.72± 0.63 21.17± 2.88

5 CONCLUSION AND DISCUSSION

We proposed a novel model for Bayesian inference of ODEs
using Gaussian processes. With this approach, one can
model unknown ODE systems directly from the observa-
tional data and learn posteriors of the continuous-time vector
fields. In contrast, earlier works produce point estimate so-
lutions. We believe this to be a significant addition to the
data-descriptive ODE modeling methods, especially for ap-
plications where uncertainty quantification is critical. Many
conventional machine learning algorithms have been in-
terpreted and modeled as continuous-time dynamical sys-
tems, with applications to generative modeling (Grathwohl
et al., 2019) and probabilistic alignment (Ustyuzhaninov
et al., 2020), among others. However, scaling GPs to high-
dimensional datasets (such as images) can be a bottleneck.
The applicability of the proposed model as a plug-in exten-
sion for these applications can be studied as part of future
work.

We also highlighted a problem of learning black-box ODE
models on long trajectories and proposed a probabilistic
shooting framework enabling efficient inference on such

tasks. This framework can be applied to other existing ap-
proaches, such as NeuralODEs. However, the proposed
shooting augmentation introduces model approximation and
involves approximating inference over auxiliary shooting
variables. Hence the benefits of the shooting augmentation
can be task specific, especially on short sequences. Compre-
hensive empirical studies across different types of tasks can
be considered in future work.
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