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Reaction virtual screening and discovery are fundamental challenges in chemistry
and material science, where traditional graph neural networks (GNNs) struggle to
model multi-reactant interactions. In this work, we propose ChemHGNN, a hyper-
graph neural network (HGNN) framework that effectively captures high-order rela-
tionships in reaction networks. Unlike GNNs, which require constructing complete
graphs for multi-reactant reactions, ChemHGNN naturally models multi-reactant
reactions through hyperedges, enabling more expressive reaction representations.
To address key challenges—such as combinatorial explosion, model collapse, and
chemically invalid negative samples—we introduce a reaction center-aware nega-
tive sampling strategy (RCNS) and a hierarchical embedding approach combining
molecule, reaction and hypergraph level features. Experiments on the USPTO
dataset demonstrate that ChemHGNN significantly outperforms HGNN and GNN
baselines, particularly in large-scale settings, while maintaining interpretability and
chemical plausibility. Our work establishes HGNNSs as a superior alternative to
GNN s for reaction virtual screening and discovery, offering a chemically informed
framework for accelerating reaction discovery.

1 INTRODUCTION

The discovery of chemical reactions is fundamental to advancements in fields ranging from drug
development to materials science (Wang et al.| 2023)). With the advent of machine learning, data-
driven methods have shown great promise in predicting potential chemical reactions, particularly by
leveraging complex relational data (Coley et al., 2019;2017; |Yu et al.l |2024). The combinatorial
explosion of possible reactant combinations—stemming from over 60 million catalogued molecules
(Ruddigkeit et al., 2012))—renders exhaustive experimental or computational enumeration infeasible.
To address this challenge, reaction virtual screening offers a scalable in silico solution by evaluating
sets of reactants and assigning a score that reflects the likelihood of a reaction occurring. This approach
is critical for accelerating the reaction discovery process by narrowing down viable candidates
efficiently.

Traditional graph-based models are well-developed to capture the bond changes within molecules in
a specific reaction (Coley et al.,[2019). However, traditional graph structures struggle to represent
reaction networks involving multiple reactants, as these reactants interact with one another. Accurately
modeling such interactions would require constructing a complete graph for each reaction, which
becomes computationally impractical and conceptually inefficient. Hypergraphs generalize graphs
to model these multi-way interactions as well as to capture high-level information within reaction
networks besides the connectivity changes within a specified reaction. As such, hypergraphs offer
a powerful framework for representing chemical reaction networks and discovering new reactions
(Mann & Venkatasubramanian, [2023)).

In this study, we propose a novel hypergraph neural network (HGNN) approach specifically designed
for chemical reaction virtual screening and discovery. Our model exploits the ability of hypergraphs
to naturally represent multi-reactant reactions, capturing the combinatorial complexity of chemical
transformations. Chemical information is incorporated into the model through a hierarchical em-
bedding strategy that integrates a reaction center-pretrained graph neural network and an HGNN to
capture molecule, reaction, and hypergraph level details. A key challenge in training such models
is the construction of effective negative samples which are typically absent in reaction datasets, but
are nonetheless essential for optimizing performance and the prediction of chemically plausible
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reactions. Additionally, efficiently generating new reactant combinations is critical for maximizing
the likelihood of discovering novel reactions. To tackle these challenges, we introduce a tailored
negative sampling strategy within the hypergraph framework, designed to differentiate valid chemical
reactions from random or invalid combinations of reactants by introducing virtual nodes into the
reaction hypergraph. Finally, we implement an efficient filtering mechanism to select viable reaction
candidates based on the representations derived from our HGNN. We summarize the key challenges
as follows:

» Combinatorial explosion of possible reactant combinations.

* Inadequacy of traditional graph models for multi-reactant reactions.
* Difficulty in generating effective negative samples for training.

* Need for chemically informed reaction representations.

Our main contributions are as follows:

* We find that HGNNs are better reaction representation learners and less prone to model
collapse than traditional GNNs across dataset sizes.

* We propose ChemHGNN, an end-to-end pipeline for virtual reactant screening and reaction
discovery that leverages hypergraphs as expressive reaction network representations.

* We introduce a domain-informed negative sampling method tailored for reaction learning,
which is found to enhance model performance.

* Experiments show that ChemHGNN provides excellent performance at predicting reactive
combinations of molecules. In particular, ChemHGNN displays the ability to extrapolate
to reaction templates beyond those it was trained on, demonstrating an understanding of
fundamental chemical reactivity.

This approach offers a chemically-informed framework for reaction virtual screening and discovery,
with broad implications for molecular design and accelerated materials discovery.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Let a hypergraph reaction network be H = (V, ), where V rep-

resents a set of reactants, £ is a set of reactions, and X is the set

of node features. Reaction virtual screening can be formulated as

a predictor f(-) which takes a set of reactants {v; | v; C V}, and @
outputs a score representing the likelihood of a reaction to happen

within {v;}.
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2.2  CONSTRUCTION OF THE HYPERGRAPH Figure 1: This hypergraph in-
volves the reactants of two
Diels Alder reactions and one
Hydroformylation. Each reac-
tant is presented as node, and
colored outlines as the hyper-
edges.

A hypergraph is an ordered pair H = (V,E&), where V is a set
of nodes, and £ is a set of hyperedges. Each hyperedge is a non-
empty subset of nodes. The structure of a hypergraph is usually
represented by an incidence matrix H € {0, 1}/VI*I€l, with each
entry H, . indicating whether the vertex v is in the hyperedge e
(Antelmi et al.,2023). We construct the hypergraph reaction network
by representing molecules as nodes and reactions as hyperedges that
enclose the nodes. Since virtual screening is performed on reactants without knowledge of the
products, we exclude the products from the reactions and only focus on reactants, as illustrated in Fig.

[

2.3 HYPERGRAPH NEURAL NETWORKS

We have defined incidence matrix H € {0, 1}/V1*I€|, with entries defined as

1, ifvee
Hy.=< . ’ 2
’ {0, ifvée. @
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For a vertex v € V, its degree is defined as d(v) = > ¢ weHy e, Where w, is the weight of the
edge. For an edge e € &, its degree is defined as d(e) = ZUEV H, .. Further, D, and D,, denote the
diagonal matrices of the edge degrees and the vertex degrees, respectively.

When we have a hypergraph signal X € RIVI*C1 with [V| nodes and C; dimensional features, our
hyperedge convolution can be formulated by

1

Y =D;Y2HWD;'H'D,? X6, 3)
(Feng et al.,|2019) where W is initialized as identity matrix, meaning equal weights for all hyperedges.
O € RCXC% s the parameter to be learned during the training process. The filter © is applied over

the nodes in hypergraph to extract features. After convolution, we can obtain Y € RIVI*C2 which
can be used for further downstream tasks.

2.4  WEISFEILER-LEHMAN NETWORK FOR REACTION CENTER PREDICTION

The Weisfeiler-Lehman Network (WLN) (Jin et al., |2017)) is a powerful graph-based architecture
inspired by the Weisfeiler-Lehman graph isomorphism test. It captures structural features of molec-
ular graphs by iteratively updating node embeddings through message passing. In the context of
hypergraph-based reaction networks, we can project the hypergraph into a molecular graph and apply
WLN to refine node representations for reaction center prediction.

Let G = (V, &) be the projected molecular graph where V are the atoms (or reactants) and &, are
the chemical bonds (or interaction edges). Each node v € V is associated with a feature vector

hq(JO) € R4, where d is the dimensionality of atom features.

The WLN updates the node representations in L layers using neighborhood aggregation:

m® = 3 o (rl Y ), o
wEN (v)
R = (B0 m), )

where A (v) denotes the neighbors of node v, e, is the edge feature between u and v, and ¢, v are

neural network functions (e.g., MLPs or GRUs). The final representation hg,L) captures both local
and neighborhood information up to L hops.

To predict the likelihood of a node v being a reaction center, a readout function is applied over the
final node embedding:

g = o(W,h{P) +b,), (6)
where W, and b,, are trainable parameters and o is the sigmoid activation function. This outputs a
score g, € [0, 1] indicating the probability of v participating in the reaction center.

2.5 CONSTRUCTION OF CLIQUES FROM HYPEREDGES

In graph theory, the concept of a clique plays a fundamental role in understanding dense substructures
within a graph. A clique is a subset of vertices of an undirected graph such that every two distinct
vertices are adjacent. More formally, a clique of size k in a graph G = (V, ) is a set of vertices
{v1,v2,..., v} C Vsuch that (v;,v;) € Eforalll <i<j <k

The construction of a clique from a hypergraph involves interpreting each hyperedge as a complete
subgraph among its constituent vertices. That is, given a hypergraph H = (V, £), we can define an
associated graph G = (V, £) where an edge (u, v) € £ exists if and only if there exists a hyperedge
e € & such that (u,v) € e. This process is commonly referred to as the 2-section or clique expansion
of a hypergraph. We employ clique expansion to compare the performance of an HGNN to a variety
of GNN baseline models.

3 METHODOLOGY

We present our framework of ChemHGNN in Fig. 2] Given a reaction network defined by a reaction
dataset, the negative sampling blocks generate negative hyperedges for training. The model learns
molecular-, reaction- and hypergraph-level representations for molecules in the reaction network
through the attention mechanism. The final pooling module provides a score for the combination of
the molecules input as a potential reaction.
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Figure 2: a) The ChemHGNN pipeline. b) is the negative sampling block which involves different
strategies for generating negative samples within reaction network. In c), the ChemHGNN can be
broken into HGNN module, WLN module and an attention module that learns the representation
from the molecular level, reaction level and hypergraph level with cross-attention. d) is an MLP layer
with a pooling mechanism for merging the representation of the molecules.

3.1 A SPECIALIZED HYPERGRAPH NEURAL NETWORK FOR CHEMISTRY DOMAIN

We propose a new HGNN model with a GNN pretrained on the reaction center prediction task to
enhance its internal understanding of molecular reactivity while maintaining its capability to capture
the high-order relationship between molecules.

The WLN module in Fig[2]c) was pretrained on the USPTO-410k dataset to enable the model to learn
intermolecular bond changes at the reaction level.

The model convolutes original features X (%) of the nodes from ECFP6 encodings with a two-layer
HGNN

XD — 4 (D;l/QHWDjHTD;%X<l>®<”) %)
The output embedding X as well as the reaction embedding Xgnn from the GNN pretrained on

reaction center classification are attended with the attention module in order to correlate molecular
level information with reaction and hypergraph level information.

QK'
Vdy
The output embeddings of the HGNN nodes together with the output embedding from attention

module are concatenated and go through an aggregator(SUM) to retrieve the final embedding of the
reactions.

Attention (WQ - X, Wk - Xoan, Wy - XGNN) = softmax ( ) V = Xam ®)

Xieact = AGGREGATE((X || Xain)) ©)
This is then sent through an MLP to obtain the final scores of the reaction occurence.
Z) = MLP(Xreact> (10)

We consider two losses in this model. The first one is binary cross entropy loss between the predicted
and true label:

N
1 . .
Lpce = N ; lyi log §; + (1 — y;) log(1 — 4;)] (11
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The second loss is the mean squared error (MSE) between the sum of the molecular embeddings

and 0. Through X nn, bond change information is encoded into the molecular embeddings. Bond
changes are usually complementary within a reaction; that is, when a bond is broken in a specific
location, it is likely to form in another location. Therefore, we expect the sum of the molecular
embeddings to be close to 0, resulting inthe following MSE loss:

1 1 <
_ L 2 112
Lyse =+ > lri — 0] = ¥ ;,1 [l (12)

i=1

3.2 REACTION CENTER NEGATIVE SAMPLING

Various sampling techniques

have been proposed to generaﬁe b) o 0 d)

negative samples in hypergraphs. S 3 T
In this study, we utilize three rep- .—.@O S Oxo cNaon'\S: i;f;za: on
resentative methods—Motif Neg- . J 2

ative Sampling (MNS), Clique Y IN®)

Negative Sampling (CNS), and /'

Sized Negative Sampling (SNS) a) \ /° C

(Hwang et al., [2022)—to gener-

ate negative samples in the reac- \ ‘

tion hypergraph. Additionally, \

we introduce a novel strategy, e o770

Reaction Center Negative Sam- .
pling (RCNS), which combines T o S s BN g Q
a stochastic approach with reac- ¢ : LS
tion center information.

Reactivity is eliminated in RCNS - Ejgure 3: This is a visualization of RCNS. a) identifies the reac-
by selectively perturbing the (jon center atoms circled in red and the bond associated with the
key structural elements respon-  reaction center highlighted in orange. In b), the aromaticity of
Slbl? for the ‘chemlcal transfor- 1 7 4_trifluoro-5-nitrobenzene is eliminated. In ¢), there is C-C
mation. Specifically, the method  pond cleavage in the benzene ring. In d), any modification of the

first identifies the reaction cen- reaction center of 2-aminothiophene-3-carbonitrile will result in
ter atoms—those directly in- 45 ipvalid molecule

volved in bond-making or bond-

breaking events—within a reac-

tion hyperedge. It then modifies or removes bonds connected to these atoms, disrupting the critical
molecular topology necessary for the reaction to occur. For instance, in the Figure [3] destroying
a ring or breaking a functional linkage prevents the reactants from forming the intended product,
thereby creating a chemically plausible but non-reactive negative sample. These altered reactants
are subsequently incorporated as virtual nodes in the hypergraph, and a corresponding hyperedge is
added to support model training on negative samples.

3.3 SoRT OUT BLOCK

We employ simulated annealing (SA) in a final sort out block to enable efficient search for promising
candidate reactions based on the scores returned by ChemHGNN (Algorithm[2). SA is a probabilistic
optimization technique inspired by the annealing process in metallurgy (Chopard & Tomassini, | 2018)).
It is particularly effective for solving complex optimization problems where the search space is large
and contains numerous local optima.

In our sort out mechanism, we randomly select a molecule as initial solution s and calculate the
change in the objective function. Here we use the Euclidean norm of sum of vectors as the objective
function to measure solution quality:

fx) = llz]2 = (Z x?) (13)
=1
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Where:

* f:R™ — Ris the objective function.

e x € R” represents the sum of the input vector (referred to as molecular representation).

* || - ||2 denotes the Euclidean norm or ¢ norm.
Subsequent molecules are subjected to an acceptance mechanism. If the addition of the molecule
displays improvement over the last iteration, the change is accepted. If not, there is still possibility
to accept the change, tuned by a control temperature that allows a balance between exploration and

exploitation. The process is repeated until the maximum number of molecules to select in a reaction
is reached.

4 EXPERIMENT

4.1 DATASET

The datasets for the following experiments are subsets of the USPTO-410k dataset (Lowe, [2017)).
We randomly curate datasets of 1k, 5k, and 10k datapoints to assess the performance of model at
different scales.

4.2 HGNN IS A BETTER REACTION REPRESENTATION LEARNER THAN GNN

Setup: A baseline HGNN
model and several GNN base- USPTO-1k - SNS USPTO-5k - SNS USPTO-10k - SNS

F1

lines (GCN, NOCD, GAT)
were trained on datasets of
scale 1k, 5k and 10k. A
1:1 NS ratio in the training
sets were achieved through an
even mixture of SNS, MNS,
CNS, and RCNS. Model per-
formance was evaluated on
positive samples and negative
data generated from various
NS strategies. To demonstrate

—— HGNN NOCD —— GCN —— GAT

Figure 4: The radar plots compare the performances of the baseline GNN
. models against a baseline HGNN on datasets of different scales and tested
performance trends, we d.€p10t against the SNS strategy. The extremely thin shaded regions for certain mod-
Fhe SNS Strategy in our visual- ¢ (e.g., NOCD, GAT) highlight sharp metric imbalance, perfect specificity
izations, see Fig. [} Full per- ith near-zero recall. The green shaded area (e.g., GCN) highlights a high
formance metrics for all NS recall, near-zero specificity region, both indicating model collapse.
strategies can be found in Ap-

pendix Table 5}

(1) Graph Neural Network-based models suffer from model collapse even on small scale datasets.
In USPTO-1k, the GCN starts to collapse, where we observe specificity to be O in all of the NS
strategies. The phenomenon expands to NOCD with specificity almost 1, with collapse worsening as
dataset size increases.

(2) HGNN greatly outperforms the GNN based models if it does not collapse.

Excluding GCN, which suffers from model collapse, in the USPTO-1000, the HGNN has an over-
whelming improvement over the GNN-based models on all of the NS Strategies on F1 score.

(3) Both HGNN and GNNs suffer from serious model collapse when the scale of the dataset goes
up. In USPTO-10k, we can see a clear pattern that HGNN is collapsing or approaching collapse, e.g.
arecall of 0.0938 at USPTO-10k with SNS strategy. Interestingly, even though the baseline HGNN
outperforms the GNN in small dataset. The pure intermolecular information is not sufficient for the
hypergraph to capture reactivity when the scale of the reaction network expands.

Some discussion: In the traditional graph, complete graphs are typically needed to connect all
reactants. However, the question of expressing a reaction is simplified in a hypergraph. A reaction
could be enclosed in just one hyperedge. The limitation of traditional graphs in the expression of a
reaction network extends to the redundant connections between reactants, where the connection only
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informs that the reactants have shared reactions, while not informing what the shared reactions are,
and what roles the reactants play. For this reason, the representation learned from a GNN may fail to
capture the real connectivity and relationships between molecules in a reaction network. The greater
expressiveness of the hypergraph may allow the HGNN to better capture reactivity and the high order
relationships between molecules. Moreover, the information aggregated from the GNN deviates from
the real reaction. The weight per neighbor being aggregated is vertex degree-based, which causes it
to only receive partial reaction-level information. HGNN’s aggregate information both on the degree
of the edge and the vertex, providing more complete reaction-level information. For instance, when
a reactant participates in multiple reactions, it tends to aggregate more information from reactions
involving fewer co-reactants.

4.3 CHEMHGNN OUTPERFORMS HGNN AND GNN BASELINES

To address the issue of HGNN and GNN collapse when the scale of reaction network expands,
we propose ChemHGNN, which incorporates domain knowledge at the molecule, reaction, and
hypergraph level to predict the likelihood of a reaction to occur.

Setup: We compared ChemHGNN with the baseline model HGNN and the NOCD (GNN)
trained under a mixture of negative sampling strategies. We will focus on the evaluation
metrics arising from testing on the SNS strategy for simplicity, see Fig. [5] More in-
formation can be found at Appendix Table [6] [Bl We have the following observations:
(1) ChemHGNN out-

performs HGNN and Recall | E3 F1score s specifcty

GNN baselines’ espe- USPTO-1k - SNS USPTO-5k - SNS USPTO-10k - SNS
cially at larger dataset
sizes. On metrics of F1 o0 00 00
score, accuracy, and recall,  gos
ChemHGNN outperforms . s s
the baseline models in " . .
the majority of cases, , [ , , [1

with the effect becom- e e

llrllgpfrngsi Ol{zronounced on Figure 5: The chart describes the performance of the ChemHGNN and

- : baseline models (HGNN and NOCD) trained on datasets of different scales

(2) At all dataset sizes, the and t(;,)slte((i on SNS Osérat)e%z. Due }:0 r?odeé col%apse, some of t}l)le b]arss are

: invisible (e.g., in NOCD). Among the plotted evaluation metrics, the F1 Score

ChemHGNN is less prozz is highlighted using a distinct yellow bar with a black border to draw attention

to its importance, particularly relevant in evaluating model performance under
class imbalance or skewed data.

to model collapse.
observed previously, even
at the scale of 1k data-
points, GNNs tended to-
wards model collapse. As we scale up the dataset, the model collapse of GNN becomes more
dominant, with less than ten testing datapoints out of a thousand being predicted as positive. In
contrast, ChemHGNN at all dataset sizes is well-balanced in its predictions. This opens up the ability
to enlarge the virtual screening database used for training, building a more powerful model with the
ChemHGNN architecture.

(3) ChemHGNN sees improved performance as the size of the datasets scales up. The trend in
Fig[5]shows that the F1 score of the ChemHGNN increases from 0.87 to 0.94 as the dataset scales up
from 1k to 10k, suggesting that increasing the dataset sizes even further may yield more powerful
models.

To better understand how the behavior of the model correlates with the diversity of reactions in the
training dataset, we investigated factors related to the reaction types present in the dataset.

Setup: The USPTO training reactions were classified using rxnfp to 1000 templates, and datasets of
10k datapoints were curated from the top 3 most frequently-occurring reaction templates (RT 274, RT
586, RT 672) (Schwaller et al}|2021). Details of the reaction template distribution in the USPTO-10K
dataset can be found in the appendix (Fig. [11{b). We have the following observations:

(4) GNN performance improves when predicting a single reaction template, but is still generally
outperformed by ChemHGNN, seen in Table When subjected to the easier task of predicting
reactivity of a single reaction template, GNN performance improves and models are less prone to
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collapse. However, ChemHGNN still outperforms GNNs on this task, with the exception of a few
cases on RT 672.

We also curate three additional datasets from USPTO-10k by leaving one reaction template out
to serve as the testing dataset to investigate the extrapolation capability of the model.We have the
following observations:

(5) The generalization of the model on unseen reaction templates shows promising performance,
see Fig. [] ChemHGNN trained on USPTO-10k dataset identifies 87.02% of reaction template
672 (Partial Reduction of Pyrrole to Pyrroline), 72.92% of reaction template 274 (Friedel-Crafts
Acylation) and 80.62% of reaction template 586 (Grignard Addition).

4.4 HGNNS PROVIDE REACTION REPRESENTATIONS THAT CAN BETTER SEPARATE REACTIVE
AND UNREACTIVE REACTANT COMBINATIONS.

To better understand the differences in model performance
between the NOCD, HGNN and ChemHGNN models, we plot 100
the 2D and 3D t-SNE. Here we focus on 2D t-SNE of GNN, % —ir 80.62%
HGNN and ChemHGNN trained on USPTO-1k, see Fig. e

More 2D and 3D tSNE plots can be found in Appendix Fig. [14] o0

and Fig.

(1) HGNN provides tighter clusters than the GNN baseline
In the baseline HGNN reaction representation, we observe dis- O Rr672 RT 274 RT 586
tinct clustering between representations, in contrast to the dif- Template Left Out

fuse distribution of the GNN. However, even though the HGNN

baseline model representations are better clustered, there is only ~Figure 6: In this bar plot, models are
one clear region where true and false labels are well separated. rained on a mixture of NS strategies
Regardless, this is a marked improvement over the GNN, where as well as the USPTO-10k dataset with

Lo e a specific reaction template excluded.
there is little distinction between labels. Models are then tested on the excluded

(2) The ChemHGNN reaction representations display sep- template to investigate the generaliza-
aration between true and false labels. In Fig. [7} even though tion of the model on unscen reactions.
the reaction representations from the ChemHGNN model are

not as tightly clustered as the baseline HGNN model, it has a

clearer high-dimensional boundary separating the true and false labels.

% |dentified

40

20

4.5 SIMULATED ANNEALING ASSISTS IN EFFICIENT SELECTION OF HIGH-SCORING
CANDIDATE REACTIONS

Setup: We use the molecular N _
representations learned from Jo " . ‘
the USPTO-1k, 5k, 10k to  ;~ : o R R | e b
virtual screen possible reac- . J 3 "’5 N
tant combinations using Simu- ) : -

lated Annealing and Random

Selection, and score them R v e S R N

with the MLP modules. We

have the following observa- Figure 7: t-SNE comparison between baseline NOCD (GNN) model (left),
tions: baseline HGNN (mid) and ChemHGNN (right) on USPTO-1k

&

(8) The best scores of combinations grow as the number of iterations grow. Moreover,
ChemHGNN trained on larger datasets typically provides better-scoring combinations than the
smaller models. As seen in the Table[14]a), we can see the best result of ChemHGNN trained on
USPTO-5k is better than USPTO-1k. However, for the larger USPTO-10k dataset, performance
increased further as the number of iterations increases to SM. This is partially due to a larger search
space for USPTO-10k dataset and therefore requires more iterations to achieve a better score than
USPTO-5k.

(9) Simulated annealing (SA) can better target suitable reactant combinations than random
selection. In table b), SA outperforms random selection at all numbers of iterations.
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4.6 RCNS PROVIDES IMPROVEMENTS IN MODEL SPECIFICITY AND F1 SCORE

Setup: Since RCNS involves the creation of virtual nodes, we created two hypergraph reaction net-
works, one with the virtual nodes from RCNS, and the other without. We compared the ChemHGNN
trained on the two different hypergraph reaction networks with mixed NS including and excluding
RCNS. Models were tested on MNS, CNS and SNS negative samples.

(1) The RCNS template distribution follows the distribution of the positive samples. In Fig
[[1] both the generated negative samples and the positive samples peak at the template 672. The
second highest is template 586 across both distributions, and the following peaks are also sub-linearly
correlated to each other. However, there are no strict sub-linear correlations between the positive
samples and negative samples as positive samples are not guaranteed to generate negative samples.

(2) RCNS leads to positive gains in larger datasets and minor negative effects
in small datasets, see Fig. @ For USPTO-5k and 10k, RCNS leads to perfor-
mance improvements of +0.58%, and +7.75%, respectively. This indicates that RCNS
scales well and benefits from larger data volumes, potentially due to better representa-
tion learning. On the USPTO-1k dataset, the inclusion of RCNS slightly degrades perfor-
mance (-0.55% improvement), suggesting RCNS may introduce noise on smaller datasets.

(3) RCNS enhances specificity and F1 score. When +7.75%
RCNS is used, specificity and F1 scores tend to increase,
especially when tested on the SNS strategy. For instance,
in USPTO-10k with SNS, specificity jumps from 0.9580 & °*

to 0.9984, and F1 from 0.9274 to 0.9468, indicating a 002 +0.58%

better balance between specificity and recall. L
~0.02{70-35%

4.7 ABLATION STUDIES USPTO-1k  USPTO-5k  USPTO-10k

Table |18 evaluates the performa}nce of CherpHGNN ON  Fioure 8: Comparison of ChemHGNN
the USPTO-10k dataset under different ablation settings. performance trained under different nega-
Specifically, it examines how removing different archi- tive sampling (NS) strategies with or with-
tectural components (WLN, SUM, MSE) and applying out reaction center-aware negative sampling
different NS strategies affects metrics like Accuracy, Pre- (RCNS) across three dataset scales.

cision, Recall, F1 Score, Specificity, and decrement in F1 Score.

Removal of MSE loss results in a slight drop in F1 across all sampling methods (e.g., SNS drops
about 1.41%). MSE seems important but not critical—its removal hurts performance modestly.
Removal of SUM aggregator and MSE loss has a major performance degradation, especially in recall,
suggesting that the SUM component is essential to properly aggregate information. Removing all
three components, including WLN module has a drastic degradation of model performance. F1 scores
plunges (e.g., 0.1371 for SNS, an 85.5% decrement).

5 CONCLUSION

In this work, we demonstrated that hypergraph neural network (HGNN) outperforms traditional graph
neural networks (GNNs) in learning representations for chemical reaction networks, particularly
in capturing multi-reactant interactions and high-order relationships. Our proposed ChemHGNN
framework addresses key challenges, including combinatorial explosion, model collapse in large-scale
datasets, and the need for chemically informed negative sampling. By integrating molecular, reaction
and hypergraph level embeddings, and a novel negative sampling strategy (RCNS), ChemHGNN
achieves robust performance across diverse reaction templates and scales. Experimental results
validate its superiority over HGNN and GNN baselines, with improved specificity, F1 scores, and
representation quality. This work advances reaction virtual screening and discovery by providing
a scalable, chemically grounded framework, paving the way for accelerated discovery in drug
development and materials science.
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7 REPRODUCIBILITY STATEMENT
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A.1 NOTATION SUMMARY

Table 1: Summary of Notation

Symbol Description

4 Set of nodes (molecules) in the reaction network

E Set of hyperedges (reactions) in the reaction network
G=WVE) Original reaction hypergraph

G'=WV, &) Augmented reaction hypergraph with negative samples
e; A reaction (hyperedge) in the hypergraph

vy A molecule (node) in the hypergraph

v; Modified non-reactive molecule (virtual node)

e; Negative sample hyperedge generated via RCNS

C; Reaction center atoms for reaction ¢;

x® Node feature matrix at layer [

X Final output embedding from HGNN

XoNN Reaction embedding from pretrained GNN

Xattn Attention-based embedding output

Xreact Final aggregated reaction embedding

W.,D,,D.,, H Weight matrix and structural matrices in HGNN
Wqo, Wik, Wy Query, key, value projection matrices in attention

i Predicted score for a reaction

Yi Ground truth label for reaction ¢

s Bond change vector for molecule ¢

LBcE Binary Cross Entropy loss

LMSE Mean Squared Error loss (zero-sum constraint)
f(x) Objective function in sort-out block

x Sum of molecular representations in a candidate solution
T Temperature in Simulated Annealing

@ Cooling rate in Simulated Annealing

L Number of iterations per temperature level
87

A

E,J\

Current and candidate solutions in Simulated Annealing
Change in objective function

=
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A.2 RELATED WORK

Graph Neural Networks for Chemistry. Graph Neural Networks (GNNs) have emerged as powerful
frameworks for molecular representation learning since molecules naturally form graph structures
with atoms as nodes and bonds as edges (Guo et al.,|2023;|Ma et al., 2024)). The Message Passing
Neural Network framework has become foundational, where atom embeddings are iteratively updated
through information exchange with neighboring atoms (Gilmer et al., 2017). Despite their success,
traditional GNNs face significant limitations when modeling multi-reactant systems, as they struggle
to represent important chemical features including functional groups, spatial relationships, and
multi-way interactions (Coley et al.;|2019; |[Rong et al., 2020).

Hypergraph Representation of Reaction Networks. Conventional graphs can only represent pair-
wise correlations, which is insufficient for modeling complex chemical systems where higher-order
relationships are prevalent (Chen & Schwaller} 2024). Hypergraphs extend graphs to accommodate
high-order correlations, making them especially suitable for representing multi-participant chemical
reactions (Chang} [2024)). Recent work has introduced chemical hypergraphs as a unified mathematical
structure where metabolites serve as nodes and hybrid edges represent both metabolic directionality
and high-order interactions (Huang et al.,|2025). This approach more naturally captures the inherent
higher-order relationships in reaction networks, including reactant-product directionality (Yadati
et al.l [2020).

Hyperlink Prediction. As a natural extension of link prediction on graphs, hyperlink prediction
aims to infer missing hyperlinks in hypergraphs (Chen & Liu, [2023). This has direct applications in
chemical reaction networks, where methods can be categorized into similarity-based, probability-
based, matrix optimization-based, and deep learning-based approaches. Neural Hyperlink Predictor
(NHP) adapts GCNs for link prediction in both undirected and directed hypergraphs, with NHP-D
being the first method specifically designed for directed hypergraphs (Yadati et al., [2020). The
hypergraph representation preserves reaction context and uncovers hidden insights not apparent in
traditional directed graph representations (Mann & Venkatasubramanian, |2023). Hypergraph Neural
Networks have demonstrated superior performance in molecular property prediction tasks, even
outperforming models that utilize 3D geometric information (Chen & Schwaller, |2024).

A.3 NS STRATEGY OVERVIEW
* Motif Negative Sampling (MNS)

— Fills a set of size K through clique expansion.
* Clique Negative Sampling (CNS)

— Picks a random hyperedge.

— Replaces a random node that is adjacent to all other constituent nodes.
 Sized Negative Sampling (SNS)

— Fills a set with K random nodes.

— This is the most naive way of generating negative hyperedges.
* Reaction Center Negative Sampling (RCNS)

— Identifies the reaction center(atoms) in the reaction.

— Edits the bond surrounding those reaction centers to eliminate the reactivities between
reactants

The distribution of the template in RCNS follows the distribution of the original distribution of
template in the reaction network.
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Figure 11: Comparison of reaction template distributions between RCNS-generated samples from
USPTO-10k and the original USPTO-10k dataset.

A.4 ALGORITHM

A.4.1 RCNS ALGORITHM

Algorithm 1 Reaction Center Negative Sampling (RCNS)

1: Input: Reaction Network G = (V, £), where V = {vy, vo, ...,v,} and € = {ey, eq, ..., €, feach
e; is a hyperedge (reaction)
Output: Augmented Reaction Network G’ = (V', £’) with negative samples
for each reaction ¢; € £ do
Identify reaction center atoms C; using set operations on reactants and products
Modify bonds surrounding C; to destroy reactivity
Generate non-reactive reactants v, (e.g., by breaking ring structures)
Create virtual nodes in the hypergraph for v,
Add new negative hyperedge e;” with replacing v; with v, to the hypergraph
end for
return Augmented hypergraph with added negative samples

YR DINLN

—

A.4.2 SIMULATED ANNEALING ALGORITHM

Algorithm 2 Simulated Annealing Algorithm

1: Input: Objective function f(s), initial solution s, initial temperature 7', cooling rate «v, number
of iterations L

2: Output: Approximate optimal solution
3: while stopping criterion not met do
4: fori < 1to L do
5: Generate a neighboring solution s’
6: Calculate the change in objective function: AE < f(s') — f(s)
7: if AE < 0 then
8: Accept s as the new solution: s < s’
9: else
10: Accept s’ with probability P + exp (—5£)
11: if random number in [0, 1] < P then
12: s+ s
13: end if
14: end if
15: end for
16: Reduce the temperature: 7' <— o« - T'

17: end while
18: Return the best solution found

16
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A.5 DETAILED EXPERIMENTAL SETUP
A.5.1 TRAINING, TESTING, VALIDATION SET SELECTION

For all USPTO datasets (USPTO-1k, USPTO-5k, USPTO-10k), the training, validation, and test
splits were selected randomly from the full dataset to ensure representative coverage of reaction
types. Within each split, positive and negative samples were balanced such that the ratio of positive
to negative samples (with 1/4 from each negative sampling strategy) is approximately 1:1 during both
training and testing. This design helps mitigate class imbalance and ensures that the model receives
sufficient examples of both outcomes for effective learning and evaluation.

Table 2: Train/Validation/Test splits for USPTO datasets. Positive (Pos) and Negative (Neg) counts
are reported.

Dataset Train Validation Test
Pos Neg Total Pos Neg Total | Pos Neg  Total
USPTO-1k 579 499 1,078 192 166 358 194 166 360
USPTO-5k | 2,863 2,500 5,363 954 832 1,786 | 955 833 1,788
USPTO-10k | 5,721 4,995 10,716 | 1,906 1,662 3,568 | 1,908 1,666 3,574

A.5.2 SETUP FOR HGNN AND GNN BASELINE COMPARISON

We benchmarked the models on datasets from above, which we split the training, validation and
testing in a 3:1:1 ratio. We trained baseline models on a mixture of SNS, MNS, CNS, RCNS, and
with NS ratio of 1:1. We evaluated the performance of the models with 5 binary classification metrics
and tested with negative data generated from different NS. Additionally, we evaluate the model with
whether the model collapses since some models tend to always predict one class. For the initial
embedding of the nodes, we used the Morgan Fingerprint, ECFP6 (Rogers & Hahn, [2010), to ensure
they have the same initial information before the propagation.

A.5.3 SETUP FOR BENCHMARKING CHEMHGNN

Same as the above setup. We evaluated the performance of the models with 5 binary classification met-
rics. Since NOCD outperforms other GNN baselines, to show the effectiveness of our ChemHGNN.
To better understand the behavior of the model correlates the the training dataset, we investigate the
factors related to the reaction type in the dataset. We classify the reaction by rxnfp to 1k template. In
Fig. [IT] we can see a clear pattern of imbalanced class distribution where the reaction template 672
dominates the data distribution in the dataset of 10k datapoints. We also observe several dominant
reaction type like 586 and 274. Therefore, we construct new dataset from the top 3 frequent reaction
template (RT 274, RT 586, RT 672) of 10k datapoints and investigate the performance.

A.5.4 SETUP FOR BENCHMARKING NEGATIVE SAMPLING

Since RCNS involves the creation of virtual nodes, we created two hypergraph reaction network, one
with the virtual nodes from RCNS, and the other without. We benchmarked the ChemHGNN trained
on two different hypergraph reaction networks in a mixed NS with RCNS and without negative
sampling, and tested on MNS, CNS and SNS.

.1 HYPERPARAMETERS AND EVALUATION DETAILS
.1.1 HYPERPARAMETER SETTINGS

The hyperparameters for our models were tuned using grid search. The selected configurations are
summarized in Tables[3and

.1.2  BINARY CONVERSION FOR METRICS COMPUTATION

To compute precision, recall, and F-measure, predictions (probabilities) are converted to binary labels
using a threshold of 0.5:
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Table 3: HGNN Hyperparameters

Parameter Value

Input size 1024

Output size args.dim_vertex
Hidden dimensions 16

Dropout rate 0.5

Vertex embedding dimension 1024
GNN embedding dimension 5

Key-value dimension 256

Aggregation method sum
Classification layers [1024, 256, 16, 1]
Learning rate 0.0001

Batch size 16

Epochs 50

Lambda 0.5

Table 4: WLN (pretrained) Hyperparameters

Parameter Value
Batch size 20
Hidden size 300
Max norm 5.0
Node input features 82
Edge input features 6
Node pair input features 10
Node output features 300
Number of layers 3
Number of tasks 5
Learning rate 0.001
Number of epochs 18
Decay every 10000

Learning rate decay factor 0.9

* If the predicted probability > 0.5, the label is 1 (positive class).

* If the predicted probability < 0.5, the label is O (negative class).

This standard conversion allows accurate evaluation of classification metrics.
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.2 MORE EXPERIMENTAL RESULTS AND VISUALIZATION

.2.1 HGNN AND GNN BASELINE COMPARISON

Table 5: HGNN and GNN baseline (HGNN [Feng et al.[(2019), NOCD Shchur & Giinnemann| (2019),
GCN [Kipf & Welling| (2016), GAT |Velickovi€ et al|(2017)) performance comparison across different
dataset scales and NS strategies. Models are trained in a mixture of NS strategy (MNS, CNS, SNS
and RCNS). The bold numbers are the best result in each metric per NS strategy. We also include the
"Model Collapse" metric to evaluate whether collapse occurs during testing.

Dataset NS Strategy Model Model Collapse Recall F1 Specificity

HGNN X 0.6392  0.6492 0.6701

MNS NOCD X 0.0913  0.1639 0.9381
GCN v 1.0000  0.6667 0.0000

GAT X 0.2593  0.3805 0.7423

HGNN X 0.6392  0.7750 0.9897
USPTO-1000 SNS NOCD X 0.0913  0.1636 0.9433
GCN v 1.0000  0.6667 0.0000

GAT X 0.2593  0.3968 0.8814

HGNN X 0.6392  0.5451 0.2938

CNS NOCD X 0.0913  0.1574 0.8505
GCN v 1.0000  0.6667 0.0000

GAT X 0.2593  0.3671 0.6186

HGNN v 0.9927  0.6638 0.0021

MNS NOCD v 0.0021  0.0042 0.9979
GCN v 1.0000 0.6667 0.0000

GAT v 0.0361  0.0692 0.9822

HGNN X 0.9927  0.8591 0.6817
USPTO-5000 SNS NOCD v 0.0021  0.0042 0.9979
GCN v 1.0000  0.6667 0.0000

GAT v 0.0361  0.0696 0.9958

HGNN v 0.9926  0.6655 0.0094

CNS NOCD v 0.0021  0.0042 0.9937
GCN v 1.0000  0.6667 0.0000

GAT v 0.0361  0.0686 0.9581

HGNN X 0.0938  0.1681 0.9775

MNS NOCD v 0.0021  0.0042 1.0000
GCN v 1.0000  0.6667 0.0000

GAT v 0.0059  0.0117 0.9979

HGNN X 0.0938  0.1371 0.7253
USPTO-10000 SNS NOCD v 0.0021  0.0042 1.0000
GCN v 1.0000  0.6667 0.0000

GAT v 0.0059  0.0116 0.9916

HGNN X 0.0938  0.1600 0.9214

CNS NOCD v 0.0021  0.0042 0.9984
GCN v 1.0000  0.6667 0.0000

GAT v 0.0059  0.0117 1.0000
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Figure 12: Radar plot of baseline model comparisons across different data scales and NS strategies.
The extremely thin shaded regions for certain models (e.g., NOCD, GAT) highlight sharp metric
imbalance, perfect specificity with near-zero recall, and green shaded area (e.g., GCN) highlights
high recall, near-zero specificity region, both indicating model collapse.

20



Under review as a conference paper at ICLR 2026

.2.2  CHEMHGNN COMPARISON ACROSS DIFFERENT DATA SCALES
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Figure 13: Bar plot of ChemHGNN comparisons across different data scales and NS strategies. Due
to model collapse, some of the bars are invisible (e.g., in NOCD). Among the plotted evaluation
metrics, the F1 Score is highlighted using a distinct yellow bar with a black border to draw attention
to its importance, particularly relevant in evaluating model performance under class imbalance or

skewed data.

Table 6: Models Trained on USPTO-1000 and tested with mixed NS strategies. Bold numbers
indicate the best results per metric within each strategy. It includes mean * standard deviation across

5 splits.

NS Strat Model Accuracy Precision Recall F1 Score Specificity
ChemHGNN  0.6675 + 0.0453 0.6337 £0.0431 0.7938 £ 0.0574 0.7048 £ 0.0279 0.5412 £ 0.1176
MNS HGNN 0.6546 £0.0104  0.6569 £0.0060 0.6392+ 0.0252 6492 +£0.0108  0.6701 +£0.0157
NOCD 0.3358 £0.0576  0.8000 + 0.0223  0.0913 £ 0.0140 0.1639 +£0.0201  0.9381 + 0.0261
ChemHGNN  0.8892 + 0.0218  0.9809 + 0.0239  0.7938 £ 0.0574 0.8775 £ 0.0260 0.9845 £ 0.0245
SNS HGNN 0.8144 £0.0218 0.9841 +£0.0483 0.6392 £0.0252 0.7750 £0.0183  0.9897 + 0.0686
NOCD 0.3343 £0.0572 0.7857 £0.0211 0.0913 £0.0140 0.1636 +£0.0203  0.9433 + 0.0252
ChemHGNN  0.5206 + 0.0086 0.5133 £0.0502 0.7938 £ 0.0574  0.6235 +0.0220 0.2474 + 0.0601
CNS HGNN 0.4665 £ 0.0086  0.4751 £0.0502 0.6392 £0.0252 0.5451 £0.1819 0.2938 + 0.3694
NOCD 0.3033 £0.0500 0.5714 +0.0231 0.0913 £0.0140 0.1574 £0.0194 0.8505 + 0.0268
ChemHGNN  0.5739 + 0.0120 0.6553 £0.0068 0.7938 + 0.0574  0.7179 + 0.0105  0.1000 =+ 0.0209
RCNS HGNN 0.5106 £ 0.0120  0.6425 +0.0068 0.6392 £ 0.0252 0.6408 +£0.0105 0.2333 +0.0209
NOCD 0.2273 £0.0478  0.9167 +£0.0161 0.0913 £0.0140 0.1660 £ 0.0203  0.9333 + 0.0251
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Table 7: Models Trained on USPTO-5000 and tested with mixed NS strategies. Bold numbers
indicate the best result per metric in each strategy. It includes include mean + standard deviation

across 5 splits.

NS Strat Model Accuracy Precision Recall F1 Score Specificity
ChemHGNN  0.7707 £ 0.0325 0.7598 £0.0419 0.7916 £ 0.0132  0.7754 £ 0.0234 0.7497 = 0.0689
MNS HGNN 0.5679 £0.0450 0.5971 £0.0899 0.7091 £0.3287 0.5726 £0.1703  0.4252 +0.3148
NOCD 0.2858 £0.0536  0.4545+£0.0323 0.0021 £0.0013  0.0042 £ 0.0030 0.9979 + 0.0012
ChemHGNN  0.8953 + 0.0061  0.9987 £ 0.0058 0.7916 £ 0.0132  0.8832 + 0.0070  0.9990 + 0.0052
SNS HGNN 0.7260 £ 0.1539 0.6786 £0.1986 0.7091 £0.3287 0.6761 £0.2641  0.7422 £ 0.0759
NOCD 0.2867 £0.0538 0.6250 £0.0319 0.0021 £0.0013  0.0042 +£0.0029 0.9979 +0.0011
ChemHGNN  0.4906 £ 0.0115 0.4941 £0.0068 0.7916 £ 0.0132  0.6085 £ 0.0073  0.1895 + 0.0229
CNS HGNN 0.5084 £0.0086 0.5272 £0.0502 0.7091 £0.3287 0.5412 £0.1819 0.3087 = 0.3694
NOCD 0.2867 £ 0.0535  0.6250 +0.0318 0.0021 £0.0013  0.0042 £ 0.0029  0.9937 + 0.0013
ChemHGNN  0.5905 £ 0.0120 0.6614 £0.0068 0.7916 £ 0.0132  0.7207 £ 0.0105 0.1870 = 0.0209
RCNS HGNN 0.6075+£0.1187 0.6710 £0.0164 0.7091 £0.3287 0.6337 £0.2603  0.2847 + 0.3342
NOCD 0.1672 £0.0561 0.6250 £ 0.0321 0.0021 £0.0013  0.0042 £ 0.0030  0.9958 + 0.0010
Table 8: Models Trained on USPTO-10000 and tested with mixed NS strategies. Bold numbers
indicate the best result per metric per NS strategy. It includes include mean + standard deviation
across 5 splits.
NS Strat Model Accuracy Precision Recall F1 Score Specificity
ChemHGNN  0.8412 £ 0.0274 0.8051 £0.0460 0.9004 + 0.0250 0.8501 +0.0234 0.7820 + 0.0671
MNS HGNN 0.5305+£0.0184 0.7772+£0.1763  0.2729 £0.3940 0.2672 +0.2201 0.7885 + 0.4825
NOCD 0.2870 £0.0531 0.8333 +£0.0293 0.0021 £0.0015 0.0042 £ 0.0028  1.0000 + 0.0006
ChemHGNN  0.9494 £ 0.0123  0.9983 £ 0.0007 0.9004 + 0.0250 0.9468 £ 0.0139  0.9984 + 0.0007
SNS HGNN 0.5048 £0.1748 0.3737 £0.2088 0.2713 £0.3940 0.2983 £ 0.3023  0.7388 + 0.0356
NOCD 0.2870 £0.0532 0.8333 £0.0301 0.0021 £0.0014 0.0042 +0.0027  1.0000 + 0.0005
ChemHGNN  0.5409 + 0.0115 0.5238 £ 0.0068  0.9004 + 0.0250 0.6623 + 0.0073 0.1813 + 0.0264
CNS HGNN 0.5116 £0.0055 0.5655+£0.0393 0.2729 £0.3940 0.2625 +£0.2229 0.7506 + 0.3844
NOCD 0.2871 £0.0532 0.9091 £0.0310 0.0021 £0.0014 0.0042 +£0.0027  0.9984 + 0.0009
ChemHGNN  0.6370 £ 0.0120 0.6703 £0.0068 0.9004 + 0.0250 0.7685 +£ 0.0105 0.1039 + 0.0209
RCNS HGNN 0.3614 £0.0029 0.6667 £0.0177 0.2729 £0.3940 0.2911 £0.2759 0.9247 +0.0369
NOCD 0.1665 £ 0.0531 0.8333 +£0.0292 0.0021 £0.0014  0.0042 £ 0.0028  0.9979 + 0.0007

.2.3 CHEMHGNN COMPARISON ACROSS DIFFERENT TESTING NS STRATEGIES

Table 9: Models Trained with a mixture of NS strategies(MNS, SNS, CNS and RCNS) test with
MNS. Bold number are the best result in each metric per NS Strategy

Dataset Model Accuracy Precision Recall F1 Score Specificity
ChemHGNN  0.6675 0.6337  0.7938  0.7048 0.5412
USPTO-1k HGNN 0.6546 0.6596  0.6392  0.6492 0.6701
NOCD 0.3358 0.8000 0.0913  0.1639 0.9381
ChemHGNN  0.7707 0.7598  0.7916  0.7754 0.7497
USPTO-5k HGNN 0.4974 0.4987  0.9927  0.6638 0.0021
NOCD 0.2858 0.4545  0.0021  0.0042 0.9979
ChemHGNN  0.8412 0.8051  0.9004  0.8501 0.7820
USPTO-10k HGNN 0.5356 0.8063  0.0938  0.1681 0.9775
NOCD 0.2870 0.8333  0.0021  0.0042 1.0000
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Table 10: Models Trained with a mixture of NS strategies(MNS, SNS, CNS and RCNS) test with
SNS. Bold number are the best result in each metric per NS Strategy

Dataset Model Accuracy Precision Recall F1 Score Specificity
ChemHGNN  0.8892 0.9809  0.7938  0.8775 0.9845
USPTO-1k HGNN 0.8144 09841  0.6392  0.7750 0.9897
NOCD 0.3343 0.7857  0.0913  0.1636 0.9433
ChemHGNN  0.8953 09987 0.7916  0.8832 0.9990
USPTO-5k HGNN 0.8371 0.7572  0.9927  0.8591 0.6817
NOCD 0.2867 0.6250  0.0021  0.0042 0.9979
ChemHGNN  0.9494 0.9983  0.9004  0.9468 0.9984
USPTO-10k HGNN 0.4096 0.2546  0.0938  0.1371 0.7253
NOCD 0.2870 0.8333  0.0021  0.0042 1.0000

Table 11: Models Trained with a mixture of NS strategies(MNS, SNS, CNS and RCNS) test with
CNS. Bold number are the best result in each metric per NS Strategy

Dataset Model Accuracy Precision Recall F1 Score Specificity
ChemHGNN  0.5206 0.5133  0.7938  0.6235 0.2474
USPTO-1k HGNN 0.4665 04751  0.6392  0.5451 0.2938
NOCD 0.3033 0.5714  0.0913  0.1574 0.8505
ChemHGNN  0.4906 0.4941  0.7916  0.6085 0.1895
USPTO-5k HGNN 0.5010 0.5005  0.9926  0.6655 0.0094
NOCD 0.2867 0.6250  0.0021  0.0042 0.9937
ChemHGNN  0.5409 0.5238  0.9004  0.6623 0.1813
USPTO-10k HGNN 0.5076 0.5440  0.0938  0.1600 0.9214
NOCD 0.2871 0.9091  0.0021  0.0042 0.9984

Table 12: Models Trained with a mixture of NS strategies(MNS, SNS, CNS and RCNS) test with
RCNS. Bold number are the best result in each metric per NS Strategy

Dataset Model Accuracy Precision Recall FI1 Score Specificity
ChemHGNN  0.5905 0.6614  0.7916  0.7207 0.1870
USPTO-1k HGNN 0.5106 0.6425  0.6392  0.6408 0.2333
NOCD 0.1672 0.6250  0.0021  0.0042 0.9958
ChemHGNN  0.7707 0.7598 0.7916  0.7754 0.7497
USPTO-5k HGNN 0.4974 0.4987  0.9927 0.6638 0.0021
NOCD 0.2858 0.4545  0.0021  0.0042 0.9979
ChemHGNN  0.6370 0.6703  0.9004  0.7685 0.1039
USPTO-10k HGNN 0.3602 0.6533  0.0938  0.1641 0.8993
NOCD 0.1665 0.8333  0.0021  0.0042 0.9979
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.2.4 CHEMHGNN AND GNN COMPARISON ALONG REACTION TEMPLATE

Table 13: Model trained on 10k datapoints of different reaction template, and tested on different NS
strategies. Bold number are the best result in each metric per dataset.

Dataset Model NS Strat  Accuracy Precision Recall F1 Score Specificity HGNN better?

MNS 0.6579 0.6212  0.8092  0.7029 0.5066
SNS 0.8783 0.9389 0.8092  0.8693 0.9474
CNS 0.4868 0.4920 0.8092  0.6119 0.1645

RT 274 RCNS 0.5935 0.6340  0.8092  0.7110 0.2447 v

MNS 0.5682 0.7327  0.6197  0.6715 0.4408
SNS 0.6250 0.8090 0.6197  0.7018 0.6382

ChemHGNN

NOCD CNS 0.5170 0.6754  0.6197  0.6463 0.2632
RCNS 0.5681 0.7952  0.6197  0.6966 0.3617

MNS 0.8723 0.8507  0.9030  0.8761 0.8416

ChemHGNN SNS 0.9486 0.9936  0.9030  0.9462 0.9942

CNS 0.5737 0.5444  0.9030 0.6793 0.2443

RT 586 RCNS 0.6126 0.6376  0.9030  0.7475 0.1079 v

MNS 0.5036 0.7190  0.4987  0.5889 0.5157
SNS 0.5505 0.7944  0.4987 0.6128 0.6792

NOCD CNS 04729 06770 04987 05743 04088
RCNS 04835 07912 04987 06118 04157

MNS  0.6118 05780 08199 06787 04037

ChempGNn  SNS 08882 09496 0819 08800 0.9565

CNS 0.4875 04925  0.8199 0.6154 0.1553

RT 672 RCNS 0.6100 0.6701  0.8199  0.7374 0.1875 v

MNS 0.5699 0.7445  0.6020  0.6657 0.4907
SNS 0.6290 0.8299  0.6020  0.6978 0.6957
CNS 0.5197 0.6848  0.6020  0.6408 0.3168
RCNS 0.5597 0.8213  0.6020  0.6948 0.3500

NOCD

.2.5 SORT OUT BLOCK ANALYSIS

Table 14: (a) Best score comparison of ChemHGNN models trained on different scales of dataset
and across # of iterations to search new combinations. (b)Best score comparison of sort out function
Simulated Annealing (SA) with random selection on ChemHGNN trained on USPTO-1k across
different # of iterations.

Model # Iters SA
IM 0577
ChemHGNN_1k XM 0.577
M 0.576 Model # Iters SA Random
IM 0577 10k 0574  0.568
ChemHGNN_5k 2M 0.580 ChemHGNN_1000 1M 0576  0.574
3M  0.588 2M 0577 0575
IM  0.582
ChemHGNN_10k % 82;2 Table 16 *
sM 0:586 (b) SA vs. Random on USPTO-1000.
Table 15: *

(a) SA performance across models and iterations.
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.2.6 RCNS ANALYSIS AND ABLATION STUDIES

Table 17: ChemHGNN trained under different negative sampling (NS) strategies with or without
reaction center-aware negative sampling (RCNS) across three dataset scales.The bold number repre-

sents the best result in each metric per dataset.

Dataset With RCNS NS Strategy  Accuracy Precision Recall F1 Specificity AF,
MNS 0.6650 0.6260  0.8200 0.7100 0.5100
X CNS 0.5000 0.5000  0.8200 0.6212 0.1800
USPTO-1k SNS 0.8975 0.9704  0.8200 0.8889 0.9750 0.55%
MNS 0.6675 0.6337  0.7938 0.7048 0.5412
v CNS 0.5206 0.5133  0.7938 0.6235 0.2474
SNS 0.8892 0.9809  0.7938 0.8775 0.9845
MNS 0.8000 0.7947  0.8090 0.8018 0.7910
X CNS 0.5035 0.5022  0.8090 0.6197 0.1980
USPTO-5k SNS 0.9040 0.9988  0.8090 0.8939 0.9990 +0.58%
MNS 0.7764 0.7454  0.8398 0.7898 0.7131
v CNS 0.5021 0.5013  0.8398 0.6278 0.1644
SNS 0.9188 0.9975  0.8398 0.9119 0.9979
MNS 0.7262 0.6677  0.9010 0.7670 0.5515
X CNS 0.5285 0.5163  0.9010 0.6565 0.1560
USPTO-10k SNS 0.9295 0.9555  0.9010 0.9274 0.9580 +7.75%
MNS 0.8412 0.8051  0.9004 0.8501 0.7820
v CNS 0.5409 0.5238  0.9004 0.6623 0.1813
SNS 0.9494 0.9983  0.9004 0.9468 0.9984

Table 18: Ablation study on ChemHGNN trained on USPTO-10k and mix and tested with mix

negative.
Blocks NS Strat  Accuracy Precision Recall FI1 Score Specificity = decrement in F1
+WLN MNS 0.8412 0.8051 0.9004  0.8501 0.7820 -
+SUM SNS 0.9494 0.9983  0.9004  0.9468 0.9984 -
+MSE CNS 0.5409 0.5238  0.9004  0.6623 0.1813 -
RCNS 0.6370 0.6703  0.9004  0.7685 0.1039 -
+WLN MNS 0.8048 0.7656  0.8784  0.8182 0.7311 -3.75%
+SUM SNS 0.9374 0.9958  0.8784  0.9334 0.9963 -1.41%
_MSE CNS 0.5081 0.5047 0.8784  0.6410 0.1378 -3.21%
RCNS 0.6247 0.6667  0.8784  0.7580 0.1113 -1.36%
+WLN MNS 0.6659 0.8112 04324  0.5641 0.8994 -33.6%
-SUM SNS 0.7138 0.9892 04324  0.6018 0.9953 -36.4%
_MSE CNS 0.4914 0.4902  0.4324  0.4595 0.5503 -30.6%
RCNS 0.4788 0.6718  0.4324  0.5261 0.5726 -31.5%
WLN MNS 0.5356 0.8063  0.0938  0.1681 0.9775 -80.2%
-—SUM SNS 0.4096 0.2546  0.0938  0.1371 0.7254 -85.5%
_MSE CNS 0.5076 0.5441 0.0938  0.1600 0.9214 -75.8%
RCNS 0.3602 0.6533  0.0938  0.1641 0.8993 -78.6%
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.4 SORT OUT BLOCK

.4.1 MORE ABOUT SIMULATED ANNEALING (SA)

The objective function f(s) measures the quality of a solution s. The goal of the algorithm is to
minimize or maximize this function. The choice of the objective function depends on the specific
optimization problem being addressed.

The algorithm starts with an initial solution s, which can be generated randomly or using a heuristic
method. This starting point serves as the first candidate solution and influences the initial exploration
of the search space.

Temperature 7 is a control parameter that governs the probability of accepting worse solutions. A
higher temperature increases the likelihood of accepting suboptimal solutions, promoting exten-
sive exploration. As the algorithm progresses, the temperature is gradually reduced to encourage
convergence.

The cooling rate « determines how quickly the temperature decreases. Typically, « is a value between
0 and 1, where a slower cooling rate (closer to 1) results in a more exhaustive search, while a faster
cooling rate (closer to 0) leads to quicker convergence.

At each temperature level, the algorithm performs L iterations to explore the neighborhood of the
current solution. A larger L allows for a more thorough examination of the search space, increasing
the likelihood of finding a better solution.

A neighboring solution s’ is generated by applying small, randomized changes to the current solution
s. The quality of the new solution is evaluated using the objective function.

The new solution is evaluated with the change in objective Function AE:
AE = f(s') = f(s). (14)

If AE < 0, the new solution s’ is accepted since it improves the objective function. Otherwise,
the algorithm uses a probabilistic criterion to decide whether to accept the worse solution. When
AE > 0, the new solution is accepted with a probability given by:

P =exp (—ATE) . (15)

This probabilistic acceptance mechanism prevents the algorithm from getting trapped in local optima,
allowing it to explore more diverse regions of the search space.

The algorithm terminates when a predefined stopping criterion is met. Common criteria include reach-
ing a minimal temperature, exceeding a maximum number of iterations, or detecting convergence.

.5 LIMITATIONS AND OUTLOOK

While this work presents several contributions, it is not without limitations. Key areas for improvement
include scalability, the number of optimization iterations, and the definition of the chemical space
explored.

.5.1 SCALABILITY

As the reaction space expands, the memory footprint of key components—such as the original
embedding X, the incidence matrix H, and matrices involved in the Laplacian computation—grows
exponentially. Although sparse matrix techniques help mitigate this issue, they only provide limited
relief. In our current setup, using a single NVIDIA A100 GPU with 80 GB of VRAM, we are
constrained to exploring a chemical space of up to 20,000 reactions. Future work could benefit from
designing more scalable architectures or leveraging distributed computing frameworks, which remain
a viable option given the increasing availability of computational resources.

.5.2 NUMBER OF ITERATIONS

The current optimization relies on Simulated Annealing (SA), a heuristic approach that is not
guaranteed to be optimal for NP-complete problems. Although SA yields performance improvements,
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it requires a large number of iterations to achieve high-quality selections. Future efforts may focus
on developing more efficient and effective combination strategies, potentially informed by node
representations and learning-guided exploration techniques.

.5.3 DEFINITION OF CHEMICAL SPACE

The definition of chemical space plays a critical role in reaction discovery. An appropriately selected
space can significantly increase the likelihood of uncovering novel reactions. However, the criteria
for constructing an optimal chemical space remain an open question. Further investigation is needed
to understand the characteristics that lead to more fruitful exploration.

.6 COMPUTATIONAL RESOURCES

All experiments were conducted using a single NVIDIA A100 GPU with 80 GB of VRAM. The
maximum runtime for any experiment was approximately 12 hours.

.7 LLM USAGE DISCLOSURE

In accordance with ICLR 2026 policy, we disclose the use of Large Language Models (LLMs) during
manuscript preparation. LLMs were employed only to aid in editing and polishing the writing. All
conceptual contributions, methodological developments, experiments, and analyses were conducted
by the authors.
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